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Abstract

Very few works focus on the restoration (deblurring) of a blurred object

when the surrounding background is sharp. This challenging task involves

issues which are related to image segmentation, digital image matting and

blind deconvolution.

In this scenario, this thesis proposes a technique for estimating the blur

point spread function exploiting the information provided by the alpha mat-

te, when a single image containing a blurred object is available. The alpha

matte contains information about the apparent transparency of the blurred

object. The main idea consists in estimating the unknown silhouette of the

blurred object by thresholding the alpha matte and obtaining then the blur

point spread function with the deconvolution between the blurred and the

thresholded alpha map.

The thesis begins presenting an essential state-of-the-art of matting, ima-

ge formation and point spread function estimation; then the problem is

stated and the proposed approach is accurately described in all its steps.

Implementation details and experiments conclude the work.

Our approach has been validated with experiments on both synthetic

and camera images. On synthetic images the blur point spread function

has been estimated with reasonable accuracy even in presence of additive

white noise, while on camera images, the restoration performance using the

estimated point spread function encourages further works in this direction.
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Introduzione

L’argomento della presente tesi si colloca in due rami dell’informatica: l’e-

laborazione digitale delle immagini e la visione artificiale. In particolare, gli

argomenti di ricerca più attinenti al lavoro svolto sono il matting e la decon-

voluzione blind. Il matting consiste nell’estrarre degli oggetti dallo sfondo

in un’immagine, ad esempio allo scopo di realizzare dei fotomontaggi. Con

deconvoluzione blind si indicano varie tecniche ideate per ripristinare un’im-

magine affetta da sfocatura, perché fuori fuoco oppure mossa. Viene definita

blind (cieca) in quanto si prescinde dalla conoscenza della funzione che de-

scrive la sfocatura. Tale funzione prende nome di point spread function

(PSF), e corrisponde all’immagine di una sorgente luminosa puntiforme.

Lo scopo della tesi è lo sviluppo di una tecnica per ripristinare immagini

di oggetti fuori fuoco o mossi. Viene considerato ovvero il caso in cui la

degradazione riguarda un oggetto isolato, il che accade quando l’oggetto

si trova ad una profondità diversa dallo sfondo, o quando l’oggetto è il

movimento. L’approccio proposto ha inizio con la selezione dell’oggetto

da ricostruire e la scomposizione dell’immagine in tre componenti: il colore

dell’oggetto (color map), lo sfondo e la mappa di trasparenza (alpha map).

Il principale contributo della tesi è il peculiare approccio alla stima della

PSF basato sull’alpha map. Nota la PSF, l’immagine dell’oggetto viene

ripristinata usando algoritmi di deconvoluzione. L’approccio viene infine

validato con immagini di prova, in parte sintetiche e in parte ottenute da

fotografie digitali.
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(a) (b)

Figura 1: (a) Un’immagine interamente sfuocata. (b) Immagine contenente un oggetto

mosso.

La Figura 1(a) mostra il caso più frequentemente considerato in lette-

ratura, in cui tutta l’immagine è affetta dalla degradazione che si intende

correggere. Diversamente, in questa tesi, si considera il caso in cui la sfo-

catura o il movimento riguardano un oggetto isolato, come chiarito dalla

Figura 1.1(b). Siccome l’esito del matting è di grande importanza per le fasi

successive, viene utilizzato uno degli approcci di maggior successo a que-

sto difficile compito, proposto da Levin, Lischinski e Weiss in [23]. Il loro

metodo si fonda su ipotesi di regolarità locale delle immagini dell’oggetto e

dello sfondo. Definiscono una funzione di costo in cui l’alpha map è la sola

variabile incognita, e da essa ricavano un sistema di equazioni lineari da

risolvere. Per inizializzare la procedura, l’utente deve inoltre marcare l’og-

getto e lo sfondo con dei tratti bianchi e neri, come ulteriormente chiarito

nella Sezione 3.1.

Lo scopo principale del matting è l’estrazione di un oggetto dalla scena,

per esempio allo scopo di sostituire lo sfondo di un attore. Le stesse tecniche

sono utilizzabili anche con oggetti sfocati e mossi, in quanto sono in grado

di gestire le zone dove il colore del soggetto si combina con lo sfondo.

La tesi si concentra principalmente attorno alla possibilità di stimare

la PSF sfruttando l’informazione fornita dall’alpha map. In particolare,
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questo comporta la stima della sagoma dell’oggetto applicando una soglia

all’alpha map, e la deconvoluzione dell’alpha map sogliata dall’alpha map. Si

ottiene cos̀ı una stima grossolana della PSF, i cui parametri sono facilmente

identificati, specialmente per PSF a simmetria centrale come il disco o la

gaussiana.

Nota la PSF, una qualunque tecnica di deconvoluzione può essere usata

per ricostruire l’immagine dell’oggetto. In questa fase, si propone anche

un processo di raffinamento iterativo della PSF, finalizzato a migliorare la

qualità del risultato. Infine si propongono alcuni semplici accorgimenti per

filtrare l’alpha map precedentemente ricostruita, riducendone ulteriormente

gli eventuali difetti. La procedura iterativa di raffinamento è ispirata al

lavoro sulla deconvoluzione blind di immagini bicolore illustrato in [24].

L’approccio proposto è stato implementato in ambiente Matlab e sottopo-

sto a verifica sperimentale in diversi scenari. Prove realizzate con immagini

sintetiche in assenza di rumore dimostrano la validità dell’approccio nelle

condizioni più favorevoli, poi si verifica l’adeguatezza delle misure adottate

per neutralizzare gli effetti del rumore. Infine si propongono alcuni esperi-

menti con vere fotografie digitali, nelle condizioni tipiche delle applicazioni

pratiche.

Sebbene i risultati siano incoraggianti, vi sono ancora molte limitazioni,

tra cui la dipendenza dalla correttezza della fase di matting. Il problema del

matting è intrinsecamente difficile, e anche i migliori algoritmi disponibili

sono solamente in grado di fornire una soluzione visivamente gradevole, non

garantendone la correttezza a meno di condizioni molto particolari. Quando

l’immagine di sfondo è nota a priori, si può tuttavia ottenere un matting

più accurato usando il metodo proposto in [14].

Attualmente, la degradazione dell’oggetto è descritta da una PSF para-

metrica. Tale scelta da un lato conferisce velocità ed efficienza all’implemen-

tazione, ma pone anche delle forti limitazioni della flessibilità complessiva
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dell’approccio. Sviluppi futuri potranno riguardare l’adattamento di una

delle moderne tecniche di deconvoluzione blind non parametrica con i vin-

coli aggiuntivi sulle caratteristiche dell’alpha map. J. Jia ha proposto già

una soluzione adatta sia ad oggetti che ad immagini globalmente mosse, e

ulteriori sviluppi in tale direzione sono auspicabili [18].

La presente tesi è organizzata nel modo seguente: nel Capitolo 2 si mo-

stra lo stato dell’arte del matting e della deconvoluzione blind, con parti-

colare riguardo ai lavori che hanno maggiore attinenza con il presente. Il

Capitolo 3 illustra i concetti, le definizioni fondamentali e discute i principali

contributi teorici di questo lavoro. La struttura del capitolo è suddivisa tra

il matting e l’analisi dettagliata dell’approccio proposto. I contributi ori-

ginali della tesi si trovano principalmente nelle seguenti sezioni: nella 3.1.1

si propone un approccio al matting basato su trasformazioni lineari nello

spazio RGB. La Sezione 3.3.1 tratta la stima della PSF usando l’alpha map,

mentre la 3.4.1 si concentra sul perfezionamento del risultato.

Gli aspetti implementativi sono trattati nel Capitolo 4, seguendo un ap-

proccio top-down: prima si fornisce una visione complessiva, poi si presenta

una analisi dettagliata delle singole fasi. Il Capitolo 5 mostra i risultati spe-

rimentali, in cui si mette alla prova l’approccio in varie condizioni. Le prove

sono realizzate sia con immagini sintetiche, sia con immagini reali. Le con-

clusioni nel Capitolo 6 riassumono brevemente il lavoro svolto, e discutono

alcune delle possibili applicazioni e sviluppi futuri. Infine, nell’Appendice

A, vengono allegate la parti essenziali del codice sorgente.



Chapter 1

Introduction

The topic of this thesis is situated in two large branches of computer science:

digital image processing and computer vision. In particular, natural image

matting and image restoration are the most pertinent fields.

The main goal of this work is developing an approach to selectively

restore blurred objects in a single image. In general, the blur degradation

only affects a single, isolated object, while the rest of the image is not

affected by it. The proposed approach starts from selecting a blurred object

and decomposing the image into three layers: foreground, background and

alpha (i.e. the transparency of the object) maps using state of art matting

techniques. The blur degradation point spread function (PSF) is estimated

taking advantage of the information provided by the matte. Then, the

image of the object is restored using classical image restoration approaches.

Numerous test cases have been provided to validate the proposed approach,

with both synthetic and camera images.

Figure 1.1(a) shows a blurred image, which is the case found in most

previous works on deblurring. On the contrary, in this work, the case of

blur affecting an isolated object is considered, as clarified by Figure 1.1(b).

Accurate computation of the matte is of critical importance for the subse-

quent phases. One of the most successful approaches to this difficult task
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(a) (b)

Figure 1.1: (a) A blurred image. (b) Image containing a blurred object due to motion.

was proposed by Levin, Lischinski and Weiss in [23]. Their method relies

on the assumption of local smoothness of the foreground and background

images. They derive a cost function only dependent on the transparency

values. With the help of additional user defined constraints, in the form

of manual strokes indicating foreground and background regions, a sparse

system of linear equations is defined and used to solve the matting problem.

While the main purpose of matting techniques is typically to separate an

object form the scene, these can also be used in the case of blurred objects,

whose boundaries are mixed with the background image.

The main focus of the thesis consists in exploring the possibility to es-

timate the blur PSF exploiting the information provided by the matte. In

particular, this is done by estimating the true silhouette of the object by

applying a segmentation threshold to the alpha map. By deconvolution of

such estimate from the computed matte, it is possible to roughly estimate

the underlying PSF. This approach, which is very simple and efficient, works

particularly well in case of rotationally symmetric filters such as Gaussian

low-pass blur or disk. In some particular cases, it even works on motion

blurred objects, and, in this case, an ad hoc PSF estimation procedure has

been proposed.

Any classical image restoration technique can be used to restore the im-
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age of the blurred object, once the PSF is known. In this phase it is option-

ally possible to start an iterative PSF refinement process aimed at improving

the quality of the restored image, and finally apply further post-processing

operations on the reconstructed alpha map to reduce the remaining arti-

facts. The iterative PSF refinement process is inspired to the research on

blind deconvolution of binary images in [24].

The proposed approach has been implemented and tested to verify its be-

havior under various conditions. Synthetic tests with noiseless input proved

the adequateness of the approach under the specified assumptions. Further

tests on noisy images allow to analyze how the noise affects the estimation,

and to test the measures adopted to neutralize its negative effect. Last ex-

periments finally consider real camera images, which represent a good way

to stress the approach under practical conditions.

While the results are encouraging, there are still many limitations in this

approach. The first one is the intrinsic dependence on the accuracy of the

matting algorithm. The matting extraction problem is intrinsically difficult,

and even the best state of the art algorithms are only able to provide a nice

looking solution, without guaranteeing its correctness unless very particular

conditions are met. In case the background image is known in advance,

the method proposed in [14] can be applied for a more accurate matting

process. Moreover, since deconvolution is an ill-conditioned operation, all

these errors together with noise further hinder the restoration process.

Currently, the blur is described by a simple parametric PSF. While this

choice confers speed and efficiency to the implementation, it also poses a

strong limitation to the flexibility of the approach. Ongoing works concern

the adaptation of the existing blind deconvolution methods with the ad-

ditional constraints of binary alpha maps. In [18] J. Jia already proposes

a solution for motion blur, which can be applied both for blurred objects

or blurred images, however more research on this particular aspect is still
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desirable.

This thesis is organized as follows. In Chapter 2 are shown the state

of the art techniques that are related to this work. In particular, the areas

of natural image matting and blind deconvolution are taken into account.

Chapter 3 illustrates basic concepts, definitions and discusses the main the-

oretical contributions of this work. The chapter is subdivided between the

extraction of the matte, which is very important for the outcome of the

following phases, and the in-depth analysis of the original approach that

is proposed. In particular, the original contributions of this thesis are in

the following sections: Section 3.1.1 covers a matting approach using linear

transformations in RGB space. Section 3.3.1 deals with the PSF estimation

from the alpha matte. Section 3.4.1 focuses on the parameter refinement

procedure.

The most relevant implementation aspects are described in Chapter 4,

following a top-down approach: first a general overview is given, then fol-

lows a detailed analysis of the the various phases. Chapter 5 shows some

experimental results to verify how the proposed approach performs in prac-

tice. Both synthetic images and real camera images are used to prove the

effectiveness of the approach. The conclusions are included in Chapter 6,

that briefly summarizes the contents of the work and proposes some final

considerations on the principal achievements that have been attained. Some

potential applications are also discussed, before ending with a general out-

line of the possible developments. Finally, in Appendix A is reported the

most significant part of the source code used to produce the experimental

results.



Chapter 2

State of the art

The selective restoration of a blurred object given a single image requires

two important steps: first the blurred object has to be isolated from its

background, then its image has to be restored. The two research areas in

image processing that pertain to these phases are natural image matting

and image restoration. In what follows we show the most important state

of art achievements that lead to this work.

2.1 Digital matting

The classical matting problem in image processing consists in separating

a foreground image from a background image. One typical application in

movies would be extracting an actor from the scene, to substitute the back-

ground image. Since this thesis mainly aims at restoring objects without

altering background features, it is critical to understand and choose the most

successful approaches to this challenging problem.

The observed image (I) is modeled as a convex linear combination of

foreground (F) and background (B), where the coefficients represent opacity

information (the alpha map or matte), according to the Porter-Duff com-

9
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positing equation [29]:

I = αF + (1 − α)B (2.1)

The problem consists in computing α, F and B from the observation I.

However, there exists an infinite number of solutions, since for every pixel

in color images there are three equations and seven unknowns. Therefore,

the problem is severely under-constrained.

Early approaches have been used to simplify the problem by using a

constant backing color, which often happened to be blue, hence these tech-

niques are commonly referred to as blue screen matting. Extensive research

and numerous patents exist on this subject [12, 35, 33, 27]. Even in this

case, however, the human eye is still the best judge to evaluate the solution.

There are numerous times where the knowledge of the background color

is not available, so the previously mentioned techniques cannot be used. In

these cases there exist other approaches that try to solve the problem by

making various assumptions on the input data and the unknowns. This

particular research field is known as natural image matting.

Many techniques require a trimap as input to start the matting process.

A trimap is an auxiliary image indicating which regions are certainly part

of the background, which are part of the foreground and finally the mixed

areas that have to be solved [7, 32, 34]. In Bayesian matting approaches

assumptions are made on the local color distribution of F and B. The matte

with the maximum probability is then chosen as solution [7, 32].

Another trimap-based method is Poisson matting [34]; they compute

the matte starting from the image gradient, solving a Poisson equation.

To obtain good results it is often necessary to undergo an iterative local

refinement process of the matte demanding significant manual editing.

Disadvantages of these methods include the accurate and tedious manual

painting of an adequate input trimap. While some techniques were devel-

oped to provide automatic trimap generation from few manual input strokes,
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these are not suited to all situations [25].

Recently, some more successful approaches have been proposed [16, 36,

23]. These are generally characterized by a scribble based user interface,

where a limited set of user input strokes indicating background and fore-

ground is used to find the solution. One of these approaches is the iterative

algorithm proposed by M. Cohen and J. Wang [36]. The matting solution is

obtained by iteratively setting up a suitable conditioned random field prob-

lem. The estimation is initially done only on the pixels that are close to the

input strokes, and further propagates after each iteration till the image is

fully covered and the uncertainty of the solution is minimized. More details

on this are seen in Section 3.1.

The other two approaches in [16, 23] are based on the optimization of

a quadratic cost function derived from the matting equation and additional

assumptions on the local smoothness of the foreground and background

colors. Under the given conditions, the dependency of the cost function on

F and B can be eliminated, and the alpha matte is computed as the solution

to a sparse set of linear equations. In particular, the method described by

Levin et al. in [23], which is briefly summarized in the next chapter, will be

used to provide input data for the experiments with actual camera images

in Chapter 5.

2.2 Image restoration

The following degradation model of the blurred objects is considered:

I = I0 ⊛ h + η (2.2)

where I is the observed image of the object, I0 is its true latent image, h

is the blur kernel also called point spread function (PSF) and η is Gaussian

white noise. ⊛ denotes the convolution operation.
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The problem consists in finding the true image I0 prior to the degrada-

tion. When the PSF is known, this is the classical image restoration problem,

that can be solved using different deconvolution techniques. The approach

preferred in the current implementation is the Wiener deconvolution, based

on the least squares minimization of the expected mean square error [15].

Other methods however exist for this purpose, such as the Richardson-Lucy

algorithm, that converges to the maximum likelihood estimate for I0 [26, 31].

These methods alone are not much useful in practical situations, because

the PSF is often unknown and very little information is available, other than

the observed image itself. Therefore a very interesting research topic is blind

deconvolution, well summarized by D. Kundur and D. Hatzinakos in [19].

There exists a vast number of blind deconvolution techniques, offering

different compromises of optimality, computational complexity and conver-

gence properties that usually have to be accurately considered according to

the application requirements.

Most techniques can be classified in two main groups. The first one

comprehends those that separate the model estimation process from the

image restoration itself; these can be called a priori blind deconvolution

methods. For example, in astronomical imaging it is sometimes possible

to directly identify the blur filter by inspecting the image of a point light

source on a constant background [1]. Other examples are those methods

based on inspecting the pattern of zeroes in the Fourier domain, allowing

the identification of rectilinear motion blur or out of focus blur PSF [4, 3, 5].

Once the PSF is estimated, the restoration can be performed using any of

the classical restoration techniques.

The methods in the second category are characterized by the simulta-

neous reconstruction of both I0 and the PSF. Numerous algorithms in this

group are naturally more complex and can be generally divided in subcat-

egories, according to [19]. Some of the most successful are briefly summa-
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rized: one class of these algorithms models I0 as an auto-regressive (AR)

process and the PSF as a symmetric moving average (MA) process. Thus,

identifying the ARMA parameters leads to the solution. Most techniques

in this subarea typically use maximum-likelihood estimation, generalized

cross-validation or even neural networks [21, 30, 6].

Other important blind deconvolution algorithms are the non-parametric

techniques based on image constraints. In these cases neither the blur or

the image are described by parametric models. Instead, various image con-

straints are assumed and used to perform an iterative reconstruction of the

latent image and the PSF simultaneously.

Fergus et al. developed a method to blindly remove the effects of global

motion blur caused by camera shake during the exposure interval, using

prior knowledge on the statistical distribution of the image gradient [11].

Another blind motion deblurring method exploiting a prior on the distri-

bution of the gradient is proposed by A. Levin in [22]. While this approach is

restricted to uniform rectilinear motion, it has the advantage of segmenting

the image in areas having the same blur PSF. This segmentation allows the

authors to consider images depicting objects moving at different velocities

in the scene.

In [24], Ta-Hsin Li and Keh-Shin Lii propose an iterative blind deconvo-

lution method for two tone images. They iteratively alternate the estimation

of the unknown base tones with that of the deblurring filter. Since the alpha

map of blurred objects computed in the matting phase can be considered

a degraded black and white image, this work has influenced some of the

theoretical aspects discussed in Section 3.4.

Contrarily to most of the existing methods, in this thesis it is assumed

that the image is degraded according to Equation (2.2) only at those pixels

depicting the considered object. The same PSF affecting the object applies
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to the latent alpha map α0 as well:

α = α0 ⊛ h + η. (2.3)

The object color and alpha maps therefore share the same degradation

model.

Very recently J. Jia et al. proposed a motion deblurring algorithm based

on the alpha matte, providing a unified way to estimate the motion in both

cases of camera shake or object motion [18]. Their work indeed shares

some of the goals with the present thesis, and it makes use of the same

prior knowledge on the binary nature of α0. However it differentiates in

the estimation approach, defining a Maximum A Posteriori framework and

solving it with iterative optimization algorithms.



Chapter 3

Theoretical approach

This chapter focuses on the theoretical aspects of the selective restoration

of blurred objects in a single image.

In Section 3.1 the concern is the separation between the object and

the background data. This is the well known problem of natural image

matting. A new approach based on linear transformations in RGB space is

analyzed; then the main state-of-art natural image matting techniques are

briefly discussed. Their key concepts are analyzed to expose how to obtain

better results with blurred objects.

After dealing with matte extraction, Section 3.2 introduces the image

formation process, along with the assumed image degradation model. Then,

the core elements of the proposed approach are analyzed under ideal con-

ditions in Section 3.3. The restoration takes place in two phases: first an

estimation of the blur kernel is derived from the opacity values computed

in the matting process. Subsequently, classical deconvolution strategies are

used to restore the original image. The last phase also incorporates an it-

erative refinement of the previously estimated parameters, seen in Section

3.4.

Since the ideal conditions are rarely met in real camera images, the

factors that negatively influence the result are introduced in the last section.
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Finally, strategies to counteract the effects of noise and to improve the overall

quality of the composition are discussed.

3.1 Separating foreground and background data

The first step in the direction of selectively deblurring objects in an image

is to extract color and opacity values from the background. This operation

is equivalent to the well known problem of extracting the matte, or ‘pulling

the matte’ as found sometimes in literature. The observed image is typically

modeled as a convex linear combination of the foreground color Fi and the

background color Bi for every pixel i.

Ii = αiFi + (1 − αi)Bi (3.1)

The αi term represents the opacity values of the foreground image; its value

ranges in the [0, 1] interval, representing all possible values in the transition

between 100% background to 100% foreground pixels.

The matting problem consists in estimating α, F and B for each pixel

i, starting from the combined image I. The matting problem is heavily

under-constrained, since the image I is often the only information that is

available. As already mentioned in Chapter 2, many techniques have been

studied and developed to face this problem, by adding various constraints

and making assumptions on the properties of the solution. Since the quality

of the matte is critical for the outcome of the following phases, the most

successful approaches to date have been taken into account.

Matting algorithms are generally aimed at extracting an object from

its background for later use, such as composition on a new background.

Typically the objects are not blurred, however boundary pixels as well as

transparent regions are a mixture of background and foreground color that

have to be computed, as seen in Figure 3.1. The presence of mixed pixels is

naturally more relevant in the case of blurred objects, so it is critical that the
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chosen matting algorithm correctly handles this case. The matting problem

Figure 3.1: Typical matting problems. Even when the object is not blurred, there are

regions where foreground and background colors are mixed. The mixed regions are

more relevant in case of blurred objects, as seen in the image on the right.

can be solved in a more simple way when some of the terms in Equation

(3.1) are known in advance. For example, in blue screen matting, the key

idea is to take a photograph of the subject against a known, constant color

background. However, the problem remains under-constrained and, in real

applications, the human eye is still required to ultimately judge whether a

result looks correct [33].

Recently, another method has been proposed in [14], which focuses on

motion blurred objects, but still holds in the out of focus case. The main

assumptions here include knowledge of the background image and the object

color lying on a single plane in the RGB space. In these conditions, the matte

is fully constrained and can be computed. This is very desirable for many

applications that depend on an exact solution rather than one that looks

good enough.

Noise and uncertainty on the alpha matte is a common problem with

camera images, even when using state of the art approaches. In the follow-

ing section a fast and reliable method to compute the matte in particular
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conditions is discussed.

3.1.1 Matting using linear RGB transformations

A new approach to matting using linear transformation in RGB space is

now derived.

Let the target be a color image, where background and foreground col-

ors for each pixel are known and, of course, different. This constraint will

be relaxed later; in this particular case, the solution to Equation (3.1) is

trivial, but it is still worth to mention its meaning in the RGB color space

to introduce the subsequent generalization. From the Equation (3.1), all

Figure 3.2: RGB space representation of the target image I. All pixels lie on the BF

segment: alpha ranges from zero to one when moving from B to F.

pixels in the image are known to lie on the BF segment, because they are

convex linear combination of the fixed points B and F. Their position on BF

is directly related to their opacity value α. With this geometric interpreta-

tion in mind, a solution to the matting problem can be computed with an

appropriate 3D linear transform in homogeneous coordinates. The idea is

finding a new reference system such that BF coincides with the unit length

vector on one axis; this way, the alpha values can be immediately retrieved.
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The H matrix that follows accomplishes exactly this purpose:

H−1 =




~d′r
~d′g

~d′b
~B

0 0 0 1




It is easier to define H in terms of its inverse: ~d′r,
~d′g,

~d′b represent the direc-

tions of the new reference axes with respect to the old one. ~d′r = ~F − ~B

to make BF coincident with the new “alpha” axis. ~d′g can be any direction

orthogonal to ~d′r. Finally, ~d′b = ~d′r ×
~d′g is simply the cross product of the

first two. At this point, all image pixels are converted to homogeneous co-

ordinates and pre-multiplied by H. The transformed image will contain the

matte in the alpha channel.

The very strict assumption on the background and foreground colors can

be relaxed if they are allowed to lie on a RGB line passing for the origin of

the coordinate system. This formulation of the problem is more interesting

than the first one, since it can handle, for example, Lambertian surfaces

under a single light. When these two lines are different, all pixels in the

target image lie on the RGB plane defined by the three points O, B and F,

as seen in Figure 3.3.

Like the previous case, a linear transform in RGB space will be derived

to solve the problem. The whole H matrix can be expressed in terms of four

simpler transformations, that are now discussed one at a time. The first

matrix, H1, transforms the OBF plane into the Org plane. This can also

be seen as switching reference system as suggested by Figure 3.3. Moreover,

F’s image becomes the unit vector on the transformed axis r’.

H−1
1 =




0

~F ~F ×
(

~F × ~B
)

~F × ~B 0

0

0 0 0 1
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Figure 3.3: RGB space representation of the target image. All pixels lie on the plane

defined by the points O, B and F; r’, g’ and b’ are the new reference axes after

transformation H1 is applied.

Since all pixels are now expected to lie on the plane defined by the red and

green axis, the blue value can be discarded, applying H2. Points that did

not lie on such plane, possibly because of image noise, are projected there.

H2 =




1 0 0 0

0 1 0 0

0 0 0 1




At this time, the problem becomes two-dimensional since all points are tied

to the rg plane. The next step consists in finding a degenerate planar ho-

mography H3 collapsing all points to the red axis. To compute such trans-

formation, which has eight degrees of freedom, at least four points and their

corresponding images have to be known: each point i allows to write two

homogeneous equations of the kind x′
i = Hxi. Figure 3.4 illustrates the sit-

uation, after transforms H1 and H2 have been applied. To solve for H3, the

Direct Linear Transformation method from Hartley and Zisserman, 2004

[17], pp. 88–93 is used.

The computation of H3 may potentially introduce errors in the matte.

In fact, for each pixel with alpha value different from either zero or one, it
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Figure 3.4: To compute H3 the following mapping is being used: both F and F/2

transform into [1, 0], while B and B/2 transform into B.

is assumed that the linear combination of foreground and background color

takes place on a line parallel to BF. This holds only when both foreground

and background colors are affected by the same amount of shading.

Figure 3.5 better illustrates the underlying ambiguity: every image pixel

X is a convex linear combination of the true unknown colors Ft and Bt; H3

projects each pixel on BF along the line that connects the pixel itself to O1.

The alpha value is computed on BF, while the real value lies on BtFt: this

implies that real and computed values coincide when the triangles △OBF

and △OBtFt are similar. If this is not the case, then the profile of the

alpha map will not be correct. A practical example supporting this fact is

proposed in Figure 3.6.

Finally, the coordinate system has to be transformed so that BF, where

all points now lie, becomes a unit vector on the red axis, using the following

3 × 3 matrix.

H−1
4 =




~dx

~dy
~B

0 0 1





Where ~dx = ~F − ~B and ~dy⊥ ~dx are the new orientation of the reference axes,

1Because the homography conserves collinearity
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Figure 3.5: On the left side, the ideal condition for the algorithm is shown: X is the

pixel transformed by H2H1. X’ is its image after applying H3. The situation may

actually differ since segment BtFt may not to be parallel to BF; it just needs to belong

to the star of lines passing through X. Therefore, the ratio between BX’ and BF may

not correspond to the real alpha value of the pixel.

scaled to normalize BF’s length to 1.

Naturally, all steps can be applied in one single matrix multiplication:

H = H4H3H2H1.

As already discussed, strong shading differences between foreground and

background will definitely lead to unexpected results. This method was

tested on two synthetic images2 shown in Figure 3.6: (a) and (b) display

a successful matte, while (d) and (e) show a failure. The white artifacts

in the lower left sector in 3.6(e) are caused by numerical instability around

black pixels. The phenomenon arises because H transforms the black color

into the homogeneous 2D point [0, 0, 0]T , which is undefined. Moreover, the

different shading between foreground and background causes the profile of

the computed alpha map (e) to differ from the ground truth data (c). This

method has also been tested with a real photograph. The subject is a red

rough paper circle affected by a strong defocus blur, in the leftmost image

2The most relevant part of the source code can be found in Appendix A.1.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: (a) show a synthetically generated test image meeting the stated precondi-

tions. The result (b) of the matte extraction coincides with the ground truth alpha map

provided in (c). Figure (d) stresses the pitfalls of the algorithm: the gradient in the

background was modified to include a line of black, ill-posed pixels and the foreground

gradient is different. (f) visualizes the error (e) - (c), slightly enhanced for clarity.
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(a) (b) (c)

Figure 3.7: Testing done with an actual photograph. (a) The target image. (b) Matte

obtained with the trivial version of the algorithm. (c) Matte obtained with the complete

version of the algorithm.

of Figure 3.7.

The photograph was taken in a fairly uniform lighting condition, and the

rough paper presents no specular highlights, but some shading variations

still affect it. Foreground and background colors F and B to be used in the

algorithm were obtained as the mean of two 50× 50 sample regions. Figure

3.7(b) shows the results from the trivial version of the algorithm. It fails to

compute a correct matte because foreground and background colors are not

constant. The more refined method, which is able to handle small amounts

of shading variations in the image, leads to a better overall quality of the

matte, suitable for restoration purpose.

Even though the proposed method is quite fast and efficient, it works

under heavily constrained conditions that hardly occur in real situations.

The remaining part of this section deals with the more general — and dif-

ficult — case of natural image matting. This is usually the choice made in

practical situations, when the information available on the starting image is

limited to the image itself.
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Input strokes Alpha map Foreground Background

Figure 3.8: Typical matting scenario. Alpha, foreground and background maps are

computed from a limited set of user defined scribbles.

3.1.2 Natural image matting methods

As introduced in the previous chapter, the most successful natural image

matting approaches to date were proposed by Levin et al. in [23] and Cohen-

Wang in [36]. While the first approach was chosen to extract the matte from

real camera images in chapter 5, there are also some interesting aspects in the

other one that are worth mentioning. In particular, the latter approach —

which is more complex — has arguably a better control over the smoothness

of the alpha map typically found in blurred objects. A brief explanation of

the two methods follows to support this statement.

A closed form solution to natural image matting What follows is the

natural image matting technique proposed by Levin et al. in [23]. To extract

the matte, a cost function is derived from the compositing Equation (3.1) by

assuming a specific color model for both background and foreground colors.

This cost function only depends on the starting image and the unknown

alpha values, and can be minimized by solving a linear system of equations.

A complete trimap is not required, although the user must manually provide

some additional information in the form of black and white strokes (see

Figure 3.8). In the case of greyscale images, these colors are assumed to be

constant in a small window around each pixel. The matting equation can
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be locally rewritten as follows:

αi ≈ aIi + b, ∀i ∈ w, (3.2)

where a = 1
F−B , b = − B

F−B and w is a small image window. Taking into

account all pixels, the following cost function is defined:

J(α, a, b) =
∑

j∈I




∑

i∈wj

(αi − ajIi − bj)
2 + εa2

j



 (3.3)

The regularization term εa2
j is added for numerical stability reasons, and also

to favor smoother alpha maps. It is advisable to increase it when processing

noisy or compressed images.

At this time, the cost function to be minimized still has 3N unknowns

for an image with N pixels. However, a and b can be eliminated from the

(3.3). In particular:

J(α) = min
a,b

J(α, a, b) = αT Lα, (3.4)

Where L is the so called Matting Laplacian, a N ×N matrix whose elements

(i, j) are defined as follows:

∑

k|(i,j)∈wk

(
δij −

1

|wk|

(
1 +

1
ε

|wk|
+ σ2

k

(Ii − µk)(Ij − µk)

))
(3.5)

µk and σ2
k are the mean and variance of the image intensity inside the window

wk of size |wk|. δij is the Kronecker delta: δij = 1 if i = j, 0 otherwise.

Key elements in the proof are rewriting J in matrix notation and com-

puting the optimal values a∗ and b∗ by solving a least squares problem,

leaving a quadratic function in alpha. Further details can be found in [23].

At this point, the remaining cost function is minimized for α, given the

initial set of input strokes S:

α = arg min
α

αT Lα + λ(αT − vS)DS(α − vS), (3.6)
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where λ is a ‘large’ number; Ds is a diagonal matrix whose elements on

the diagonal are 1 for user-constrained pixels and zero for all others; vS

is finally a vector containing the constrained alpha values, and zero where

pixels are unconstrained. Differentiating and setting derivatives to zero, the

minimization is achieved solving the following sparse linear system:

(L + λDS)α = λvS (3.7)

In case of color images, the initial constraint on foreground and background

colors can be relaxed: they are allowed to locally vary on a single line in

RGB space. This assumption is also referred to as the color line model;

the definition of L has to be slightly modified, but the key passages are

essentially the same.

Finally, it is necessary to compute the foreground and background colors.

This is either done solving for a and b in (3.2) or, better, by defining a new

cost function derived from the matting equation with additional smoothness

constraints on F and B are included.

The algorithm has a publicly-available implementation, is efficient and

robust, so it was finally chosen to compute mattes from actual camera im-

ages. A multi-resolution version is also available, to deal with large im-

ages in a matter of minutes while keeping low the memory requirements.

Even though the tests in this work were conducted using this approach, the

method from [36] is also worth mentioning.

Iterative optimization approach for unified segmentation and mat-

ting In 2005 Wang and Cohen proposed an iterative algorithm to extract

a matte starting from a limited set of user defined strokes [36]. They use

a Belief Propagation optimization method to estimate the unknown terms

[10]. While an exhaustive description of the approach is not needed for this

work, a quick overview is now presented to introduce those elements that

can help in case of blurred objects.
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For each pixel, their algorithm estimates foreground and background

colors, alpha values and the uncertainty, ranging in the [0, 1] interval. The

unknown pixels close to low uncertainty regions are estimated first; the

algorithm stops when all pixels have been taken into account and the total

uncertainty cannot be further reduced. This is accomplished by defining

a Conditioned Random Field problem and solving it with available belief

propagation algorithms.

The image and a set of user defined input strokes are required, as in

the previous case. User-constrained regions start with an uncertainty of 0,

alpha of 0 for background pixels and 1 for the foreground; the correspondent

background or foreground color are set accordingly. All other pixels start

with maximum uncertainty and initial α = 0.5. To limit the size of the

problem, all pixels are divided into three regions: Uc containing all pixels

whose alpha values have already been estimated with zero uncertainty. Ũc

contains all pixels that have been considered but still have a non-zero uncer-

tainty. Finally, Un contains pixels that were not touched by the procedure

yet.

At the start of each iteration, a small region in Un within 15 pixels from

Uc is moved to Ũc. A Markov Random Field (MRF) is generated defining a

node for each pixel in Ũc. Edges are defined according to a 4-connectivity

scheme. Pixels with zero uncertainty connected to the aforementioned ones

are added to the network as well. The energy function to be minimized by

the process is made up by two terms:

V =
∑

i∈MRF

Vd(αi) +
∑

i,j∈MRF

Vs(αi, αj) (3.8)

Vd is the data energy term. It reflects the likelihood that the estimated

variables are correct, penalizing, for example, variable assignments that do

not satisfy the alpha composition equation. The other term, Vs, is a function

designed to explicitly penalize abrupt changes between neighboring alpha
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values:

Vs(α1, α2) = 1 − e−(α1−α2)2/σ2
s , (3.9)

where σs is tuned empirically. This energy term is interesting because it al-

lows to fine-tune the smoothness of the alpha map. In case of blurred objects,

the alpha map as well as the foreground color are always quite smooth, so

image discontinuities are imputable to the background. In Levin’s approach,

instead, foreground and background are assumed smooth and discontinuities

in the image are more likely to be reflected in the alpha map. This suggests

that Vs can be redesigned to better fit the smooth matte of blurred objects.

At each iteration, the MRF is solved and a new one is built according to

the updated values. The process is repeated until the set Un is empty and

the total uncertainty is minimized.

Future work in this area may involve implementing this method aiming

specifically at blurred objects.

3.2 Blurred objects model

After the extraction of the matte of the desired object has been accom-

plished, the next step consists in restoring its image. Before introducing

the actual blur estimation approach, the most important models for image

formation and degradation have to be discussed.

Out of focus blur formation A simple optical system is now proposed,

to introduce basic elements of geometric optics that are useful for the for-

mulation of the problem. Under ideal conditions, assuming thin lenses and

small viewing angles, all the light coming from a point source X converges

to a single point X’ after being deflected, according to the convergence law:

1

d
+

1

r
=

1

f
, (3.10)
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Figure 3.9: A simple optical system.

in which f is the focal distance of the lens system. When the image plane is

placed exactly a a distance r from the lens, the point X is at focus. Instead,

when the image plane does not satisfy Equation (3.10), the point is out of

focus. The image of the point X is then the intersection between the image

plane and the light coming from X. In particular, the image of a point

source is called Point Spread Function (PSF). If the aperture of the lens has

a circular shape, then also the PSF is a disk, called the circle of confusion.

The image is formed by the additive contributes of all points in the scene.

Figure 3.10: The circle of confusion

When all the points of the photographed object lie on a plane parallel to
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the image plane, the PSF is also shift-invariant. In these conditions, the

degraded image of an object is the output of a linear shift invariant system

described by the PSF.

Motion blur formation Another source of blur in images is the relative

motion of the camera and the objects during the exposure interval [t0, t1].

A motion blurred image can be modeled as the integration of an infinite

number of ‘still’ images during the exposure interval:

I =

∫ t1
t0

Itdt

t1 − t0
(3.11)

According to this, the alpha map represents the fraction of exposure time

during which the object was projected to each pixel. Then a strong relation

between motion blurred objects and alpha matting is in place.

When the object is moving on a plane parallel to the image plane, and

perspective effects are negligible, its image It in Equation (3.11) is translat-

ing on the apparent trajectory x(t) during the exposure interval, so it can

be written as:

It = I0(x(t0) − x(t)) (3.12)

By substituting (3.12) in (3.11), the observed image corresponds to the

convolution of the object with its apparent trajectory during the exposure

interval:

I = It0 ⊛
x(t)

t0 − t1
(3.13)

Where ⊛ denotes the convolution operator. This work mainly focuses at

rectilinear constant speed motion blurred objects.

To summarize, in both out of focus and motion blur, the observed object

image I(x, y) is modeled as the two-dimensional convolution of the true,

object image I0(x, y) with the PSF h(x, y), possibly adding Gaussian white
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noise η ∼ N(0, σ2).

I(x, y) =
+∞∑

j,k=−∞

h(j, k)I0(x − j, y − k) + η(x, y) =

(3.14)

= I0(x, y) ⊛ h(x, y) + η,

In order to keep constant the mean intensity of the image, the PSF also has

to sum to 1:
+∞∑

j=−∞

+∞∑

k=−∞

h(j, k) = 1. (3.15)

Note that the same blur model describes the alpha map of the blurred object.

Therefore, the PSF is unchanged when considering the alpha map:

α(x, y) = α0(x, y) ⊛ h(x, y) + η(x, y). (3.16)

Note that the PSF is here assumed to be shift-invariant: the same degrada-

tion model applies to all pixels.

To recover the latent image, deconvolution of the PSF from the degraded

image is used. In the classical image restoration problem, the filter is known

and there exist various techniques to recover the latent image: for example,

these include the trivial inverse filtering, the more robust Wiener deconvo-

lution and Lucy-Richardson iterative algorithm. Before proceeding to the

estimation of the PSF, a brief overview of the most relevant blur models is

proposed.

3.2.1 Defocus blur PSF

To generate out of focus blur for synthetic tests, two PSF models are taken

into account: Gaussian lowpass filtering and disk blur. The Gaussian blur

kernel of standard deviation σ (centered on (0, 0)) is defined as follows:

g(x, y) =
1

2πσ2
· e−

x2
+y2

2σ2 (3.17)
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Figure 3.11: Gaussian blur PSF; absolute value of its Fourier transform is still a (dif-

ferent) Gaussian.

while a disk blur kernel of radius r is:

d(x, y) =






1
πr2 if x2 + y2 < r

0 otherwise
(3.18)

Disk blur resembles the one usually found in camera images; its Fourier

Figure 3.12: Disk blur PSF. The circular patterns formed by the zeros in the Fourier

domain can be observed.

domain representation is characterized by zeros approximately lying on con-

centric circumferences. This property has been exploited in the past to esti-

mate the disk radius looking for a regular pattern of zeroes in the frequency
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plot of the original image [13].

A Gaussian blur PSF in Fourier domain is still Gaussian. This can be

an advantage for synthetic tests since it does not have zeroes that cause

instability when performing deconvolution. Quantization error alone does

in fact prevent the cancellation of zeros in numerator and denominator when

performing a simple inverse filter deconvolution. Moreover, disk blur tends

to create hard edges from highlighted points and lines, as Figure 3.13 shows,

while Gaussian blur gracefully smooths all features in the image.

(a) (b) (c)

Figure 3.13: (a) starting test image. (b) Gaussian blur, sigma = 3 px. (c) Disk blur,

radius = 4 px. Note how disk blur preserved sharper edges in correspondence of small

points and thin lines.

3.2.2 Motion blur PSF

This work focuses at the blur produced by objects moving in front of a still

camera, rather than the blur caused by camera movements in the expo-

sure interval. The most recent works on global shift-invariant motion blur

appeared in [11, 18].

In general, the appearence of motion blurred objects cannot be modeled

in a simple way. The trajectory of the motion may be very complicated and

perspective deformation may invalidate the shift-invariance assumption. For

these reasons, only the case of objects moving at uniform speed in front of
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the camera has been considered in this work. According to this, the PSF

is modeled by two parameters (θ, l): these represent the direction and the

extension of the apparent motion of the object on the image plane. Next

Figure 3.14: Uniform motion blur: 12 pixel at a 45◦ direction

section deals with the new approach to parameter estimation that exploits

the information provided by the alpha matte.

3.3 Estimating the PSF from opacity values

One of the most relevant original contribution in this thesis is presented in

this section.

As previously discussed, it is assumed that both the object and its opac-

ity values are degraded by a linear shift-invariant system, which corresponds

to the convolution with the PSF in spatial domain (3.15). The convolution

operation in Fourier domain is equivalent to a multiplication, so that the

following relation holds:

α = α0 ⊛ h + η ⇐⇒ A = A0 · H + N (3.19)

where A = F(α), A0 = F(α0), H = F(h) and N = F(η). From now on,

upper-case letters denote the 2D Discrete Fourier Transform of the corre-

sponding term, unless otherwise specified.
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Neglecting noise, Equation (3.19) can be rewritten as:

H =
A

A0
. (3.20)

This indeed suggests that the PSF can be estimated as deconvolution of the

latent alpha map from the blurred alpha map, when a good estimation of

α0 is available.

3.3.1 Alpha map segmentation

One of the key concepts explored in this work is the estimation of α0 by

segmentation of the blurred alpha map.

The latent alpha map of the object, before any blur filter is applied, is

a binary image, made of either black (background) or white (object) pixels.

This assumption implies that semi-transparent objects are not taken into

account, and that pixels are back-projected to ideal lines. A rough yet

simple way to estimate α0 is using a threshold:

α0 ≈ α̂0 = α > t

Without any a priori information on the shape of the object, the thresh-

old level is set to t = 0.5. In what follows the errors introduced by the

assumption of a fixed threshold level are computed. First, a distinction has

to be made according to the nature of the degradation affecting the image:

defocus blur and motion blur are treated separately. The case of both these

occuring simultaneously is not taken into account in the scope of this work.

Defocus blur PSF paramater estimation In case of out of focus ob-

jects, the most relevant fact is the relation between the curvature of the

object’s apparent contour and the estimation error. Straight edges are cor-

rectly estimated: when the (rotationally symmetric) blur kernel is centered

on such edges, it covers both object and background pixels in a 1:1 ratio;

the output of the filter at the edge pixels is then 0.5, equal to the threshold
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The true α0 Blurred α Estimated α̂0

Figure 3.15: Estimation of the unknown two-tone alpha map using a segmentation

threshold of 0.5. Blur was generated by a disk kernel of r=25 px. The first row shows

how straight edges are correctly recognized. The second row shows the error introduced

where the object has a convex contour. Finally the third row shows what happens near

concave corners.
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level. Therefore this threshold correctly estimates α0 in areas containing

straight edges.

This is not the case when the object contours are curved lines, or in the

proximity of corner points. When the object contour is convex, the correct

threshold value is smaller than 0.5, and the opposite holds with respect to

concave object boundaries. Figure 3.15 further clarifies this by comparing

α0 and α̂0 in three different situations.

As an example, the relation between the optimal threshold value t∗ and

the curvature radius of the edge is now derived in the case of uniform disk

blur (see Figure 3.16). When the blur kernel crosses the contour of the

Figure 3.16: In the case of uniform disk blur, the optimal threshold value can be

approximated as twice the sector S over the whole kernel area

object, the output of the deconvolution is the area of the intersection between

the kernel and the object over the whole area of the disk. Let r be the

radius of the blur filter and R > 0 the curvature radius of the edge. The

area of the intersection is approximated as a circular sector of the disk PSF,

corresponding to 2S in Figure 3.16. According to this:

R cos β =
r

2
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so

β = arccos
r

2R
.

Therefore, an estimate for the correct threshold is given by t∗:

t∗ ≈
2S

πr2
=

β

π

This result agrees with the previous statement on straight line edges,

that can be seen as circumferences having R −→ ∞ so that t∗ −→ 1
2 .

Summarizing: 




t∗ < 1
2 if convex

t∗ = 1
2 if straight

t∗ > 1
2 if concave

It is now important to verify that, despite the estimation errors on α̂0, it is

still possible to identify the PSF parameter (i.e. the σ or the disk radius)

with reasonable accuracy. The first estimation of the PSF is performed by

Wiener deconvolution. In Fourier domain, this corresponds to:

Ĥ = A ·
Â∗

0

|Â0|2 + k
,

where k is a regularization parameter to improve numerical stability. More

details on the Wiener filter are provided in Section 3.4, dealing with image

restoration. Figure 3.17 shows a fairly complex image containing all kinds

of features that cause errors in the estimation of α0. The segmented alpha

map is definitely far from perfect, and the PSF estimated directly is use-

less for image restoration. However, when assuming a parametric PSF, its

parameter can be identified by minimizing the L2 norm of the error:

r = arg min
r

∥∥∥disk psf(r) − p̂sf
∥∥∥

2
. (3.21)

The minimization can be performed using any optimization technique. A

procedure to further refine the parameter value is discussed later, in Section

3.4.
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Figure 3.17: PSF estimation from the alpha map. The estimated PSF can be used to

identify, in this case, the disk radius.
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Motion blur PSF parameter estimation The streak of a moving ob-

ject in motion blurred images has some interesting properties as shown in

[2]. The alpha map can be subdivided into regions according to the number

of times that each pixel is crossed by the apparent contour of the moving

object. Fully background or foreground regions are named R0 since they are

never touched by the moving contour. Regions that are traversed once are

called R1, and so on. The boundary between these regions is made visible

by filtering the alpha map with a Laplacian kernel, as seen in Figure 3.18.

Note that some of the edges in the Laplacian correspond to the contour of

(a) (b) (c)

Figure 3.18: (a) Alpha map of a motion blurred object. (b) Laplacian of (a). (c)

Regions classification. Images from [2].

the object at the extremes of the exposure interval. The other edges rep-

resent the envelope of the moving contour. Another important property is

related to the R1 regions. Here is an interesting relation between the appar-

ent contour of the object and the iso-alphas, curves formed by pixels having

the same alpha value. Note that at alpha values of 0.5, the iso-alpha curves

represent the apparent contour at the middle of the exposure interval. More

details on this matter are in [2].

In other words, iso-alphas at level 0.5 approximate the the object’s sil-

houette ‘frozen’ in the position occupied at the middle of the exposure inter-

val. However, outside R1 regions, the iso-alpha curves do not correspond to

the actual shape of the object [2]. Then, this segmentation-based approach
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Figure 3.19: Alpha map of a motion blurred circle. The iso-alpha 0.5 lines inside R1

regions represent the apparent contour at half of the exposure interval. On the right,

the result of the segmentation of alpha with 0.5 as threshold. Only a small portion of

the contour does not correspond to the latent two-tone alpha map.

could only work when the R1 regions contain most of the object’s contour at

the middle of the exposure interval. This drawback prevents to consistently

use this approach for motion blur parameters estimation. As an example,

Figure 3.20 shows a blurred square, and the resulting segmentation strongly

differing from the real shape of the object. Future work may involve ex-

trapolating the edges in the ‘safe’ R1 regions to consistently obtain a usable

estimate of α0.

In what follows, a different approach for estimating the motion blur PSF

parameters is introduced. The Radon transform of the alpha map Laplacian

is used to estimate the blur direction.

Let (s, φ) be the parameters of a 2D line, respectively distance from

the origin and angle of the normal vector. The Radon transform of a 2D

function f(x, y) is then defined as:

R(s, φ) [f(x, y)] =

∫ +∞

−∞

∫ +∞

−∞
f(x, y) δ(r − x cos φ − y sinφ) dxdy (3.22)

This corresponds to the projection of the function (i.e. the image) along a

line. Such line is tied to pass through a reference point (for example, the
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.

Figure 3.20: Alpha map of a motion blurred square. In this case, the two shaded corners

are lost when applying a threshold to the alpha map. In fact, these missing parts belong

to a R2 region

central pixel) and its orientation varies in the interval φ ∈ [0, π]. For any

fixed value φ, the image intensity is projected on the respective line.

The Laplacian of the alpha map, ∇2α, provides some useful information

about the motion of the contour. Recalling again the results in [2], the |∇2α|

of motion blurred objects contains edges that represent either the apparent

contour at the extremes of the exposure interval, or the envelope of such con-

tour during the motion. When the object motion is rectilinear, the envelope

of the apparent contour is a line parallel to the direction of the motion. This

suggests that the Radon transform of |∇2α | has a maximum when φ is or-

thogonal to the motion direction θ. An issue with this approach arises when

the apparent contour contains many straight edges itself, causing multiple

peaks in the Radon transform; in this case, all potential directions have to

be tested at a later stage to find the best fit. The estimated blur direction θ

can be used to estimate l. Once θ is available, it is in fact possible to define

a target function as the correlation between the |∇2α(x, y) = L(x, y)| and
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Figure 3.21: Radon transform of the Laplacian of a motion blurred circle. The horizontal

axis represents angles, the vertical is the offset from the chosen reference point. Two

peaks appear at an angle orthogonal to the motion direction.

itself after a variable non-null translation along such direction:

J(l) =
+∞∑

x,y=−∞

L(x, y) L(x + l cos(θ), y + l sin θ). (3.23)

The correlation has a peak when the two apparent contours (c0 and c1 in

Figure 3.22) overlap after the translation [37].

However, test results showed that estimating the blur extent using this

approach is quite demanding in terms of processing resources. It is also

likely to fail in absence of a sophisticated pre-processing of the contours: it

would be much more robust if c0 and c1 could be isolated from the other

edges prior to the optimization of the cost function (3.23).

In Jia, 2007 [18] a method is proposed to identify at least an upper

bound to the size of the PSF. The topmost pixels with α = 0 and α = 1 are

considered. Then the height of PSF cannot exceed their distance My along

the vertical direction. The same applies to the rightmost pixels with α = 0

and α = 1. Their distance along the horizontal direction, Mx, provides an

upper bound to the maximum width of the PSF. In [18] this procedure is

just needed to find an upper bound to the support of the PSF. In this work,
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Figure 3.22: Finding an upper bound to the size of the PSF

since a rectilinear motion blur PSF is assumed, it is also possible to derive

the extent of the blur by using the Pythagorean theorem:

l ≤
√

M2
x + M2

y

The estimated parameters θ and l are now used to define the PSF and

restore the image, as seen in the next section.

3.4 Image restoration and further refinement

Once the PSF has been computed, the image can be restored using classical

deconvolution techniques, that will now be briefly introduced. In Fourier

domain, image I is the result of filtering the latent image I0 with the PSF,

adding noise V. V and I0 are considered independent.

I = I0 · H + V (3.24)

The most simple deconvolution approach is inverse filtering. It is imple-

mented as a simple element-wise division of the degraded image over the

PSF, in Fourier domain.

Î0 =
I

H
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In practice, this approach is not reliable at all since it tends to dramatically

amplify noise and PSF parameter errors. Even when using synthetically

generated alpha maps and exact PSF models, the quantization error alone

becomes critical for anything less than double precision maps.

This obviously leads to adopt more robust approaches that offer a bet-

ter control over the error. Wiener deconvolution is based on least squares

optimization of the expectation of the residual, under the assumption that

signal and noise are independent [15].

Restoration is performed in Fourier domain using a suitable filter W:

Î0 = I · W (3.25)

where W is computed in order to minimize the expectation of the error

E
[
|I0 − Î0|

2
]
.

The solution of the least square problem is given by

W =
H∗S

|H|2S + N
(3.26)

where S = E |I0|
2 and N = E |V |2 are the mean power spectral densities of

the latent signal I0 and the noise. In most cases, these quantities are not

known, however Equation (3.26) can be rewritten in terms of their ratio:

W =
H∗

|H|2 + k
(3.27)

Where k is N/S, the inverse of the signal to noise ratio. The Wiener de-

convolution, in the sense of Equation (3.27), was chosen because of its good

performance and simplicity. Another well known technique is Richardson-

Lucy iterative algorithm, which is based on maximum likelihood estimation

[31, 26].

Since the PSF parameters are available, it is now possible to reconstruct

both the alpha map and the color map of the blurred object. The choice
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of the regularization parameter has to be empirically made. Typical values

range from 10−4 to 10−2, depending on factors including the amount of noise,

and errors in the PSF estimation. More details concerning issues with real

camera images are found in Section 3.5.

3.4.1 Iterative parameter refinement

In what follows we illustrate an optimization procedure that has been de-

vised to improve the PSF estimation. It is likely that the reconstructed

alpha map is not a two-tone black and white image as expected. This prior

knowledge on α0 can be exploited in an iterative procedure to refine the

estimated parameters. This procedure has been inspired by a more general

and complex restoration method for two-tone images introduced by Li and

Lii, 2002 [24]. In their work, the latent image z that has to be restored is

composed by two unknown grey levels, β1 and β2. The observed image x is

modeled as:

x = z ⊛ h + η, (3.28)

where h denotes again the unknown PSF and η is Gaussian white noise. The

main goal is finding a filter f such that

ẑ = f ⊛ x

minimizing the following cost function:

J =
∑

∀i

(ẑi − β1)(ẑi − β2) (3.29)

Their algorithm alternates the estimation of β1 and β2 with that of f . Finally

ẑ is segmented in two regions according to the computed levels.

To refine the estimated blur parameters, we derived a simplified algo-

rithm from the aforementioned approach. For alpha maps the two tones of

α0 are already known to be either 0 or 1. The cost function is defined as
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follows, in terms of the parameter vector ~Θ:

α̂0 = α ⊘ h(~Θ)

J(~Θ) =
∑

∀i

min{|α̂0i
|, |α̂0i

− 1|} (3.30)

Where ~Θ is a vector containing the estimation of the PSF parameters, and

⊘ denotes deconvolution. The cost function J(~Θ), which only depends on
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Figure 3.23: The cost function is shaped like a ‘W’ to penalize pixels that differ from

either zero or one

the PSF parameter and the regularization term for the Wiener deconvolu-

tion, is minimized using available non-linear optimization algorithms. The

starting values for the unknown parameters are naturally the ones estimated

as described in Section 3.3.

We also tried the minimization of the same cost function on a non-

parametric PSF. The advantage of using a non-parametric PSF is the ability

to handle more complicated blur cases. However this requires the definition

of a variable for each pixel in the blur kernel: this brute force approach did

not perform well in tests, even with a PSF as small as 15 × 15.
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3.5 Dealing with real images

In Section 3.2 a simplified optical system has been proposed to clarify the im-

age formation process. In real camera images, things eventually differ from

this ideal situation, because of a wide variety of factors. These cause errors

and uncertainty in the PSF, influencing the overall result of the restoration

phase. This section covers some of these factors and what can be done to

limit their impact.

First, real images are always affected by a certain amount of noise. Its

source widely varies: for example, noise originates in electronic circuitry,

by quantization of the intensity levels and data compression. In practice,

the impact of the noise on the proposed approach is twofold. First, noise

may prevent matting techniques from computing a reliable matte; secondly,

the restoration phase will need higher regularization coefficients for Wiener

deconvolution. This keeps artifacts such as ringing to a minimum, at the cost

of a reduced deblurring effect. Section 3.5.1 illustrates a general strategy to

counter noise in the alpha map.

Another factor that impacts the shape of the PSF is the gamma correc-

tion that imaging devices use to convert the acquired image to the standard

color space. Power-law transformation of the image changes the profile of

the alpha map which in turns affects the estimation of the PSF. When raw

images are available, it is possible to work directly on the data read from

the sensors. Otherwise, there exist approaches to identify and reverse such

issues [9, 8].

Other issues arise because modeling the blur as a linear shift-invariant

system is a fairly strict assumption. For example, the size of the blurring

circle depends on the distance Z from the object focal plane. When such

distance is not the same for all points of an object, then the PSF is not

shift-invariant.
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Shape of the PSF Another assumption was made on the PSF being

a uniform disk. Cameras are equipped with a diaphragm to adjust the

Figure 3.24: Photograph of an out of focus ballpoint pen. On the left at full aperture,

the spot of light on the tip appears as a circle. On the right, aperture is reduced and

the six blades of the diaphragm are visible in the PSF.

aperture of the lenses. This may change the shape of the PSF, therefore

invalidating the disk assumption. Diaphragm shape varies according to the

number of blades and aperture settings: at full aperture, the PSF can be

considered circular. As the lenses are increasingly ‘stopped down’, the PSF

takes on the shape of a polygon, according to the number of blades forming

the diaphragm. In [20] the image restoration problem is solved using a

triangular PSF to mimic the shape of a three-bladed diaphragm.

Vignetting is another effect that can influence the PSF. Vignetting ap-

pears as image intensity dropping toward the peripheral region. There are

different causes of vignetting. Mechanical vignetting is due to physical ob-

struction of the lenses by hoods or other parts. This also affects the shape

of the PSF, especially at full diaphragm aperture. Figure 3.25 shows how

mechanical vignetting can be directly seen in the blurred part of the back-

ground. Small pointy highlights in the foliage have a round shape in the

middle of the image, which becomes oval at the peripheral. Loosely speaking
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this is also known as the cat’s eye effect. Naturally this also invalidates the

shift-invariant PSF assumption, especially at large viewing angles. Another

Figure 3.25: Note the oval shape of the spots on the background.

kind of vignetting is natural vignetting, due to the angle θ at which the light

hits the photosensitive medium. The intensity falls proportionally to cos4 θ.

Optical aberrations Even well made and carefully assembled lenses may

possess certain inherent aberrations. As an example, spherical aberration

causes focal variation as the distance from the optical axis increases. Strong

aberrations prevent from focusing details in the image, since the PSF is never

smaller than the circle of least confusion. In out of focus images, spheri-

cal aberration results in a non-uniform PSF distribution. This issue may

be corrected combining different lenses that cancel out the effect. Certain

photographic equipment even exploit a low amount of spherical aberration

for artistic purposes, like smoothing either background or foreground blur,

or producing a soft focus effect.

There are also cases where even the most advanced matting techniques

fail to provide a reliable matting, because of color ambiguity, numerical

issues, or noise. This is naturally a strong limitation that must be consid-
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Figure 3.26: Two opposite cases of spherical aberration

ered when making assumptions on the alpha and color maps in real camera

images.

Compensating for all these issues is out of the scope of this work, since

most of them depend on a specific combination of camera model, optics and

shooting conditions. Nevertheless, there are some useful tips to deal with

generic situations of model uncertainty and noise, covered in the remaining

part of this chapter.

3.5.1 Alpha map and noise

When the alpha map is affected by noise, it is likely that PSF parameters

cannot be reasonably identified. This is a common problem in deconvolution-

based restoration since blur inversion typically amplifies the noise.

In Section 3.3 a disk or Gaussian blur PSF was estimated as follows:

H = A ·
Â∗

0

|Â0|2 + k
(3.31)

A low-pass Gaussian filter G can be applied to both terms:

G · PSF = G · A ·
Â∗

0

|Â0|2 + k
(3.32)

Pre-filtering the alpha map results in smoothing the estimation of the PSF

as well. This low-pass filtering cuts off the high frequency components of
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the noise in the alpha map. These are source of many numerical pitfalls

when performing deconvolution, since they tend to be amplified until they

completely suppress the signal. It should be noted from Equation (3.32) that

the estimated PSF is now convoluted with the same filter G. The choice of

G has to take into account both the noise power and the size of the PSF: it

has to be strong enough to neutralize the noise but not too much, otherwise

the estimation would still be useless to identify any PSF parameter at all.

To clarify the effect of alpha map pre-filtering, a simple example is now

proposed. A synthetic alpha matte was generated convoluting the image

of a white circle with a 30 pixels radius PSF. Then some Gaussian white

noise ∼ N(0, 10−3) was added to it. The regularization term k used in the

Wiener deconvolution was empirically set to 10−3 as well. Figure 3.27 shows

the results of the first PSF estimation phase in three different pre-filtering

scenarios. Testing shows that pre-filtering the alpha map dramatically in-

creases the quality of the PSF estimation, reducing the negative effects of

the noise. However, the filter parameters are tuned empirically at the mo-

ment. Future work may involve automatic dimensioning of G, according to

the amount of noise detected in the available data.

3.5.2 Alpha map post-filtering

Once all parameters are set, the restored alpha and color images may still

contain artifacts. Especially in real images, inaccuracy in the matte extrac-

tion, uncertainty of the blur model, noise and machine precision do not allow

a perfect restoration (see Section 3.5).

Consider the image in Figure 3.28, showing a blurred petal and its alpha

map. One of the most annoying artifacts found in deconvolution is the so

called ringing. It is characterized by wave-like ripples propagating from hard

edges, as seen in Figure 3.29. Often, and more frequently in presence of noise,

ringing effects appear in the restored images. Another cause of ringing is the
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Figure 3.27: Examples of PSF estimation from a synthetic alpha map with Additive

Gaussian White Noise, 0 mean and variance .001. (a) PSF from unfiltered alpha map.

(b) PSF from filtered alpha map. (c) Here the filter was so strong that the PSF is

unrecognizable. (d), (e) and (f) show the estimated PSF profile along the central row.

In (d), the noise completely hides the underlying signal. In (e), the PSF correctly

appears as a disk, with the edges smoothed according to Equation (3.32); the green

profile stands for ground truth PSF data. Finally (f) shows what happens when the

chosen pre-filtering blur is too strong: here the PSF cannot be recognized anymore.
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Figure 3.28: Detail of a blurred flower petal and its corresponding alpha map.
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Figure 3.29: An example of ringing artifacts in the reconstructed alpha map. The image

intensity levels were modified to make even the smallest ripples visible. The plot on the

right shows the actual, unmodified, intensity values along the indicated section.
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Gibbs’ phenomenon, because the edges of the reconstructed image present a

jump discontinuity. This occurs when trying to approximate a discontinuous

function with a finite sum of continuous sine and cosine waves; this causes

the reconstructed edges to overshoot, producing artifacts in the results.

Naturally, these unwanted ripples strongly affect the quality of the final

composite image. To improve the overall result, some post-processing on

the alpha map can be applied. The following post-filtering procedure can

be applied to the reconstructed alpha map.

Since a two tone alpha map is expected as a result from the restoration

phase, it is reasonable to apply again a segmentation threshold to it, in

order to eliminate ringing artifacts. They will still affect the color map,

but will not spill outside the object’s boundary anymore. Especially at

(a) (b) (c)

Figure 3.30: (a) Segmentation with 0.5 as threshold. (b) Erosion affecting the high-

lighted pixels. (c) Smoothing the edges.

low resolutions, using a ’hard’ separation between object and background

pixels yields poor results because the under-sampling of edges is unavoidable.

To blend realistically the object with the background, the alpha map can

smoothed by adding some blur. A one-pixel erosion of the alpha is applied

prior to this feathering phase to avoid picking up black pixels from the

reconstructed color map. Figure 3.31 compares the composition on a smooth
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background before and after the post-processing operations.

(a) (b)

Figure 3.31: (a) Composite image before post-processing is performed. (b) Composite

image after segmentation, erosion and feathering of the matte. Ringing artifacts that

ruin the background in (a) are cleaned up.
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Chapter 4

Implementation aspects

This chapter focuses on the implementation details of the proposed ap-

proach. Large but less important source code samples are included in Ap-

pendix A, for completeness.

All the code is written and run within The Mathworks Matlab envi-

ronment.

As in Chapter 3, the contents are subdivided into three main sections:

extraction of the matte, PSF estimation and restoration of the image of the

object. In the next sections, each phase is discussed in depth, uncovering

all the relevant details of the implementation.

Adopting a top-down approach, a flowchart representing an overview of

the system is given in Figure 4.1.

4.1 Matting setup

The source code of the natural image matting approach in [23] is publicly

available for research purpose at the authors’ personal page. Being entirely

implemented in Matlab, it is immediately usable to extract alpha, foreground

and background maps needed by the following phases.

As already introduced in Section 3.1, computing the matte using the
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Figure 4.1: Overview of the system
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method from [23] requires a starting image and a set of user-defined strokes.

White strokes are used to mark foreground regions, black strokes indicate

background. Brush feathering must be deactivated to avoid blending the

border of the scribbles with the image.

There are also a few optional parameters that can be set to improve the

result:

epsilon: the regularization weight defined in Equation (3.3). Typical val-

ues range between 10−7 and 10−5, depending on the amount of noise and

compression in the image. Higher values tend to bias the algorithm toward

smoother alpha maps [23].

win size: size of the window where the color-line model is assumed. Default

value is 3 × 3.

The matte is computed using the ‘backslash’ Matlab operator, on the

linear system defined in Equation (3.7). With large images, this can fail

because of memory limitations. A multigrid approach is however available

to simplify the system and overcome these events. First the image and the

scribbles are down-sampled to a lower resolution, where the problem can be

solved more quickly. Then, the results are interpolated at finer resolution

and the values close enough to zero or one are clamped and considered as

a constraint for the upper level. When passing to a finer level, the con-

strained pixels can be eliminated from the matting Laplacian. Moreover,

only the windows wk that contain at least one unconstrained pixels have to

be computed, further reducing the required computations. The multiresolu-

tion approach can be activated and tuned by setting the following variables:

levels num: the total number of levels to be used. Default value is 1, meaning

multiresolution is not used.
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active levels num: must be less than or equal to levels num. If active levels num

is less than levels num, then in the finer resolutions alpha is not computed

explicitly. Instead the values of the coarser resolution are interpolated.

thr alpha: threshold on alpha used to determine which pixels will be con-

strained to either zero or one, when moving to the next resolution level.

When the process is complete, the results are stored in the variables

alpha, F and B. These can be immediately used for restoration or stored

in an image for later. However, this operation may introduce additional

quantization error, due to the conversion from double precision arrays to a

specific image format.

4.2 PSF Estimation

As seen in Section 3.5.1, it is useful to pre-filter the alpha map prior to

the estimation of the blur filter. This is accomplished by a first median

filtering passage to remove possible outliers that are sometimes produced

in the matting phase, when the background is not smooth enough. After

median filtering with a 5 × 5 window, Gaussian filtering is finally applied.

The blur σ to be used in this phase is defined in the variable pre filter . A

good value to start with is pre filter = 1.

After filtering the alpha map, the PSF estimation phase takes a different

path according to the blur type.

4.2.1 Defocus blur parameter estimation

In case of defocus blur, the alpha map is segmented applying a threshold.

As discussed in Section 3.3.1, the threshold level used to estimate the latent

two-tone alpha map is set to 0.5.

Once the estimate of α̂0 is available, the PSF is roughly computed by
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using classical deconvolution techniques. The Wiener filter method is used,

implemented by the deblur function.

p s f ha t = deblur ( alphamap , a lpha ze ro hat , . 0 1 ) ;

The implementation is reported in Appendix A.2. Empirical tests show

that a regularization term of 10−2 is a good guess to start with, since noise

suppression is more critical than accuracy in this preliminary phase. For

synthetic images, when accurate and noiseless alpha maps are available,

this can be lowered by one order of magnitude or two. However, there is no

reason to finely tune this parameter now, since it will be automatically done

in the following iterative refinement phase.

Periodicity of the image and the Discrete Fourier Transform One

fact to recall when moving to frequency domain by DFT is the assumption

that the image is periodic. When objects intersect the image borders, some

unexpected results will occur when estimating the PSF. This happens be-

cause of the jump discontinuity that takes place at the borders when the

image is periodically tiled. Moreover, when restoring the image under such

conditions, a strong ringing effect propagates from the image borders. Since

the out of focus blur PSF is assumed to be shift-invariant and rotation-

ally symmetric, the image can be mirrored along both the vertical and the

horizontal directions without altering it. The resulting image is four times

larger, but the opposite borders now can be seamlessly tiled, eliminating

the unwanted artifacts. Figure 4.2 shows a practical example where the es-

timation is performed before and after the addition of the mirrored replicas.

Naturally, this rather inelegant expedient does not work with motion blur,

since the PSF is not invariant to flipping and mirroring. After the deconvo-

lution, the estimation psf hat matches the size of the image. However, the

information needed to estimate a parametric PSF is concentrated in a small

central region. To isolate the meaningful part of the estimation, the follow-
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(a) (b) (c) (d)

Figure 4.2: Adding mirrored replicas help dealing with the situation when the object

intersects the border of the image. (a) and (b): alpha map and the incorrect PSF

estimation due to edge jumps. (c) the same alpha map with its mirrored clones. (d)

the Gaussian PSF is now identifiable.

ing heuristic rule is proposed: let C be the number of PSF samples in psf hat

that are greater than half the maximum. C approximately corresponds to

the area of a circle having a radius of ρ ≈
√

C/π. The support size of the

PSF is then set as the minimum between 50 and 6ρ; reducing the size of

the PSF support has the benefits of discarding regions containing irrelevant

data, and reducing the time required to estimate the parameter. The value

ρ obtained in this phase is also used as starting value for the parameter

identification.

To identify the PSF parameter, the built-in fminsearch Matlab function

is used. It performs the unconstrained non-linear minimization of a function

of multiple variables. It is based on the downhill simplex method by Nelder

and Mead [28]. In Matlab, it can be invoked as follows:

[ x , f v a l ] = fminsearch (@(x ) func (x , . . . ) , x0 )

The objective function takes the independent variable vector x and possibly

a number of fixed parameters. Additional options can be provided to fine

tune tolerance, maximum iterations and maximum function evaluations.

To estimate the PSF parameter, the following objective function is de-

fined, assuming the blur is Gaussian:
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function [ sigma ] = getSigma ( psf , s ta r t s i gma , norm)

( . . . )

support = s ize ( psf , 1 ) ;

% try i n g d i f f e r e n t norms f o r the error func t i on .

e r r o r f un squa r e = . . .

@( s , l , p ) sum(sum( ( ( p − f s p e c i a l ( ’ gauss ian ’ , l , s ) ) ) . ˆ 2 ) ) ;

errorfun minmax = . . .

@( s , l , p ) max(max(p − f s p e c i a l ( ’ gauss ian ’ , l , s ) ) ) ;

s igma square = . . .

fminsearch (@( s ) e r r o r f un squa r e ( s , support , p s f ) , s t a r t s i gma ) ;

sigma minmax = . . .

fminsearch (@( s ) errorfun minmax ( s , support , p s f ) , s t a r t s i gma ) ;

( . . . )

Note that is is possible to choose to minimize either the L2 or the L∞

of the error.

In case of disk blur, the objective function, which is very similar, is

reported in Appendix A.

4.2.2 Motion blur parameter estimation

Up to now, only out of focus blur has been covered. In case of motion blur,

the approach slightly differs. First the direction θ is found by exploiting the

Radon transform, as seen in Section 3.3.1. The Laplacian of the alpha map

is numerically estimated, then its Radon transform for a given direction φ

is given by the Matlab command

r = radon ( l a lpha , phi )

Maximizing the Radon transform for phi is just matter of defining a cost

function for fminsearch:

radon obj func = @( theta , alpha ) −max( radon ( alpha , theta ) ) ;

Note that the blur direction is orthogonal to the result, therefore θ = 90+φ.
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To estimate the motion blur extent, the method proposed in [18] is used.

The following code finds the upper bound to the vertical PSF size, looking

for the two topmost pixels with α > 0 and α = 1 respectively:

function [ y ] = upper bound ( alpha )

sx = s ize ( alpha , 1 ) ;

t = . 0 1 ;

for i = 1 : sx

i f max( alpha ( i , : ) ) > t

break ;

end

end

for j = i : sx

i f max( alpha ( j , : ) ) > 1−t

break ;

end

end

y = j−i ;

The threshold is required to neutralize the effect of noise. The same

procedure is repeated for the horizontal direction. Since, differently from

[18], only rectilinear motion is considered, the support size of the PSF,

(Mx, My) allows to estimate the motion length:

l = sqrt (Mxˆ2 + Myˆ2)

This concludes the estimation of the parameters from the alpha map, in

case of either out of focus or rectilinear uniform motion blur. Next phase

consists in the iterative process of restoration and further refinement of the

estimated parameter, with additional alpha map post-processing to improve

the overall result.
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Figure 4.3: Detailed virew of the PSF estimation block
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4.3 PSF refinement and restoration

The core issue in this phase consists in iteratively refining the PSF parameter

and the deconvolution regularization term. To assert the optimality of the

solution a cost function is defined according to the selected blur type. Here

follows the cost function for disk blur:

% used by fminsearch to r e f i n e the parameters

function [ J ] = d i s k f unc (param , k , alpha )

a lpha pos t = deblur ( alpha , f s p e c i a l ( ’ d i sk ’ , ( param ( 1 ) ) ) , k ) ;

J = sum(sum( min(abs ( a lpha pos t ) , abs ( a lpha post −1 ) ) ) ) ;

The other two cost functions, gaussian func and motion func are defined

in a similar way, and are reported in Appendix A. The cost functions are

designed to penalize pixels that are not zero or one. This way the opti-

mization procedure is lead towards the best compromise between deblurring

effectiveness and reduction of ringing artifacts.

The optimization is an iterative procedure where the refinement of the

parameters alternates with the refinement of the regularization term k. The

same cost function defined above is used in both cases, just by changing the

independent variable.

Once the parameters are set, the restored alpha map can be post-processed

to improve the look of the final composition, as discussed in Section 3.5.2.

The structuring element to be used with the built-in function imerode is



1 1 1

1 1 1

1 1 1




to reduce the reconstructed silhouette of the object by one pixel. Then a

mild Gaussian blur is added. Note that this post-processing phase affects

the alpha map only, while the color map is left untouched.

Finally, the composition can be done either on the original background

or on a new one.
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for i = 1 :3

out = r e s t a l pha .∗ r e s t c o l o r ( : , : , i ) + . . .

(1 − r e s t a l pha ) .∗ background ( : , : , i ) ;

end
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Figure 4.4: Flowchart of the restoration phase



Chapter 5

Experimental results

This chapter is aimed at showing how the proposed approach performs in

practical situations. The first set of experiments takes place under ideal

conditions, where the blur PSF, alpha map and color map are perfectly

known. Each type of blur is tested with a certain range of parameters and

results are presented and commented. Some tests are also presented with

additive noise, to show its tolerance to different noise levels.

Section 5.2 finally covers experiments with camera images, to stress the

algorithm under practical conditions.

5.1 Tests with synthetic images

Tests in this section are conducted under strictly controlled and known con-

ditions. Before dealing with the actual experiments, the procedure used to

generate synthetic test cases is shown in what follows.

The starting data of each experiment are the latent black and white alpha

map, and the sharp color image of the object. These also represent ground

truth for later comparison. Then a PSF is chosen according to blur type

and parameter, and the starting images are convoluted with it. Therefore

the theoretical preconditions of the algorithm are fully met.
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Figure 5.1: Synthetic test with Gaussian blur. From left to right: sharp alpha and color

maps, blurred alpha and color maps, combined image.

Note that one cannot directly compose the blurred color map on a back-

ground, since its color values are already combined with black background

pixels, according to the correspondent alpha value. To obtain a correct

composition, the actual color values are preprocessed as follows:

color map = color map . / ( alpha map + ep s i l o n )

where epsilon is a small number to avoid division by zero issues. This is not

needed when the color map is computed with matting techniques. However,

in synthetic tests, the matting phase is skipped to ensure that no unfore-

seeable errors or biases are introduced in the starting data, because of the

intrinsic difficulty of the matting problem.

5.1.1 Gaussian and disk blur tests

The first synthetic test image is generated with a Gaussian blur kernel of

parameter σ = 3, without the addition of noise. No pre-filtering of the alpha

map is performed, since it is not essential for noiseless images. The standard

threshold level of 0.5 is used, and the starting value of the regularization

parameter (the k in Wiener deconvolution, Equation (3.27)) is set to 5·10−3.

Figure 5.2 shows the outcome of the initial estimation of the PSF, where

the typical Gaussian bell shape is perfectly recognizable, observing its profile

along the central row. The parameter estimation obtained by minimizing
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the L2 norm of the error is σ̂ = 2.9977.
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Figure 5.2: Estimated PSF on the left. The plot on the right shows the profile along

the central row.

This is indeed close to the true value of σ = 3. Figure 5.3 compares the

profile of the alpha map before and after deconvolution using the current

estimation of the PSF and the predefined value of k.
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Figure 5.3: Profile of the reconstructed alpha map using the initial estimation param-

eters. The dashed line represents the alpha map before restoration.

Note that ringing artifacts are in place, even if the parameter is indeed

very close to the ground truth data. This cannot be avoided most of the

times because of the bad conditioning of the deconvolution; this fact also
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has to be kept in mind to interpret the results of the following refinement

phase, shown in Figure 5.4.
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Figure 5.4: Profile of the reconstructed alpha map using the refined parameters. The

dashed line represents the alpha map before restoration.

The refinement phase was limited to 3 iterations, setting the maximum

number of function evaluation for fminsearch to 20. The resulting parameters

are σ̂ = 2.8019 and k = 2.58·10−6. This estimation appears to be worse than

the initial value, with a relative error raising to about 6.7%, however the

profile of the reconstructed alpha map does contain less annoying artifacts

(compare Figure 5.3 and 5.4).

Finally Figure 5.5 proposes a qualitative view of the results, showing a

couple of relevant details in the image.

The proposed test has been repeated varying the blur amount and model.

Results are summarized in the following tables.

In these tests conducted under ideal conditions, without any noise added

to the data, the initial parameter estimation from the alpha map is very

accurate. This suggests that the errors introduced by blindly choosing 0.5

as global threshold level are hardly significant, at least in this case where

the silhouette of the object contains a variety of convex and concave edges.
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Figure 5.5: Detailed view of results from the proposed test. First column shows the

starting image, central column contains the result from our approach, and the last one

presents ground truth data.

Real σ First σ̂ Refined σ̂ Refined NSR

1.5 1.5050 1.3931 6.25e-7

3.0 2.9977 2.8019 2.58e-6

6.0 5.9690 5.4746 9.37e-7

9.0 9.0951 8.2368 7.54e-8

Table 5.1: Results with different Gaussian blur parameters.
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It is interesting to note what happens in the following refinement phase:

the blur parameter here consistently converges to a smaller value. This

is caused by the objective function, that penalizes ringing artifacts in the

restoration. Further testing shows that artifacts almost completely disap-

pear only when a perfect PSF is used in combination with an extremely low

value of k, close to the machine epsilon. This very particular configuration is

never reached by the optimization algorithm, unless the optimal solution is

already given as starting value: instead, fminsearch finds an under-corrected

PSF, reducing the artifacts at the cost of a weaker deblurring effect.

The same procedure has been used with a disk blur PSF, with slightly

different results.

Real r First r̂ Refined r̂ Refined NSR

2.0 1.9654 1.9993 5.16e-6

4.0 4.0028 3.9993 9.37e-7

6.0 6.0092 5.9995 6.25e-7

8.0 8.0069 7.9990 6.25e-7

Table 5.2: Results with different disk blur parameters.

In this case, the refinement of the parameter consistently improves the

value found in the first phase. This behavior is quite different from the

Gaussian blur case, and it can be understood reasoning on the frequency

domain representation of the disk PSF, seen in Section 3.2.1. The DFT

of a Gaussian is still Gaussian, so it is smooth and has no zeros, while a

disk kernel has a specific pattern of zeros along concentric circumferences.

Therefore, if the parameter is not accurately identified, zeros do not cancel

each other when performing deconvolution, causing very strong artifacts in

the restored images. This makes the accuracy of the disk radius much more

critical than that of the Gaussian blur parameter.
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5.1.2 Motion blur test

Here follows an example with motion blur. In Chapter 3, the strong limi-

tations of this approach with motion blurred objects have been discussed.

Therefore, experiments with motion blur are reduced to very simple shapes

that do not contain straight edges, as in Figure 5.6, representing a moving

circle.

Figure 5.6: Alpha and color map for a motion blur test case having parameters l = 100

px, θ = 40◦.

The blur parameters are l = 100 px and θ = 40◦; again, noise is not

present. The algorithm was initialized, as in the previous cases, without

alpha map pre-filtering, and a starting k of 0.005. They were initially iden-

tified as l̂ = 100.6500 and θ̂ = 40.0189◦, and were respectively refined to

100.0668 and 39.9581◦.

Figure 5.7: Restored maps and ground truth data as a comparison on the far right.



78 Chapter 5. Experimental results

5.1.3 Noise tolerance tests

It is now shown how the algorithm performs in slightly unfavorable condi-

tions: some zero mean Gaussian white noise is now added to alpha and color

maps.

Tests are generated with a fixed disk blur of parameter r = 4, adding

a varying amount of noise. Pre-filtering is now necessary for a proper es-

timation of the parameter, so it is empirically set to a Gaussian blur with

σ = 0.75. Table 5.3 summarizes the results, while figure 5.8 gives a more

qualitative idea of the outcome.

Noise variance First r̂ Refined r̂ Refined NSR

0 4.0028 3.9993 9.37e-7

1e-5 4.1805 3.9478 4.72e-3

1e-4 4.1686 3.9265 1.12e-2

1e-3 4.0611 4.0041 2.32e-2

1e-2 4.0347 4.2311 4.39e-2

Table 5.3: Test results with a fixed disk blur and variable amount of noise.

Observe the initial over-estimation of the parameter, which is a side

effect of the alpha map pre-filtering phase. The regularization term is auto-

matically raised according to the noise level found in the starting images.

5.1.4 Performance tests

It is also interesting to analyze the processing time required to perform the

various phases of the process, in function of the input dimensions.

Test settings were defined according to the following table:

blur type radius starting NSR iterations

disk 4 0.005 3
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σ2 = 10−5 σ2 = 10−4 σ2 = 10−3 σ2 = 10−2

Figure 5.8: Qualitative view of the restoration with increasing noise variance.

Four N × N size images are generated and processed 5 times for each

value of N. The average values are plotted in Figure 5.9. Testing platform

is a Pentium IV 2.4 GHz, with Linux as operating system.

The implementation heavily uses the FFT algorithm, which is optimized

for power-of-two sized images; it is strongly advisable to either resize the

input image or cut an adequate bounding box around the object.
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Figure 5.9: Average processing time for N × N power-of-two sized images.

Also note that the most time consuming part is the refinement of the

parameters. This phase can be either simplified or skipped by reducing the

number of iterations, making the proposed approach a practical tool for

image editing.
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5.2 Tests with camera images

Up to now the algorithm has been tested only in controlled conditions, fully

meeting the assumptions made on the image degradation model. In this

section, the focus is posed on tests with real camera images. As already

discussed in Section 3.5, there are many factors that may influence the PSF

and are specific to every particular device. These are often difficult to foresee

and indeed may raise doubts on the validity of this approach with actual

photographs, since the simplified shift-invariant PSF assumption is just an

approximation of the real image formation process.

Another element that is difficult to account for is the intrinsic difficulty of

the matte extraction process. Since there is no ground truth data available

with real images, it is only possible to qualitatively judge the computed

matte and see if a PSF can be reasonably identified. However despite all

difficulties, results are encouraging.

The first example presented here is the image of a blurred measuring

tape. A pre-filtering step of median filtering and Gaussian blur σ = 0.5

is used to clean up the alpha map. Median filtering was also applied to

the alpha map because of a few artifacts, caused by the dark spots on the

background being misinterpreted as parts of the object itself. The starting

k is set to 0.01. Since the object intersects the border, the image also has

to be doubled and filled with mirrored replicas (by setting b mirror=true).

The disk blur model is chosen because it better reflects the image formation

process in camera images. Figure 5.10 summarizes the results providing the

image before and after the process and a profile of the alpha map before and

after the restoration.

Some ringing artifacts propagate from the stronger edges, however the

overall quality is still satisfying. Also note how the blurred light circle on the

left edge of the metal clip becomes a well definite white dot in the restored

version (see Figure 5.10(d)).
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Figure 5.10: Restoration of an out of focus measuring tape. (a) Starting image. (b)

Restored image. (c) Comparison of the alpha map profile before and after the restora-

tion, along the central row of the image. (d) Magnified detail showing the restoration

of the small highlight on the metallic tip.
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Next examples show a blurred shell, in Figure 5.11 and a flower image

in Figure 5.12. The first one appears convincing. The starting image is

quite dark since it directly comes from the raw format of the camera, before

intensity levels and color ratios are translated to the standard RGB color

space. Also the matting process gave very high quality results, with only

slight defects in the shadow below the object.

In the pink flower image there are some artifacts on the right edge of the

object. Here the object and its background share the same color, misleading

the matting algorithm. Artifacts in the starting maps are further worsened

by the deconvolution.
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Figure 5.11: (a) Starting image. (b) Restored image. (c) Comparison of the alpha map

profile before and after the restoration, along the central row of the image. (d) A detail

of the restored image.
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Figure 5.12: (a) Starting image. (b) Restored image. (c) comparison of the alpha

map profile before and after the restoration, along the central row of the image. (d)

Artifacts in the matte due to color ambiguity are critically amplified in the restoration

process.
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Chapter 6

Conclusions

This final chapter deals with the conclusions and other remarks on the work

done on the restoration of blurred objects. The main goal is deblurring an

object without altering the background scene. Most existing techniques do

not easily allow this without a considerable amount of manual work, since

they are aimed at the restoration of the whole image.

An advantage of the proposed approach lies in the use of the data coming

from the matte extraction phase to identify the PSF and restore the image

of the object without affecting the background. The whole process requires

minimal user interaction and can be performed fast enough for image editing

applications, after some optimizations. The idea originated from research on

the characteristics of the alpha map of motion blurred objects in [2]. While

using a threshold on the alpha map to estimate the unknown silhouette

was quickly found to be more adequate to restore out of focus objects, the

application to motion blur is still open to future developments.

Experimental results confirm that the behavior under controlled con-

ditions is convincing. The PSF parameter is identified correctly and the

restored images look good. A simple pre-filtering step on the alpha map

confers tolerance to noisy data, up to reasonable noise levels. The iterative

refinement phase helps reducing the typical ringing artifacts that often re-
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sult from deconvolution. Another interesting feature is the automatic alpha

map post-filtering that helps to improve the look of the results. Compu-

tation time is mainly dominated by the 2D FFT, extensively used in both

estimation and refinement phases.

There are several drawbacks and disadvantages with this approach. One

strong limitation is due to the inherent difficulty of the matting problem:

even the most advanced techniques to date do not guarantee correct results,

albeit visually pleasing. Naturally this is a major issue since the alpha map

is the most critical input.

Another issue with camera images lies in the simplified PSF models:

Gaussian, disk or rectilinear motion blur. This is definitely a weakness

with respect to the modern and more sophisticated non-parametric blind

deconvolution techniques.

There are also pathological cases where the blur is so strong that all pixels

in the alpha map are below the threshold level, preventing the estimation

of the PSF.

In what follows are now shown potential applications and future devel-

opments of the proposed approach.

6.1 Potential applications

The first application one can imagine for the selective deblurring of objects

is fixing bad pictures with little manual effort, for all those cases where the

blur degradation only affects a well defined object in an image.

Moreover, once an object has been restored, it is possible to modify the

amount of blur affecting either the object or even the background image.

This way it is possible to create smooth animations where the object is

gradually put at focus while the background becomes blurry.

Another application would be producing an artificial panning effect from

a single long exposure image of a moving object. Panning is a particular
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photographic technique typically used with fast moving objects such as cars

or planes. It consists in moving the camera during the shot, to achieve a

sharp image of the object on a motion blurred background. It takes practice

to master, but the results are impressive.

The proposed algorithm could be used to achieve a similar effect. First

the blurred object is restored; the identified blur function is applied to the

background, and the whole image is recombined. Figure 6.1 shows how

artificial panning would look. Naturally there are many limitations when

working with motion blur at the current time, not to mention the necessity

to compute the matte in a very accurate way, that is unlikely in case of real

images. However this is still open to future developments.

Figure 6.1: Artificial panning on a synthetic test image.

6.2 Future developments

There are aspects that deserve a deeper analysis in ongoing works. The first

interesting area is natural image matting; since the accuracy of the matte

is critical to the outcome of the PSF estimation, it is worth researching

how to best adapt existent approaches to either out of focus or motion

blurred images; in particular, the Wang-Cohen iterative algorithm could

be implemented and tuned specifically for blurred images, exploiting the

additional knowledge on the smoothness of the alpha map. Meanwhile, a
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shortcut to limit the impact of bad mattes could be manually masking out

low quality regions in the computation of the cost function used to refine

the model. Also, the brief detour in Section 3.1 on alpha matting with a

known background scene could be developed to allow for a more accurate

matte in controlled environments.

Another weak aspect is the dependence from a parametric PSF that is

often inadequate to represent the complexity of the real image formation

process; also, being restricted to rectilinear motion blur is a strong limita-

tion. The natural evolution would consist in developing a non-parametric

PSF estimation that takes advantage of the results of this work.

Last, the proposed approach can be implemented in the form of a plug-in

to an existing image editing software, aiming at performance optimization.
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Appendix A

Source code

Important Matlab scripts and functions will be included in this appendix.

A.1 Matting code

exactmatte.m

This function implements the simplified matting approach analyzed in sec-

tion 3.1. F and B are assumed to be constant over the whole image

% [ alpha ] = exactmat te ( I , F, B)

% I = input RGB image .

% F = foreground co l o r in RGB space , va l u e s must be in [ 0 , 1 ]

% B = background co l o r in RGB space , va l u e s must be in [ 0 , 1 ]

% alpha = computed matte

function [ a lpha ] = exactmatte ( I , F , B)

%% transform F−B in to the red ax i s

v = F − B;

% transform F−B vec to r in t o the new red ax i s

v1 = v ;

% any d i r e c t i o n or thogona l to v1 .
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v2 = [ v ( 2 ) ; −v ( 1 ) ; 0 ] ;

% v3 i s or thogona l to both v1 and v2

v3 = cross ( v1 , v2 ) ;

% H ro t a t e s the r e f e r ence system such t ha t BF vec to r and

% t r a n s l a t e s the o r i g i n to B.

H = inv ( [ v1 , v2 , v3 ,B; . . .

0 , 0 , 0 , 1 ] )

for i = 1 : s ize ( I , 1)

for j = 1 : s ize ( I , 2)

% conver t each p i x e l to homogeneous coord ina t e s and

% transform i t by H

p = [ I ( i , j , 1 ) ; I ( i , j , 2 ) ; I ( i , j , 3 ) ; 1 ] ;

J ( i , j , : ) = H∗p ;

end

end

% recover the matte from the red channel

alpha = J ( : , : , 1 ) . / J ( : , : , 4 ) ;
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unshadingmatte.m

The more sophisticated matting technique presented in section 3.1.

%% −− Sc r i p t arguments −−

% F and B are the input f o r e / background co l o r s as RGB column vec t o r s

% I conta ins the s t a r t i n g image

% J w i l l conta in the output matte

%% H1 trans forms FOB plane in t o the rOg p lane

H1 = inv ( [ F , cross ( cross (F ,B) ,F) , cross (F ,B) , zeros ( s ize (F ) ) ; 0 , 0 , 0 , 1 ] ) ;

%% H2 ignore s the b component , p r o j e c t i n g e v e r y t h in g on the rg p lane

H2 = [1 0 0 0 ; . . .

0 1 0 0 ; . . .

0 0 0 1 ] ;

%% H3 i s the degenera te p lanar homography c o l l a p s i n g a l l image po in t s

% on the red ax i s .

% H3, which has 8 dof , i s found by f i x i n g the mapping between 4 po in t s

% and t h e i r r e s p e c t i v e images .

% The mapping i s de f ined as f o l l o w s : F and F/2 transform in to [1 , 0 ] ;

% B and B/2 transform in to B. These po in t s are r e f e r r e d to the

% re f e r ence system transformed by H1 and H2, hence they were named

% F 12# and B 12#

% H3 i s found imposing t h i s mapping in the equat ion H3∗x = x ’

F 121= H2∗H1∗ [F ; 1 ] ;

F 122 = F 121 ∗ 0 . 5 ; F 122 (3 ) = 1 ;

B 121 = H2∗H1∗ [B; 1 ] ;

B 122 = B 121 ∗ 0 . 5 ; B 122 (3 ) = 1 ;

% The problem can be so l v ed d e f i n i n g a matrix A, whose ( r i g h t ) n u l l
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% space i s a vec t o r con ta in ing H3’ s unknown c o e f f i c i e n t s .

A=[F 121 ’ , 0 ,0 ,0 , −F 121 ’ ; . . .

0 , 0 ,0 , F 121 ’ , 0 , 0 , 0 ; . . .

F 122 ’ , 0 ,0 ,0 , −F 122 ’ ; . . .

0 , 0 ,0 , F 122 ’ , 0 , 0 , 0 ; . . .

B 121 ’ , 0 ,0 ,0 , −B 121 ’∗ B 121 ( 1 ) ; . . .

0 , 0 ,0 , B 121 ’ ,−B 121 ’∗ B 121 ( 2 ) ; . . .

B 122 ’ , 0 ,0 ,0 , −B 122 ’∗ B 121 ( 1 ) ; . . .

0 , 0 ,0 , B 122 ’ ,−B 122 ’∗ B 121 (2 ) ] ;

h3 v = null (A, ’ r ’ ) ;

% bu i l d the matrix from i t s c o e f f i c i e n t s

H3 = zeros ( 3 ) ;

for i = 1 :3

for j= 1 :3

H3( i , j ) = h3 v (3∗ ( i−1)+ j ) ;

end

end

newx = F 121 ( 1 : 2 ) / F 121 (3 ) − B 121 ( 1 : 2 ) / B 121 ( 3 ) ;

newy = [ newx (2 ) , −newx ( 1 ) ] ’ ; % orthogona l to newx

H4 = inv ( [ newx , newy , B 121 ( 1 : 2 ) / B 121 ( 3 ) ; . . .

0 , 0 , 1 ] ) ;

%% app ly the computed t rans format ion to the image

J = zeros ( s ize ( I , 1 ) , s ize ( I , 2 ) ) ;

for i = 1 : s ize ( I , 1 )

for j = 1 : s ize ( I , 2 )

P = ones ( 4 , 1 ) ;

for c = 1 :3
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P( c ) = I ( i , j , c ) ;

end

P1 = H ∗ P;

% ju s t s t o r e the red channel in the output J

J ( i , j ) = P1(1)/P1 ( 3 ) ;

end

end
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A.2 Linear filtering

This section contains the code used to add and remove blur given the PSF.

blur.m

Filter input image y using v as blur kernel.

function [ y b lu r ] = blur (y , v )

[ yN, xN ] = s ize ( y ) ;

[ ghy , ghx ] = s ize ( v ) ;

% pads PSF with ze ros to whole image domain , and cen t e r s i t .

b ig v = zeros (yN, xN ) ;

b ig v ( 1 : ghy , 1 : ghx ) = v ;

b ig v = c i r c s h i f t ( big v , −round ( [ ( ghy−1)/2 ( ghx −1 )/2 ] ) ) ;

% Frequency response o f the PSF

V = f f t2 ( b ig v ) ;

% performs f i l t e r i n g ( convo lu t i on i s ob ta ined by

% product in f requency domain )

y b lu r=real ( i f f t 2 (V.∗ f f t2 ( y ) ) ) ;
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deblur.m

Wiener deconvolution, in case only the inverse signal to noise ratio is given

function [ out ] = deblur ( y blur , v , k )

[ yN, xN ] = s ize ( y b lu r ) ;

[ ghy , ghx ] = s ize ( v ) ;

Y = f f t2 ( y b lu r ) ;

b i g v = zeros (yN, xN ) ;

b ig v ( 1 : ghy , 1 : ghx ) = v ;

b ig v = c i r c s h i f t ( big v , −round ( [ ( ghy−1)/2 ( ghx −1 )/2 ] ) ) ;

% Frequency response o f the PSF

V = f f t2 ( b ig v ) ;

% compute and app ly the Wiener f i l t e r

out = real ( i f f t 2 ( (Y.∗ conj (V) ) . / ( conj (V) . ∗V + k ) ) ) ;
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A.3 Deblurring

This section includes source code for all the components of the main deblur-

ring algorithm.

deblurring.m

Here follows a list of the parameters needed by the algorithm.

I , alphamap, colormap, background contain respectively the starting im-

age, alpha, color and background.

model = ’gaussian’|’disk ’ | ’motion’ selects the type of blur that needs to

be removed.

epsilon is the starting value for the regularization term. Empiric tests

show that a good value to start with is 0.01.

b mirror = true if object intersects the image borders, otherwise false .

Does not work with motion blur.

function [ compos it ion ] = . . .

d eb lu r r ing ( I , alphamap , colormap , background , . . .

model , ep s i l on , b mirror )

th r e sho ld = . 5 ; % un l e s s a more accura te va lue i s known .

p r e f i l t e r = 1 ; % increa se wi th caut ion , i f necessary .

norm = ’ square ’ ; % use ’ in f ’ to minmax error on param . es t ima t ion .

% ins t ead o f the L2 norm

maxiters = 3 ; % i t e r a t i o n s o f the f i n a l parameter re f inement .

i f b mirror

alphamap = quadmirror ( alphamap ) ;

colormap = quadmirror (colormap ) ;

end

%% pre− f i l t e r i n g
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alphamap = alphamap ;

i f p r e f i l t e r > 0

a l p h a f i l t e r = . . .

f s p e c i a l ( ’ gauss ian ’ , ce i l (max(10 ,5∗ p r e f i l t e r ) ) , p r e f i l t e r ) ;

alphamap = med f i l t 2 ( alphamap , [ 5 , 5 ] ) ;

alphamap = blur ( alphamap , a l p h a f i l t e r ) ;

end

%% defocus b l u r : e s t imate the l a t e n t alphamap and the p s f

i f ˜strcmp (model , ’ motion ’ )

a lpha ze ro ha t = double ( alphamap > th r e sho ld ) ;

p s f ha t = deblur ( alphamap , a lpha ze ro hat , e p s i l o n ) ;

yps f = s ize ( ps f hat , 1 ) ;

xps f = s ize ( ps f hat , 2 ) ;

[ support , s t a r t ]= getPSFSupport ( p s f ha t )

% crop a square in the middle o f the es t imated p s f

% with s i z e equa l to the es t imated suppor t

i f mod( support , 2 ) == 0

ps f ha t = . . . % even suppor t

p s f ha t ( ce i l ( yps f /2−( support /2−1)): ce i l ( yps f /2+( support /2 −1 ) ) , . . .

ce i l ( xps f /2−( support /2 −1)) :( xps f /2+( support /2 −1))) ;

else

p s f ha t = . . . % odd suppor t

p s f ha t ( ce i l ( yps f /2−( support /2−1)): ce i l ( yps f /2+( support /2 ) ) , . . .

ce i l ( xps f /2−( support /2−1)): ce i l ( xps f /2+( support / 2 ) ) ) ;

end

%% i d e n t i f y the parameter accord ing to the g iven model

i f strcmp (model , ’ d i sk ’ )

d i s k r ad iu s = getDiskRadius ( ps f hat , s t a r t , norm ) ;
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% ob j e c t i v e func t i on f o r re f inement :

obj func = @disk func ;

% s t a r t i n g va lue f o r re f inement

x = d i s k r ad iu s

e l s e i f strcmp (model , ’ gauss ian ’ )

sigma = getSigma ( ps f hat , s t a r t , norm ) ;

% ob j e c t i v e func t i on f o r re f inement :

obj func = @gauss ian func ;

% s t a r t i n g va lue f o r re f inement

x = sigma

end

else % (motion b l u r case )

% es t ima t ing d i r e c t i o n

l a l pha = computeLaplacian ( alphamap ) ;

radon obj func = @( theta , alpha ) −max( radon ( alpha , theta ) ) ;

% play wi th the i n i t i a l va lue i f un suc c e s s f u l

[ theta , foo ] = fminsearch (@(x ) radon obj func (x , l a l pha ) , 0 ) ;

% es t ima t ing l en g t h

l y = upper bound ( alphamap ) ;

l x = upper bound ( alphamap ’ ) ;

l = sqrt ( l x ˆ2 + ly ˆ2 ) ;

ob j func = @motion func ;

x = [ l , theta + 90 ]

% or [ l , atan2 ( ly , l x )∗180/ p i ]

% p s f h a t = f s p e c i a l ( ’ motion ’ , x (1) , x ( 2 ) ) ;

end

%% i t e r a t i v e parameter re f inement

opt ions = optimset ;

% Modify op t i ons s e t t i n g

opt ions = optimset ( opt ions , ’ Display ’ , ’ i t e r ’ ) ;

opt ions = optimset ( opt ions , ’MaxFunEvals ’ , 2 0 ) ;
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for i = 1 : maxiters

[ x , f v a l ] = . . .

fminsearch (@(x ) obj func (x , ep s i l on , alphamap ) , x , opt ions )

[ ep s i l on , f v a l ] = . . .

fminsearch (@(k ) obj func (x , k , alphamap ) , ep s i l on , opt ions )

end

% f i n a l l y b u i l d the co r r e c t PSF

i f strcmp (model , ’ d i sk ’ )

f i n a l p s f = f s p e c i a l ( ’ d i sk ’ , x ( 1 ) ) ;

e l s e i f strcmp (model , ’ gauss ian ’ )

f i n a l p s f = f s p e c i a l ( ’ gauss ian ’ , max(10 , ce i l (5∗x ( 1 ) ) ) , x ( 1 ) ) ;

else

f i n a l p s f = f s p e c i a l ( ’ motion ’ , x ( 1 ) , x ( 2 ) ) ;

end

%% re s t o r a t i o n v ia wiener deconvo lu t i on

rst alphamap = deblur ( alphamap , f i n a l p s f , e p s i l o n ) ;

for i =1:3

colormap ( : , : , i ) = colormap ( : , : , i ) . ∗ alphamap ;

r s t co lo rmap ( : , : , i )=deblur (colormap ( : , : , i ) , f i n a l p s f , e p s i l o n ) ;

end

% downsize i f mirrored

i f b mirror

s = s ize ( rst alphamap ) ;

rst alphamap = rst alphamap ( 1 : s ( 1 ) / 2 , 1 : s ( 2 ) / 2 ) ;

r s t co lo rmap = rs t co lo rmap ( 1 : s ( 1 ) / 2 , 1 : s ( 2 ) / 2 , : ) ;

alphamap = alphamap ( 1 : s (1 )/2 , 1 : s ( 2 ) / 2 ) ;

end

%% alphamap post− f i l t e r i n g



106 Appendix A. Source code

% re th r e sho l d , s h r in k ing i t a b i t by 1 p i x e l eros ion ,

% then smooth .

rst alphamap = double ( rst alphamap > th r e sho ld ) ;

rst alphamap = imerode ( rst alphamap , ones ( 3 ) ) ;

rst alphamap = blur ( rst alphamap , f s p e c i a l ( ’ gauss ian ’ , 5 , 1 ) ) ;

%% f i n a l output

for i = 1 :3

compos it ion ( : , : , i )= rst alphamap .∗ r s t co lo rmap ( : , : , i ) + . . .

(1− rst alphamap ) . ∗ background ( : , : , i ) ;

end

figure ;

subplot ( 1 , 2 , 1 )

imshow ( I ) ;

t i t l e ( ’ S t a r t i ng image ’ ) ;

subplot ( 1 , 2 , 2 )

imshow ( compos it ion ) ;

t i t l e ( ’ F ina l compos it ion ’ ) ;

quadmirror.m

Creates an image tiling mirrored and flipped replicas of the input.

% An image i s mirrored in both H and V d i r e c t i o n s

% ( doub l ing output s i z e )

function [ out ] = quadmirror ( in )

rows = s ize ( in , 1 ) ;

c o l s = s ize ( in , 2 ) ;

u l = in ;

c = s ize ( in , 3 ) ;

for i = 1 : c

ur ( : , : , i ) = f l i p l r ( u l ( : , : , i ) ) ;
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l l ( : , : , i ) = fl ipud ( u l ( : , : , i ) ) ;

l r ( : , : , i ) = fl ipud ( ur ( : , : , i ) ) ;

out ( 1 : rows , 1 : co l s , i ) = ul ( : , : , i ) ;

out ( 1 : rows , c o l s +1:2∗ co l s , i ) = ur ( : , : , i ) ;

out ( rows+1:2∗ rows , 1 : co l s , i ) = l l ( : , : , i ) ;

out ( rows+1:2∗ rows , c o l s +1:2∗ co l s , i ) = l r ( : , : , i ) ;

end

getPSFSupport.m

Roughly estimates the support of the estimated PSF, and gives a starting

value for the parameter. Not used in motion blur estimation.

function [ l , r ] = getPSFSupport ( p s f )

% sum a l l p i x e l s g r ea t e r than h a l f the maximum

p s f t h r e s h = ps f > 0 .5∗max( p s f ( : ) ) ;

area = sum( p s f t h r e s h ( : ) ) ;

r = ce i l ( sqrt ( area /pi ) ) ;

% make i t an odd number , e a s i e r to cen ter

l = max(1 + 6∗ r , 5 1 ) ;

getSigma.m

Estimates the parameter sigma of a Gaussian blur filter

function [ sigma ] = getSigma ( psf , s ta r t s i gma , norm)

% check i f p s f i s square

i f s ize ( psf , 1 ) ˜= s ize ( psf , 2 )

disp ( ’ warning : p s f must be square . . . r e s i z i n g ’ ) ;

x = min( s ize ( psf , 1 ) , s ize ( psf , 2 ) ) ;

p s f = ps f ( 1 : x , 1 : x ) ;
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end

support = s ize ( psf , 1 ) ;

% try i n g d i f f e r e n t norms f o r the error func t i on .

e r r o r f un squa r e = . . .

@( s , l , p ) sum(sum( ( ( p − f s p e c i a l ( ’ gauss ian ’ , l , s ) ) ) . ˆ 2 ) ) ;

errorfun minmax = . . .

@( s , l , p ) max(max(p − f s p e c i a l ( ’ gauss ian ’ , l , s ) ) ) ;

s igma square = . . .

fminsearch (@( s ) e r r o r f un squa r e ( s , support , p s f ) , s t a r t s i gma ) ;

sigma minmax = . . .

fminsearch (@( s ) errorfun minmax ( s , support , p s f ) , s t a r t s i gma ) ;

i f strcmp (norm, ’ i n f ’ )

sigma = sigma minmax ;

else

sigma = sigma square ;

end

getDiskRadius.m

Estimates the radius of a disk blur filter

function [ r ] = getDiskRadius ( psf , r s t a r t , norm)

% check i f p s f i s square

i f s ize ( psf , 1 ) ˜= s ize ( psf , 2 )

disp ( ’ warning : p s f must be square . . . r e s i z i n g ’ ) ;

x = min( s ize ( psf , 1 ) , s ize ( psf , 2 ) ) ;

p s f = ps f ( 1 : x , 1 : x ) ;

end

support = s ize ( psf , 1 ) ;
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e r r o r f un squa r e = @( r , l , p ) sum(sum( ( ( p − d i s k p s f ( l , r ) ) ) . ˆ 2 ) ) ;

errorfun minmax = @( r , l , p ) max(max(p − d i s k p s f ( l , r ) ) ) ;

r s qua r e = . . .

fminsearch (@( r ) e r r o r f un squa r e ( r , support , p s f ) , r s t a r t ) ;

% s t a r t h i gher to avoid l o c a l minima

r minmax = . . .

fminsearch (@( r ) errorfun minmax ( r , support , p s f ) , r s t a r t +5);

i f strcmp (norm, ’ i n f ’ )

r = r minmax ;

else

r = r squa r e ;

end

function [ p s f ] = d i s k p s f ( support , r ad iu s )

p s f = zeros ( support ) ;

c en t e r = ce i l ( support / 2 ) ;

% sub t r a c t 0 .5 to make i t i n t e r changeab l e

% with f s p e c i a l ( ’ d i sk ’ , rad ius ) .

% ( a l s o make sure rad ius i s p o s i t i v e )

rad iu s=max(eps , rad ius − . 5 ) ;

for r = 1 : support

for c = 1 : support

d = sqrt ( ( r−cente r )ˆ2 + ( c−cente r ) ˆ 2 ) ;

i f d <= rad iu s

p s f ( r , c ) = 1 ;

e l s e i f d >= rad iu s+1

ps f ( r , c ) = 0 ;

else
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ps f ( r , c ) = rad iu s+1−d ;

end

end

end

% normal ize i t

ps f = ps f . / sum(sum( p s f ) ) ;

computeLaplacian.m

Used to approximates the Laplacian of the alpha matte for motion blur

direction estimation.

function [ L ] = computeLaplacian ( I )

[ gx , gy ] = gradient ( I ) ;

gabs = sqrt ( gx .ˆ2 + gy . ˆ 2 ) ;

gabs l = log ( gabs + 1 ) ;

[ ggx , ggy ] = gradient ( gabs l ) ;

ggabs l = sqrt ( ggx .ˆ2 + ggy . ˆ 2 ) ;

L = ggabs l ;

upper bound.m

Finds the topmost pixel with α > 0 and the topmost pixel with α = 1.

Then returns the difference along the vertical direction, providing an upper

bound to the PSF height. Transpose the input alpha map to compute the

upper bound for the width.

function [ y ] = upper bound ( alpha )

sx = s ize ( alpha , 1 ) ;

t = . 0 1 ;
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for i = 1 : sx

i f max( alpha ( i , : ) ) > t

break ;

end

end

for j = i : sx

i f max( alpha ( j , : ) ) > 1−t

break ;

end

end

y = j−i ;

disk func.m

% Obje c t i v e func t i on used by fminsearch

% to r e f i n e d i s k b l u r parameters

function [ J ] = d i s k f unc (param , k , alpha )

a lpha pos t = deblur ( alpha , f s p e c i a l ( ’ d i sk ’ , ( param ( 1 ) ) ) , k ) ;

J = sum(sum( min(abs ( a lpha pos t ) , abs ( a lpha post −1 ) ) ) ) ;

gaussian func.m

% Obje c t i v e func t i on used by fminsearch

% to r e f i n e Gaussian b l u r parameters

function [ J ] = gaus s i an func (param , k , alpha )

a lpha pos t = deblur ( alpha , . . .

f s p e c i a l ( ’ gauss ian ’ , max(9 , ce i l (5∗param ) ) , param ) , k ) ;

J = sum(sum( min(abs ( a lpha pos t ) , abs ( a lpha post −1 ) ) ) ) ;

motion func.m

% Obje c t i v e func t i on used by fminsearch

% to r e f i n e motion b l u r parameters
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function [ J ] = motion func (param , k , alpha )

a lpha pos t = . . .

deb lur ( alpha , f s p e c i a l ( ’ motion ’ , param (1 ) , param (2 ) ) , k ) ;

J = sum(sum( min(abs ( a lpha pos t ) , abs ( a lpha post −1)) ) ) ;


