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SLAM - Introduction

Autonomous robots need

To localize itself
e.g., GPS give us the coordinate

To build the environment map
e.g., know the plant of a building

→ without any prior information
→ in real time

What is SLAM?

Simultaneous

Localization

And

Mapping
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Let’s start from . . .

Two common problems

In mobile robotics, but not solely mobile robotics!

Localization

Given a map of the environment

Given sensor measurements

e.g. images from cameras,

laser range finder scans, . . .

Estimate the robot position

Mapping

Given the robot position

Given sensor measurements

Build the map of the environment
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Localization

Localization - a simulated example

Video localization.flv

The position of the coloured box is known (i.e. the map is known)

The robot sense and distinguish the map elements

6/73
Video from http://www.youtube.com/watch?v=MELYZ5r5V1c
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Mapping

Mapping - a simulated example

Video mapping.flv

The map is initially unknown (gray window)

The map is incrementally builded by measurements

7/73
Video from http://www.youtube.com/watch?v=ZfqLnZSAhZw
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What happens in the real world?

Knowledge of the map

Impossible in a lot of applications

e.g.: exploration of buildings,

underwater operations, . . .

Thus, localization is not applicable

Knowledge of the position

Usually unavailable or noisy/uncertain

e.g.: lack of GPS signal in indoor, . . .

Thus, mapping is not applicable

SLAM - Simultaneous Localization And Mapping

The holy grail of the robotics, but not solely mobile robotics!

Mapping requires localization ⇔ localization requires map

Answer to this question:

“Is it possible for a mobile robot to be placed in an

unknown location in an unknow environment and for the

robot to incrementally build a consistent map of this

environment while simultaneously determining its location

within this map?”
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SLAM

Robot path and map are both unknown

Robot path error correlates errors in the map
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On-line and Full SLAM

On-line SLAM

p(xt ,m|z1:t , u1:t)

xt : pose at time t

m: map (static)

z1:t : measurements

u1:t : controls

On-line: estimate the current pose

Most online-SLAM are incremental,

they discard z1:t−1, u1:t−1

Full SLAM p(x1:t ,m|z1:t , u1:t)

x1:t : entire path or trajectory

m: map (static)

z1:t : measurements

u1:t : controls
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EKF-SLAM Introduction

EKF-SLAM

Use a EKF as engine for the solution of SLAM problem

The earliest and perhaps most influential SLAM algorithm

Map is static and feature based, i.e., composed of points, m = {p(W )
i }

For computational reason number of points small, e.g. < 1000

All noises are assumed to be Gaussian

Needs of relatively small uncertainty to reduce linearization effects

EKF-SLAM state

[xt ,m]: both pose and map are in the state

Motion model: only the robot moves, features are static

Map is initially empty

Map grows when new landmarks are perceived

Measures are sensor readings of map landmarks

Updates refine current robot pose and map structure simultaneously
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EKF State Details

State

xt = [x , y , θ]T robot complete pose in world reference frame T
(W )
WR

m = [p
(W )
x1 , p

(W )
y1 , p

(W )
x2 , p

(W )
y2 , . . . , p

(W )
xn , p

(W )
yn ]T cartesian coordinates of points

in world reference frame
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Prediction Step - Robot motion

State prediction

[xT
t ,m

T ]T = g(xt−1, ut ,m, ǫ)



























































xt+1 = cos(θt)∆̃x − sin(θt)∆̃y + xt
yt+1 = sin(θt)∆̃x + cos(θt)∆̃y + yt
θt+1 = θ̃t +∆θ

p
(W )
x1 t+1 = p

(W )
x1 t

p
(W )
y1 t+1 = p

(W )
y1 t

· · ·

p
(W )
xn t+1 = p

(W )
xn t

p
(W )
yn t+1 = p

(W )
yn t

Motion is the standard motion in 2D

Map points are static,
i.e., the prediction left them unchanged

ǫ = [ǫx , ǫy , ǫθ] ∼ N (0,Σǫ)
i.e., noise is only on motion

W
TW

Rt

T
(Rt )
Rt+1

Rt+1
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Prediction Step - Robot motion - Jacobians - 1

State prediction - Jacobians wrt state

[xT
t ,m

T ]T = g(xt−1, ut ,m, ǫ)

Gt =
∂g(x,u,m,ǫ)

∂X

∣

∣
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Prediction Step - Robot motion - Jacobians - 2

State prediction - Jacobians wrt noise

Nt =
∂g(x,u,m,ǫ)

∂ǫ

∣

∣

∣

x=µt−1,u=ut ,m=µm,ǫ=0
=
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sin(θ) cos(θ) 0
0 0 1
0 0 0

· · ·
0 0 0
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Nmotiont

0

]
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Prediction Step - Robot motion - Jacobians - 2

State prediction - Jacobians wrt noise

Nt =
∂g(x,u,m,ǫ)

∂ǫ

∣

∣

∣

x=µt−1,u=ut ,m=µm,ǫ=0
=

















cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1
0 0 0

· · ·
0 0 0

















=

[

Nmotiont

0

]

Prediction step

µt = g(µt−1, ut , 0)

Σt = GtΣt−1G
T
t +NtRtN

T
t =

=

[

Gmotiont 0

0 I

] [

Σxx Σxm

ΣT
xm Σmm

] [

GT
motiont

0

0 I

]

+

[

Nmotiont

0

]

Rt

[

NT
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0
]

=

[

GmotiontΣxxG
T
motiont

+NmotiontRtN
T
motiont

GmotiontΣxm

ΣT
xmG

T
motiont

Σmm

]

⇒ Only top-left block and two band are changed, most remains unchanged

this allow to speed up computation ⇒ O(n)
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Initial state

EKF state

µ0 = [0, 0, 0]

Σ0 =







0 0 0

0 0 0

0 0 0







Robot is in the origin

No uncertainty on its initial position and

orientation

Trajectory and map are reconstructed up to a

rototranslation

The map is empty at initial step
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The sensor

The Sensor

Measure points in polar coordinates

i.e., ρ, θ values

w.r.t. robot reference frame

It recognize the ID of the landmark

i.e., Landmarks uniquely identifiable

Correspondences are known

No data association issues

Physical limits:

Min and max distance

Min and max angle

Additive zero mean noise on measures

both for distance and angle
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New Feature Addition - 1

Sensor measurement

Suppose the point i is perceived and is not

currently in the map

ρi , θi : the point in polar coordinate,

perceived by the sensor

p
(R)
i = [ρi cos(θi ), ρi sin(θi )]

“Inverse” Measurement

p
(W )
i = T

(W )
WR p

(R)
i

Consider noise

η = [ηρ, ηθ]
T ∼ N (0,Ση)

ρ̃i = ρi + ηρ

θ̃i = θi + ηθ

p̃
(R)
i = [ρ̃i cos(θi ), ρ̃i sin(θi )]

p̃
(W )
i = T

(W )
WR p̃

(R)
i

W

T
(W )
WR

R

p(W ) p(R)
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New Feature Addition - 2

Current state

X =
[

x p
(W )
1 · · · p

(W )
n

]

Increase the state dimension

X =
[

x p
(W )
1 · · · p

(W )
n p

(W )
new

]

Assign the proper values

State modification:

X = f (x,m, [ρnew , θnew ], η) =

=







































x = x

p
(W )
1 = p

(W )
1

p
(W )
2 = p

(W )
2

· · ·

p
(W )
n = p

(W )
n

p
(W )
new = T

(W )
WR p̃

(R)
new
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New Feature Addition - 2

Current state
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New Feature Addition - 2

Current state
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New Feature Addition - 3

Jacobians

F = ∂f (·)
∂X

=







I 0 0

0 I 0
∂fn+1(·)

∂x
0 0







N = ∂f (·)
∂η

=







0

0
∂fn+1(·)

∂η







matrices are sparse
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New Feature Addition - 3

Jacobians

F = ∂f (·)
∂X

=







I 0 0

0 I 0
∂fn+1(·)

∂x
0 0







N = ∂f (·)
∂η

=







0

0
∂fn+1(·)

∂η







matrices are sparse

The new state

µ = f (µx, µm, [ρnew , θnew ], 0)

Σ = FΣ∗FT +NΣηN
T

Σ∗ is the covariance with the

increased size

Products are simple due to sparsity
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New Feature Addition - 3

Jacobians

F = ∂f (·)
∂X

=







I 0 0

0 I 0
∂fn+1(·)

∂x
0 0







N = ∂f (·)
∂η

=







0

0
∂fn+1(·)

∂η







matrices are sparse

The new state

µ = f (µx, µm, [ρnew , θnew ], 0)

Σ = FΣ∗FT +NΣηN
T

Σ∗ is the covariance with the

increased size

Products are simple due to sparsity

Notes

A new feature is added to the state

Measure uncertainty is taken into

account (thanks to η)

Robot position uncertainty is taken

into account (thanks to T
(W )
WR )
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Qualitative example - 1

Sensor readings
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Qualitative example - 2

Addition to the state
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Qualitative example - 3

Predition - motion model
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Measurement & Update Step - The equation

Measurement

Measure: hi (x,m, δ)

It express what we expect from the sensor

Given the estimate robot pose x → T
(W )
WR

Given a single estimated map point p
(W )
i

that is in the EKF state too!

i.e., p
(R)
i

in polar coordinates wrt

W

T
(W )
WR

R

p(W ) p(R)

Measurement

p
(R)
i = (T

(W )
WR )−1p

(W )
i

ρi =
√

p
(R)
ix

2
+ p

(R)
iy

2

θi = atan2(p
(R)
iy

, p
(R)
ix

)

Measurement with noise

hi (x,m, δi ) =







ρ̃i =
√

p
(R)
ix

2
+ p

(R)
iy

2
+ δρi

θ̃i = atan2(p
(R)
iy

, p
(R)
ix

) + δθi

δi = [δρi , δθi ]
T ∼ N (0,Qi )

27/73



Introduction EKF-SLAM Landmark Addition Measurement & Update SLAM example Correspondences Visual SLAM Conclusion

Measurement & Update Step - Jacobians

Measurement equation

hi (x,m, δi ) =







√

p
(R)
ix

2
+ p

(R)
iy

2
+ δρi

atan2(p
(R)
iy

, p
(R)
ix

) + δθi

p
(R)
i = (T

(W )
WR )−1p

(W )
i
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Measurement & Update Step - Jacobians

Measurement equation

hi (x,m, δi ) =







√

p
(R)
ix

2
+ p

(R)
iy

2
+ δρi

atan2(p
(R)
iy

, p
(R)
ix

) + δθi

p
(R)
i = (T

(W )
WR )−1p

(W )
i

EKF jacobians

Hi =
∂hi (x,m,δi )

∂X

∣

∣

∣

x=µt−1,p=p
(W )
i

,δi=0

derivate of the measurement function

w.r.t. state variables

Mi =
∂hi (x,m,δi )

∂δi

∣

∣

∣

x=µt−1,p=p
(W )
i

,δi=0

derivate of the measurement function

w.r.t. noise variables
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Measurement & Update Step - Jacobians

Measurement equation

hi (x,m, δi ) =







√

p
(R)
ix

2
+ p

(R)
iy

2
+ δρi

atan2(p
(R)
iy

, p
(R)
ix

) + δθi

p
(R)
i = (T

(W )
WR )−1p

(W )
i

EKF jacobians

Hi =
∂hi (x,m,δi )

∂X

∣

∣

∣

x=µt−1,p=p
(W )
i

,δi=0

derivate of the measurement function

w.r.t. state variables

Mi =
∂hi (x,m,δi )

∂δi

∣

∣

∣

x=µt−1,p=p
(W )
i

,δi=0

derivate of the measurement function

w.r.t. noise variables

Jacobians

Hi =
[

∂hi (X,m,δ)
∂x

∂hi (x,m,δ)

∂p
(W )
1

∂hi (x,m,δ)

∂p
(W )
2

· · · ∂hi (x,m,δ)

∂p
(W )
i

· · · ∂hi (x,m,δ)

∂p
(W )
n

]

=
[

∂hi (X,m,δ)
∂x

0 0 · · · 0
∂hi (x,m,δ)

∂p
(W )
i

0 · · · 0
]

Mi =

[

1 0
0 1

]

Very sparse, useful to speed up calculation.
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Measurement & Update Step - Measurement Details

Measurement in robot frame

Blue: the predicted measure, hi (·)

Red: the real map point in robot coordinates

Green: the noisy sensor measurement zi

Ellipses: given by covariance
St = HtΣtH

T
t +MtQtM

T
t

Innovation: zi − hi (·)
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Measurement & Update Step - Unique Update - 1

The measurements

hi (·), zi (·), Hi , Mi (·), Qi (·)
feasible measurements and Jacobians

How to update?

The complete measurements

h(x,m, δ) =



















h1(x, p
(W )
1 , δ1)

h2(x, p
(W )
2 , δ2)

· · ·

hm(x, p
(W )
m , δm)

δ =
[

δT
1 δT

2 · · · δT
m

]T

H =













∂h1(x,p
(W )
1 ,δ1)

∂x
∂h2(x,p

(W )
2 ,δ2)

∂x

· · ·
∂hm(x,p

(W )
m ,δm)

∂x













M =















∂h1(x,p
(W )
1 ,δ1)

∂δ1
∂h2(x,p

(W )
2 ,δ2)

∂δ2

· · ·
∂hm(x,p

(W )
m ,δm)

∂δm
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Measurement & Update Step - Unique Update - 1

The measurements

hi (·), zi (·), Hi , Mi (·), Qi (·)
feasible measurements and Jacobians

How to update?

The complete measurements

h(x,m, δ) =



















h1(x, p
(W )
1 , δ1)

h2(x, p
(W )
2 , δ2)

· · ·

hm(x, p
(W )
m , δm)

δ =
[

δT
1 δT

2 · · · δT
m

]T

H =













∂h1(x,p
(W )
1 ,δ1)

∂x
∂h2(x,p

(W )
2 ,δ2)

∂x

· · ·
∂hm(x,p

(W )
m ,δm)

∂x













M =















∂h1(x,p
(W )
1 ,δ1)

∂δ1
∂h2(x,p

(W )
2 ,δ2)

∂δ2

· · ·
∂hm(x,p

(W )
m ,δm)

∂δm















The update

h =
[

hT
1 hT

2 · · · hT
m

]T

H =
[

HT
1 HT

2 · · · HT
m

]T

z =
[

zT
1 zT

2 · · · zT
m

]T

M =

















M1 0 · · · 0
0 M2 · · · 0

· · · · · ·
0 · · · Mm−1 0

· · · · · ·
0 · · · 0 Mm

















Q =

















Q1 0 · · · 0
0 Q2 · · · 0

· · · · · ·
0 · · · 0

· · · Qm−1

0 · · · 0 Qm
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Measurement & Update Step - Unique Update - 2

Notice that

H =

















H1

H2

...
Hi

...Hm

















=

























∂h1(X,m,δ)
∂x

∂h1(X,m,δ)

∂p
(W )
1

0 0 · · · 0

∂h2(X,m,δ)
∂x

0
∂h2(X,m,δ)

∂p
(W )
2

0 · · · 0

· · ·
∂hi (X,m,δ)

∂x
0 · · · 0

∂hi (X,m,δ)

∂p
(W )
i

0 · · · 0

· · ·
∂hi (X,m,δ)

∂x
0 · · · · · · 0 · · · ∂hn(X,m,δ)

∂p
(W )
n

























is very sparse, it has two non zero blocks for each row

This is very useful for real time implementations
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EKF-SLAM, the Algorithm
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Some iterations - 1

Second step
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Some iterations - 2

47th step
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Some iterations - 3

108th step
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Some iterations - 4

137th step
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Some iterations - 5

141th step - After a Loop Closure
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The role of loop closure

Uncertainty

Grows continuously also in SLAM

The loop closure reduces uncertainties of

the current robot pose

the map landmark

The loop closure propagates corrections

Loop closure

A landmark i that is already in the map is

perceived “after a while”

Its uncertainty is lower than current, it gives a

good information for localization
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The role of loop closure - 2

Uncertainty on robot pose
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Correspondences

Correspondences

Correspondences are known → this is uncommon in real environments

If correspondences are unknown we have to perform the data association

Data association

Given a set of measurements {zi}, i = 1 : m

Given a set of measurements prediction {hj}, j = 1 : w

We have to select correspondences cij

Or to add measurements as new landmarks

Mahalanobis Distance Nearest Neighbours Approach

1 k = 1

2 Select w such that zw closest to hk in D2(zw , hk)

3 Remove zw from {zi}

4 Repeat from 2

5 Incompatible measures are added as new landmarks
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Data association errors

Wrong associations ⇒ bad results

43/73
[Matlab: RUN1]
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When data association is difficult - 1

Low sensor error High sensor error
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When data association is difficult - 2

Low odometry error High odometry error
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When data association is difficult - 3

Low landmark density High landmark density
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Nearest Neighbour Data association pitfall

Mahalanobis Distance

Evaluate Individual Compatibility

This could result in wrong associations

Joint Compatibility

Evaluate Mahalanobis distance on a
subset of associations

To reduce computational complexity
use Branch & Bound technique

This performs better than Individual
Compatibility
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Joint Compatibility Branch And Bound (JCBB)

Using JCBB data association

48/73
[Matlab: RUN2]
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Non-static environment - 1

People walking in the cloister

Using Nearest Neighbour

49/73
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Non-static environment - 2

People walking in the cloister

Using Nearest Neighbour

Delete landmarks that have a

measurement prediction but are not

matched for a while
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Non-static environment - 3

People walking in the cloister

Using JCBB

51/73
[Matlab: RUN5]
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Non-static environment - 4

People walking in the cloister

Using JCBB

Delete landmarks that have a

measurement prediction but are not

matched for a while

52/73
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A note on motion model

Motion Model

We have always used odometry as

input

This controls the robot motion in the

prediction step

Absolutely necessary? NO!

Steady state motion Model

xt+1 = xt + ηx

yt+1 = yt + ηy

θt+1 = θt + ηθ

The noise “code” the (unknown)

motion

Constant velocity motion model

xt+1 = xt + vt cos(θt)∆t

yt+1 = yt + vt sin(θt)∆t

θt+1 = θt + wt∆t

vt+1 = vt + ηv

wt+1 = wt + ηw

Suppose speed is constant in ∆t

The noise “code” the (unknown)

speed change

Measurements change position and

speed thanks to correlations

53/73
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Visual SLAM

Visual SLAM Properties

Rely only on camera(s)
solution with one camera easily

extends on multi camera systems

Extensible with measures
motion, GPS position, ...

Smart and cheap

Challenging
lack of depth with one camera

Could be solved in Real Time

55/73
Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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map points
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Visual SLAM

Visual SLAM Properties

Rely only on camera(s)
solution with one camera easily

extends on multi camera systems

Extensible with measures
motion, GPS position, ...

Smart and cheap

Challenging
lack of depth with one camera

Could be solved in Real Time

EKF-based SLAM

The most consolidated methodology

Use an Extended Kalman Filter as engine

State vector (multivariate gaussian variable):
robot pose
map points

Predict robot motion

Observe features in image

PRO:

Could run in Real-Time on standard PC

Well known approach

Scalability to large scale
through sub-mapping techniques

CONS:

Needs a specific parametrization of points

Suffer of approximation

55/73
Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Landmarks & Features

Landmarks

Elements of the map

They code a 3D point
notice: we consider 3D environment

Features

The measurable quantity of a
landmark

Good features to track in image
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Good Features to Track

Characteristics of good features

Repeatability
The same feature can be found in several images

despite geometric and photometric transformations

Saliency
Each feature has a distinctive description

Compactness and efficiency
Many fewer features than image pixels

Locality
A feature occupies a relatively small area of the image

robust to clutter and occlusion
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Detector, descriptor, matching, tracking

Detector:

Algorithm that extracts image locations which are easily found in other images of the

same scene (repeatability) ⇒ Corner detector

Descriptor:

Algorithm used to convert a region around a detected keypoint into a more compact

and stable (invariant) form that can be successfully matched against other descriptors

(saliency) ⇒ Patch around the corner

Feature matching:

An algorithm that efficiently searches for likely matching candidates in other images

even when large amount of motion or appearance change has ocurred

Feature tracking:

Similar to the previous one but more suitable when images are taken from nearby

viewpoints or in rapid succession ⇒ Template matching with patches
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Monocular SLAM key problem - 1

Camera is a bearing-only sensor

Depth is unknown from a single image

Depth can be estimated with triangulation after camera motion
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Monocular SLAM key problem - 2

Depth can be estimated with triangulation after camera motion

Parallax angle cover a key role
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Monocular SLAM key problem - 3

Feature depth

Unknown at initialization

Uniform distribution from 0 to ∞
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Monocular SLAM key problem - 3

Feature depth

Unknown at initialization

Uniform distribution from 0 to ∞

Solution 1: Delayed initialization

For each feature

Use a set of 3D hypotesis on view ray
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Monocular SLAM key problem - 3
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Monocular SLAM key problem - 3

Feature depth

Unknown at initialization

Uniform distribution from 0 to ∞

Solution 1: Delayed initialization

For each feature

Use a set of 3D hypotesis on view ray

Choose the right depth hypothesis

Add it to the filter

Solution 2: Undelayed initialization

For each feature

Add one n-dimensional element that code
The viewing ray
The unknown depth

following a specific Parametrization
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Real Time Monocular SLAM

Real Time Monocular SLAM - Since 2003

videos/monoRT.flv

62/73
Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003

Video from http://www.youtube.com/watch?v=mimAWVm-0qA
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Which parametrization?

UID

Unified Inverse Depth

y
UID
i =

[

tTi ϑi ϕi ̺i
]T

P
3D = ti +

1

̺i
m(ϑi , ϕi )

FHP

Framed Homogeneous Point

y
FHP
i =

[

tTi qT
i u′

i v ′
i ωi

]T

P
3D = ti +

1

ωi

R

(

qi

‖qi‖

)

·
[

u′
i v ′

i 1
]T

W
x

y
z

ti

m(ϑi , ϕi )

1
̺i
m(ϑi , ϕi )

P3D

W
x

y
z

x ′

y ′

z ′

ti ,R
(

qi
‖qi‖

)

1
ωi

[

u′
i

v′
i
1

]

P3D
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Large Scale SLAM Issues

Computational cost

Grows with # features
Consistency

Due to linearizations of EKF
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Large Scale SLAM Issues

Computational cost

Grows with # features
Consistency

Due to linearizations of EKF

Some solution

Conditional Independent Submapping SLAM

Explicit Loop Detection & Loop closure recovery methods

64/73

Pinies, Tardos “Large Scale SLAM Building Conditionally Independent Local Maps: Application to
Monocular Vision”, 2008

Pinies, Paz, Tardos “CI-Graph: An efficient approach for Large Scale SLAM”, 2009
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Example in a Real Environment - Monocular Vision

videos/mono.flv

The path is estimated

without any external

information, using a

constant velocity

motion model

The map is represented

by points location

Theoretically

reconstruction is up to a

single scale factor

Practically there is a

scale drift
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Example in a Real Environment - Stereo Vision

videos/stereo.flv

The path is estimated

without any external

information, using a

constant velocity

motion model

The map is represented

by points location

The stereo vision

eliminate the scale

factor ambiguity
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Example in a Real Environment - Trinocular Vision

videos/tri.flv

The path is estimated

without any external

information, using a

constant velocity

motion model

The map is represented

by points location
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Example in a Real Environment - Omnidirectional Camera - 1

360-degree field of view

1 Camera

2 Lower Mirror

3 Aperture

4 Glass Housing

5 Cover and Upper Mirror (hidden)
68/73
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Example in a Real Environment - Omnidirectional Camera - 2

videos/omni.flv

The path is estimated

without any external

information, using a

constant velocity

motion model

The map is not shown

in this case
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Only EKF-SLAM?

Not only EKF-slam

Particle Filters → FastSLAM &
FastSLAM 2.0

Extended Information Filter

Parallel Tracking and Mapping
(PTAM)

Junction tree filters

Incremental Smoothing and Mapping
(iSAM)

Local Sparse Bundle Adjustment

...

PTAM example

videos/ptam.webm

from
http : //www.youtube.com/watch?v = Y 9HMn6bd − v8
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Only EKF-SLAM?

Laser Range Scanner based SLAM

2D SLAM

videos/slam2dlaser.webm

from http : //www.youtube.com/watch?v = flfNOXHxBKY

3D SLAM

videos/slam3dlaser.webm

from http : //www.youtube.com/watch?v = QQeJ1xdsOU

other sensors: Microsoft Kinect, etc...
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