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Abstract

Traditional syntactic-only search, albeit reliable, efficient, and generally ac-

ceptable when a very large set of documents is available, is greatly limiting in

other cases, especially when dealing with small collections of indexed data.

The project described in this thesis enhances Solr, an open source en-

terprise search server based on the Lucene Java search library, with Se-

mantic Search techniques. To increase the amount of relevant information

delivered to the user, our search engine analyzes and semantically expands

terms present in documents and query strings with information obtained

from sources such as ontologies and geographical taxonomies. Employing

metadata in the form of payloads associated to terms added via semantic

expansion, we furthermore ensure control over the ranking process to di-

rectly reflect the possible decrease in relevancy of documents retrieved using

semantics.
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Chapter 1

Introduction

Most modern search engines base their information retrieval process on

a syntactic approach. This method, that has been extensively employed

and perfected until today, is based mainly on the simple matching of terms

in the search query with the ones present in the documents we intend to

search. In most cases, and specifically in scenarios where there is a consid-

erable amount of documents available to search, Syntactic Search delivers

acceptable results in both quantity and relevancy. This approach, though,

fails to retrieve documents that cannot be matched syntactically with the

search query. Especially in cases where the amount of documents available

are limited, the inclusion of Semantic Search methods can greatly improve

the number of relevant documents returned. Analyzing the contents of doc-

uments and query strings and enriching them semantically it is possible to

obtain results that traditional search engines fail to deliver.

This thesis describes a working search engine prototype that extends

Apache Solr1, enhancing traditional yet effective Syntactic Search methods

with the semantic expansion of terms present in documents and query strings.

Employing metadata in the form of payloads associated to terms added in

the expansion, we furthermore ensure control over the ranking process to

directly reflect the possible decrease in relevancy of documents retrieved

using semantics.

In the following chapter we outline briefly the State of the Art of In-

formation Retrieval, with an overview of the Vector Space Model and the

Syntactic and Semantic approaches to search. In Chapter 3 we describe the

goals of this project and the choices we made regarding the base platforms

1an open source enterprise search server based on the Lucene Java search library -

http://lucene.apache.org/solr/
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and sources of semantic data employed. With Chapter 4 we go more into

detail on the implementation of our search engine, and in Chapter 5 we

present some examples that show how our search engine can greatly improve

the amount of relevant information returned to the user by semantically ex-

panding terms at index and query time. Finally, in Chapter 5 we draw our

conclusions and outline possible future developments and expansions to our

project.



Chapter 2

State of the Art

2.1 Information Retrieval

The meaning of "information retrieval" can be very broad. Looking for

a number in a telephone directory, using a Web Search Engine, reading

the desserts listed in the menu of a restaurant are all forms of information

retrieval. From an academic perspective, "information retrieval" can be

defined as follows:

Information retrieval (IR) is finding material (usually documents) of an

unstructured nature (usually text) that satisfies an information need from

within large collections (usually stored on computers) [Manning et al., 2009].

Based on this definition, information retrieval used to be an activity

performed by a small group of people (eg. librarians, city hall employees,

etc.). In recent years, though, the world has changed rapidly, and thanks to

the World Wide Web, information retrieval is performed every day by hun-

dreds of millions of people worldwide. Furthermore, as information retrieval

quickly becomes the preferred way of obtaining information, the traditional

database-style search (that accesses structured data such as patient records

and product inventories) is becoming obsolete.

The simplest form of document retrieval performed by a computer is a

linear scan through all documents to match a specific term that is being

searched for. This approach can be greatly limiting if large document col-

lections (eg. on-line web pages) must be processed quickly, or if a ranked

output of matches is required (eg. the best answers must appear as the first

results). To avoid scanning all the documents for each query, documents are

indexed in advance. Once this is done, a binary term-document incidence
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matrix is obtained. Terms are the indexed units; they are usually words, but

can also be formed by more than one word, for example New York.

This incidence matrix can be used to perform queries based on the

Boolean Retrieval Model (eg. "Cat AND Dog AND NOT Horse"); depend-

ing on whether we look at the matrix rows or columns, we have a vector for

every term, which shows the documents it occurs in, or a vector for each

document, showing the terms that appear in it.

2.1.1 Vector Space Model

Differently from the Boolean Retrieval Model, in the Vector Space Model

a user will mainly use free text queries (i.e. just typing one or more words

instead of using a specific language and operators to build query expressions),

and the system will decide which documents are more relevant to the user’s

information needs.

The Vector Space Model (VSM), or term vector model, is an algebraic

model that represents natural language documents in a formal manner using

vectors in a multi-dimensional space which has only positive axis intercepts.

It was used for the first time by the SMART Information Retrieval system,

that was developed at Cornell University in the 1960s. The VSM formal

operational procedure can be divided into three main stages. The first stage

is document indexing. Here content containing terms are extracted. The

second stage deals with the weighting of indexed terms. The third and final

stage is responsible for computing similarities between the input query and

the indexed documents.

Document indexing incorporates document preprocessing, which might

include techniques such as stopword removal and/or stemming. Non-linguistic

methods for indexing have also been implemented, such as probabilistic in-

dexing techniques.

The process of term weighting for the vector space model is usually han-

dled by statistics. There are three main factors involved in term weighting:

term frequency (TF) factor, term collection frequency factor and document

vector length normalization factor. The final term weight might be con-

structed from all or a subset of the mentioned factors. The inverse docu-

ment frequency (IDF), for example, assumes that the importance of a term

is proportional to the number of documents the term appears in.

The document similarity is obtained by using associative coefficients

based on the inner product of a document vector and a query vector (queries

are treated as regular documents), where a word overlap indicates similar-

ity. This inner product is usually normalized. In most cases the cosine
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coefficient, which measures the angle between document vectors, is used to

measure similarity.

The simplest term weighting schema assumes that term weights are equal

to the document term occurrences. The classic vector space model as pro-

posed by Salton, Wong and Yang [Salton et al., 1975], known as the TF-IDF,

has both local and global parameters incorporated in the term weight equa-

tion, and allows seldom terms (considered good discriminators) to obtain a

higher weight.

2.1.2 Precision and Recall

One of the most challenging issues in an always more information-driven so-

ciety is increasing the effectiveness of an information retrieval system that a

user typically interacts with by submitting a query, in an attempt to commu-

nicate an information need. A document returned by the system is relevant

if the user perceives it as containing information of value with respect to his

personal information need.

Two key statistics about the system’s returned results for a query, that

allow us to assess its effectiveness, are:

• Precision: "what fraction of the results returned are relevant to the

information need?"

• Recall: "what fraction of the relevant documents in the collection

were returned?"

In the field of information retrieval, Precision is the fraction of retrieved

documents that are relevant to the search query.

precision =

|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(2.1)

Precision takes into account all retrieved documents, but it can also be

assessed at a given cut-off rank, considering only the topmost results returned

by the system when performing a query. For example, for a text search on

a set of documents Precision is the number of correct results divided by the

number of all the results returned. It is important to note that the meaning

and usage of the term Precision in the field of Information Retrieval differs

from definitions of accuracy and precision within other branches of science

and technology.

Recall in information retrieval is the fraction of the documents that are

relevant to the search query that are successfully retrieved by the system.
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recall =

|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(2.2)

For example, for text search on a set of documents, Recall is the number

of correct results divided by the number of results that should have been

returned. It is trivial to obtain recall of 100% by returning all the documents

available in response to any search query. For this reason, Recall alone

is insufficient to assess the quality of a search result; it is also necessary

to measure the number of non-relevant documents (eg. by computing the

Precision).

2.1.3 Syntactic Search

One of the two major approaches to information retrieval is Syntactic Search.

A syntactic search engine will perform computations aimed at spotting string

similarity between terms, the atomic elements, that can be either single

words or multi-word phrases. In general, the results of a syntactic search

have a good Recall but a low Precision. Syntactic Search, being the first and

currently the most used search method, has been thoroughly studied and

perfected. Traditional syntactic search engines are mainly based on three

phases (see, among others, The Anatomy of a Large-Scale Hypertextual Web

Search Engine [Brin and Page, 1998]):

• crawling time: it is the phase in which the resources (HTML pages,

multimedia contents, etc.) are collected in order to build a coherent

(and more homogeneous) set;

• indexing time: it is the phase during which the crawled resources are

parsed and indexed in some particular data structures; those struc-

tures are built based on the relevant information contained in indexed

resources and are optimized to quickly answer to queries (granting

search response-time in the order of milliseconds);

• searching time: it is the run-time phase in which final users submit

their queries in order to retrieve meaningful results; in addition to the

optimization of the indexes, this phase requires also a good method to

rank and/or cluster search results.

2.1.4 Semantic Search

Semantic Search, on the other hand, is based on the computation of semantic

relations between concepts. Differently from the Syntactic Search method,
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Semantic Search exploits the meaning of words. Semantic Search can solve

several known problems that Syntactic Search faces, like Polysemy (when a

term has multiple meanings) and Synonymy (when two terms have the same

meaning).

Semantic Search can improve search by using data from semantic net-

works to disambiguate queries and document content in order to generate

more relevant results. Semantic networks, that represent semantic relations

between various concepts, are direct or indirect graphs of various kinds, con-

sisting of vertices, which represent concepts, and edges.

The paper Concept Search [Giunchiglia et al., 2008] presents an interest-

ing model aimed at improving the quality of search results using the semantic

relationships between concepts.

A similar project is presented in Hybrid Search: Effectively Combining

Keywords and Semantic Searches [Bhagdev et al., 2008], a search method

supporting both document and knowledge retrieval via the combination of

ontology-based search and keyword-based matching.

Another interesting approach in introducing semantics in indexing and

searching is ALVIS [Buntine, 2005], an open-source semantic-based peer-

to-peer search engine which, before indexing the documents, enriches them

with some "semantic awareness" of the specific subject by using information

extraction technology.

2.1.5 Index and query expansion

Data collected from sources such as ontologies, thesauri, taxonomies, etc.

can be used to expand indexed terms (index expansion) as well as terms

used in queries (query expansion) in order to increase the number of relevant

documents returned. When performing and index expansion, we associate to

certain terms of a document other terms obtained via semantic expansion.

This way, if the user searches for terms that we happen to have added when

expanding, the document can be retrieved by matching the searched terms

with the semantic ones.

A query expansion consists in expanding the search query of the user

to match additional documents already indexed. A prototype that uses se-

mantic query expansion to improve search results is described in the paper

Squiggle: a Semantic Search Engine for indexing and retrieval of multimedia

content [Celino et al., 2006].

The result of index and query expansion is an increase of Recall, while

the Precision depends on how well our choice of terms used for the expansion

reflects the information needs of the user. As mathematically equated, Pre-
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cision should decrease, but can potentially increase if the documents added

to the result set are more relevant (i.e. of higher quality) or at least equally

relevant.



Chapter 3

Goals and Platform Choices

3.1 Goals

Traditional search engines are based on the syntactic matching of search

query terms with terms contained in the indexed documents. This approach

can be acceptable when a very large set of documents is available, but is

greatly limiting in other cases. For example, a simple phrase like:

bed and breakfast in Milan

can be easily retrieved using as query terms words contained in the doc-

ument, but even though this document could still be relevant to the interests

of a user searching for accommodation and Italy, it cannot be retrieved with

syntactic matching if the query terms aren’t contained in the indexed docu-

ment.

One way to enable the retrieval of the above document when searching

for Italy is to reformulate the search query to contain the term Milan. This

process is known as query expansion. Therefore, if the user searches for Italy,

adding Italy’s major cities as query terms would ensure that the document

is retrieved. In most cases, though, this approach is increasingly costly in

terms of system resources as we try to increment the number of documents

retrieved.

On the other hand, a much more efficient system can be obtained by

expanding terms semantically at index time. Considering the document

used in the above example, if we add to the indexed words the geographical

hierarchy locations above Milan:

bed and breakfast in Milan Lombardy Italy Europe
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a search for Italy would retrieve the expanded document.

An obvious requisite of such a system is that the document is delivered

to the user in its original form (i.e. without the terms we added to render it

retrievable). When the output of a search query is a ranked list of documents,

it is also important to have control over the individual scores. This way, if

documents like:

Italy travel guide

are present in the index, when searching for Italy it is possible to associate

a higher score to matches with terms of the original document than matches

with terms added semantically.

The goal of this project is to provide a platform based on the Vector

Space Model that allows exploiting, when available, semantic information of

various kinds to further increase the amount of relevant information delivered

to the user.

To perform semantic expansion without losing the advantages of the Vec-

tor Space Model, when we have a match with an indexed term that has been

added semantically the score of the document won’t be the same as if the

term were present in the original document. The matched document’s score,

that is used when displaying ranked results, is multiplied by a factor that

will directly influence the rank of the document among the other returned

results.

This factor will be associated to each term added semantically as meta-

data, in the form of a payload that can be added at index and query time.

This way, semantic terms that are less relevant (taken, for example, from

higher levels in a taxonomy) can be added with decreasing multiplying fac-

tors smaller than 1 to ensure that less interesting matches appear in the

results with a lower ranking.

The project will initially focus on designing and implementing the core

platform components, as well as providing index expansion for specific do-

mains such as geographical hierarchies and simple ontologies.

It is possible to further increase the number of relevant documents re-

trieved by enabling the semantic expansion of the query string used to search

the index. In this case, the number of hierarchy levels used for the expansion

must be limited to prevent the retrieval of irrelevant documents.
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3.2 Platform choices

3.2.1 Open source software

Open source software is defined as computer software of which the source

code and other rights usually reserved for the copyright holders are provided

under a software license that meets the Open Source Definition1 or that

is in the public domain. This permits users to use, change, and improve

the software, and to redistribute it in its modified or original form. The

development process of open source software very often proceeds in a public,

collaborative manner.

With his 1997 essay The Cathedral and the Bazaar [Raymond, 1997], open

source software advocate Eric S. Raymond proposes a model for the develop-

ment of Open source software known as the Bazaar model. Raymond com-

pares the traditional method of software development to building a cathedral,

"carefully crafted by individual wizards or small bands of mages working in

splendid isolation". He then suggests that all software should be developed

using the bazaar style, which he described as "a great babbling bazaar of

differing agendas and approaches".

According to the Cathedral model, development is organized in a cen-

tralized way, and the roles are clearly defined: some people are dedicated

to designing, others are responsible for managing the project, and another

group of people is responsible for the implementation. The traditional soft-

ware engineering process follows the Cathedral model.

The Bazaar model is quite different. In this model, the roles assumed by

people involved in the development process are not clearly defined. Grego-

rio Robles [Gehring and Lutterbeck, 2004] suggests that software developed

with the Bazaar model should exhibit the following patterns:

• Users should be treated as co-developers - The users are treated

like co-developers and so they should have access to the source code of

the software. Furthermore users are encouraged to submit additions to

the software, code fixes for the software, bug reports, documentation

etc. Having more co-developers increases the rate at which the software

evolves. Linus’s law states that, "Given enough eyeballs all bugs are

shallow". This means that if many users view the source code they

will eventually find all bugs and suggest how to fix them. Note that

some users have advanced programming skills, and furthermore, each

user’s machine provides an additional testing environment. This new

testing environment offers that ability to find and fix a new bug.

1http://www.opensource.org/docs/osd
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• Early releases - The first version of the software should be released as

early as possible so as to increase one’s chances of finding co-developers

early.

• Frequent integration - New code should be integrated as often as

possible so as to avoid the overhead of fixing a large number of bugs

at the end of the project life cycle. Some open source projects have

nightly builds where integration is done automatically on a daily basis.

• Several versions - There should be at least two versions of the soft-

ware. There should be a buggier version with more features and a more

stable version with fewer features. The buggy version (also called the

development version) is for users who want the immediate use of the

latest features, and are willing to accept the risk of using code that is

not yet thoroughly tested. The users can then act as co-developers,

reporting bugs and providing bug fixes.

• High modularization - The general structure of the software should

be modular allowing for parallel development.

• Dynamic decision making structure - There is a need for a decision

making structure, whether formal or informal, that makes strategic

decisions depending on changing user requirements and other factors.

The project described in this thesis adds additional functionality to al-

ready existing Open source software. The software developed is released

under the Apache License, Version 2.02.

3.2.2 Apache Lucene

Apache Lucene is a free/open source information retrieval library originally

created in Java (and ported to several other programming languages, such

as Delphi, Perl, C#, C++, Python, Ruby and PHP). It is supported by

the Apache Software Foundation and released under the Apache Software

License. Lucene is suitable for any software application that requires full

text indexing and searching, and specifically for implementing internet search

engines and local single-site searching.

Lucene’s API is file format independent because its core logical architec-

ture is based on the concept of documents containing fields of text. There-

fore, text from any document (eg. of Microsoft Word, OpenDocument,

HTML, PDFs) can be indexed as long as the contained text can be extracted.

2http://www.apache.org/licenses/LICENSE-2.0.html
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Developers using Lucene can count on powerful features3 such as ranked

searching (best results returned first), several query types (eg. phrase queries,

wildcard queries, proximity queries, range queries), fielded searching (eg. ti-

tle, author, contents), date-range searching, sorting by any field and many

others.

3.2.3 Apache Solr - Tomcat

Solr is an open source standalone enterprise search server based on Lucene.

It was initially developed by CNET Networks as an in-house project aimed

at adding search capability to the company website. In early 2006, CNET

Networks donated the source code to the Apache Software Foundation. At

the beginning of 2007, Solr graduated from the initial incubation period (that

all new projects at the Apache Software Foundation are put through to help

solve organizational, legal and financial issues) and started to steadily grow,

accumulating features thanks to the contributions of the robust community

of users that it attracted. Although quite new as a public project, it is

already being used successfully by many high-traffic websites4 such as Digg,

Netflix, News.com, Gamespot, reddit.

Documents are added to Solr (a process called "indexing") via XML

over HTTP. The server is then queried via HTTP GET and the results

are received in XML. Solr’s scalability, flexibility, advanced full-text search

capabilities and extensible plugin architecture are only some of the numerous

features5 that made this server the ideal platform to work on.

To develop the software described in this thesis we used what is currently

the latest stable version (1.3.0, that includes Lucene 2.4-dev). This version

requires Java 1.5 and an Application server that supports the Servlet 2.4

standard; for the latter we chose Apache Tomcat (version 5.5), developed by

the Apache Software Foundation.

3.2.4 Geonames - DOM

The first set of semantic expansions were performed using geographical hier-

archy information. This was done using real data obtained from GeoNames,

a geographical database available and accessible free of charge through var-

ious Web Services, under a Creative Commons attribution license. GeoN-

ames covers all countries and contains over eight million placenames and

3http://lucene.apache.org/java/docs/features.html
4http://wiki.apache.org/solr/PublicServers
5http://lucene.apache.org/solr/features.html
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other data such as latitude, longitude, elevation, population, administrative

subdivision, and postal codes.

The data needed for the semantic expansion was obtained in XML for-

mat, and parsed using the interfaces for the W3C Document Object Model

(DOM), which is a component API of the Java API for XML Processing6.

3.2.5 Protégé - JENA

Another set of expansions were performed by parsing a custom ontology

created with Protégé (version 3.4), a free open-source Ontology Editor and

Knowledge Acquisition System.

The Ontology was then accessed using Jena (version 2.6.0), an open

source Semantic Web framework for Java that provides an API to extract

data from and write to RDF graphs.

6http://www.j2ee.me/javase/6/docs/api/org/w3c/dom/package-summary.html



Chapter 4

Implementation

4.1 Lucene’s architecture

Lucene is a high-performance, full-featured, open-source, text search engine

API written in Java. The heart of Lucene is the Index, that is populated

with the data we intend to search to obtain results. The first step is therefore

adding data to the Index. When Lucene indexes text, part of this phase is

cleaning up (or modifying at will) the text with an analyzer. Lucene provides

a few default analyzers, and custom ones can be used too. In most cases,

it is best that the same analyzer is used for both indexing and searching.

For an in-depth analysis of this issue, see Chapter 4.1 of Lucene in Action

[Gospodnetic and Hatcher, 2005].

Lucene is an API, not an application, therefore even though it handles

the indexing, searching and retrieving of documents it doesn’t handle the

selection of data files, the retrieval of the search string, and displaying of

the search results. Because of this, servers such as Solr are usually employed

to create a functioning search engine. Fig. 4.1 shows the architecture of a

typical Lucene-based search platform.

Textual data extracted from sources such as databases, websites and

emails are first processed by an analyzer that tokenizes the text strings,

filters the tokens and adds them to the index. Even the user’s query is

processed by an analyzer, that is usually similar to the one employed during

the indexing phase. Matches between the processed query and the contents

of the index are then displayed to the user.
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Figure 4.1: a Lucene-based search platform (image by Amol Sonawane)
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Figure 4.2: a token stream example (from Erik Hatcher’s Solr Boot Camp)

4.1.1 Lucene’s Tokens

A stream of tokens (see Fig. 4.2) is the fundamental output generated by

the analysis process. At index time, fields set for tokenization are processed

with the configured analyzer, and every token is written to the index as a

term.

Each token represents an individual word of that text. A token carries

with it a text value (the word itself) as well as some metadata: the start

and end offsets in the original text, a token type, a position increment and

an optional payload.

The start offset is the character’s position in the original text where

the token text begins, and the end offset is the position just after the last

character of the token text. The token type is a String, with "word" as

default value, that can be controlled and used in the token-filtering process

as desired. As text is tokenized, the position relative to the previous token is

registered as the position increment value. All of Lucene’s built-in tokenizers

leave the position increment at the default value of 1, indicating that all

tokens are placed in successive positions, one after the other.

The token position increment value relates the current token to the pre-

vious one. Usually, position increments are 1, indicating that every word is

in a unique and successive position in the field. Position increments greater

than 1 allow for gaps and can be used to indicate where words have been

removed (as a result, for example, of stop-word removal). A token with a

zero position increment places the token in the same position as the previous

token. Analyzers that inject word aliases (like the one we implemented for

this project) can use a position increment of zero for the aliases.

4.2 Solr’s architecture

Solr allows the loading of custom code to perform a variety of tasks. To im-

plement our project we create a custom analyzer that supports two parsers
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Figure 4.3: Solr’s architecture

(GeoNames parser and Ontology parser), as well as two custom request pro-

cessing components: a Similarity and a Query Parser (all described in the

following sections). A general overview of Solr’s architecture is described in

Fig. 4.3.

4.3 Solr custom analyzer - SemanticFilter

In Solr, to define the way a field type is analyzed, you can edit the schema.xml

configuration file, specifying for each fieldType two analyzers: an index-time

and a query-time analyzer. For each analyzer, you can specify a Tokeniz-

erFactory followed by a list of optional TokenFilterFactories, that will be

applied in the listed order (for an example configuration see Fig. 5.6).

From the default TokenizerFactories included in Solr we chose Whites-

paceTokenizerFactory, that creates tokens of characters separated by split-
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ting on white space occurrences. A Token1 is the occurrence of a term in

the text of a field. It consists of a term’s text, the start and end offset of the

term in the text of the field, and a type string.

A TokenFilterFactory2 creates a TokenFilter to transform one Token-

Stream into another.

Solr includes several useful TokenFilterFactories (see TokenFilterFac-

tory’s documentation for a complete list) such as:

• StandardFilterFactory: removes dots from acronyms and ’s from the

end of tokens

• LowerCaseFilterFactory: lowercases the letters in each token;

• StopFilterFactory: discards common words. Besides the default En-

glish stop words (such as "a", "an", "and", "are", etc), an optional list

can be specified;

• KeepWordFilterFactory: the opposite of StopFilterFactory;

• SynonymFilterFactory: matches strings of tokens and replaces them

with other strings of tokens.

The first component needed to perform the semantic expansion is a cus-

tom TokenFilter, that we named SemanticFilter, and its SemanticFilterFac-

tory (that extends Solr’s BaseTokenFilterFactory).

When SemanticFilterFactory is listed after WhitespaceTokenizerFactory

as one of the TokenFilterFactories, one of the two developed parsers (de-

scribed in the next paragraphs) is specified via the "parser" argument. This

way, multiple instances of SemanticFilter can be invoked, each one with a

different parser. Our SemanticFilter extends Lucene’s CachingTokenFilter,

that caches all Tokens locally in a List. Each instance will only expand

Terms that have not been processed by previous instances. This is done by

checking the type of each Token: all consecutive Tokens with the default

type value ("word") are gathered in an ordered group and parsed with the

selected parser. Each parser will group the Tokens into shingles (groups of

contiguous words that form a term, like New York and bed and breakfast),

and if the onlyTokenize option (one of the arguments of SemanticFilterFac-

tory) is set to "false" the semantic expansion will be performed by creating

semantic Tokens and adding them to the same position as the one being

expanded.

1http://lucene.apache.org/java/2_3_0/api/org/apache/lucene/analysis/Token.html
2http://lucene.apache.org/solr/api/org/apache/solr/analysis/TokenFilterFactory.html
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The type of the original term (be it single-word or multi-word) will then

be changed to "processed". The types of the added semantic Tokens are

parser-dependant; listing the types in the spaceSeparatedTypes argument and

the correspondent float values in the spaceSeparatedBoosts argument makes

it possible to set a custom boost for each kind of semantic term.

4.3.1 GeoNames parser

Using the GeoNames Search Webservice, each group of tokens received by

the parser is analyzed to recognize all single and multi-word terms (shingles)

that identify a geographical location, be it a Country, a State, a City, etc...

The identified terms are then expanded semantically with the names of lo-

cations that constitute the geographical hierarchy above them. The sample

document bed and breakfast in Milan would therefore be expanded as follows:

[bed] [and] [breakfast] [in] [Milan]

[Lombardy]

[Italy]

[Europe]

The current implementation limits searches to "featureClass=A" (coun-

try, state, region,...) and accepts as valid match the first returned result

(Polysemy managing is currently not supported, but quite easy to imple-

ment). To identify multi-word terms, a combination of the "name" and

"name_equals" arguments is used to check for partial and exact matches.

The shingle matching algorithm is described further on, in paragraph 4.3.3.

For example, checking for an exact match of the term New York translates

into the following request:

http://ws.geonames.org/search?name_equals=New%20York&featureClass=A

This request returns an XML file with the output of the query, that we

parse using the Java API for XML Processing3. Once the parsing process has

been completed, for each identified location we have obtained (from the XML

output) its unique GeoNames identifier (geonameId). These identifiers are

used to retrieve the geographical hierarchy from GeoNames via the Hierarchy

Web Service; for example, New York’s hierarchy is obtained via the following

request:

http://ws.geonames.org/hierarchy?geonameId=5128638

3http://www.j2ee.me/javase/6/docs/api/org/w3c/dom/package-summary.html
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Term isRelatedTo

isSynonymOf

isBroatherThan
isNarrowerThan

Figure 4.4: our test ontology

This other XML file is parsed too to obtain the data needed to create

the appropriate semantic Tokens.

Unmatched Tokens are left untouched, with the token type set to "word",

and matched Tokens are marked as type: "processed". Tokens added with

the semantic expansion are created as type: "geonames-hierarchy-x", where x

stands for the level of expansion; the number of levels with specific boosts can

be specified in schema.xml, for both index and query phases. For debugging

purposes, the geonames unique identifier is added as a Token too, and marked

as type: "geonames-id".

4.3.2 Ontology parser

Using the Protégé Ontology Editor we created a simple ontology with only

one class, Term, and the properties: isBroaderThan, isNarrowerThan, is-

RelatedTo, isSynonymOf. All four properties have "Term" as domain and

target. The first two are one the inverse of the other, and the last two are

symmetric (see Fig. 4.4).

We then populated the class with some individuals and created relation-

ships between them, like:

dog isBroaderThan poodle

dog isNarrowerThan pet

pet isBroaderThan cat
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pet isNarrowerThan animal

hotel isNarrowerThan accommodation

bed_and_breakfast isNarrowerThan accommodation

bed_and_breakfast isRelatedTo sleep

hotel isBroaderThan hilton

Unmatched Tokens are left untouched, with the token type set to "word";

matched Tokens are marked as type: "processed", and the Tokens added with

the semantic expansion are created with a Token type that identifies one of

the four properties listed above. If the token was added via the isNarrow-

erThan property, the token type will have the format "isNarrowerThan-x",

where x stands for the level of expansion; each level can have a different

boost, that will be set in schema.xml with the other parameters.

4.3.3 Shingle matching - the algorithm

To recognize multi-word units that can be expanded, a shingle matching

algorithm was designed, and a custom implementation of it was created for

each parser. A flowchart representation of the matching process, created

with Dia4, can be viewed in Fig. 4.5.

The algorithm starts building a temporary shingle by adding the first

token of the stream. It then attempts to find an exact match among the

terms of our semantic data. If the match is successful, it checks to see if

other tokens can be appended to the shingle. If there aren’t any more tokens

to append, the shingle is saved for expansion and the algorithm terminates;

if there are more tokens, the current shingle is recorded as a multi-word

candidate, the next token of the stream is appended, and the algorithm

attempts another exact match.

If an exact match fails, a partial match is attempted. If it is successful,

the algorithm verifies if there are tokens left. If there are, the next token

is appended and the algorithm performs another exact match attempt; if

there aren’t any more tokens to append, the algorithm checks if there is a

multi-word candidate available. If there is, the candidate is recognized as a

valid multi-word unit, and the temporary shingle is cleared. At this point,

if there are tokens left to process, the algorithm adds the next one to a new

temporary shingle (that happens to be the first available token after the

ones of the candidate saved for expansion) and goes back to perform another

exact match attempt. If there isn’t a candidate available, the shingle is

cleared and the first token (that was at the head of our temporary shingle)

4http://dia-installer.de/index_en.html
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Figure 4.5: shingle matching algorithm

is discarded (because it wasn’t matched by the algorithm); at this point, if

there are tokens left, the algorithm resumes (adds the next token, attempts

an exact match, etc.); if not, it ends.

When a partial match attempt fails, the algorithm checks the availability

of a multi-word unit candidate. If there is, the candidate is recognized as a

valid multi-word unit, and the shingle is cleared (the algorithm then verifies if

there are tokens left to start building a new temporary shingle). If there isn’t

a candidate available, the shingle is cleared and the first token is discarded.

At this point, if there are tokens left the algorithm starts building a new

temporary shingle; elsewise, it stops.
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4.3.4 Payloads

Payloads let Lucene users optionally store a byte array of information on

a term by term basis. A Payload is metadata that can be stored together

with each term occurrence. To store payloads in the index a TokenStream

that produces Tokens containing payload data has to be used. At the time

of this writing, the status of Lucene’s Payloads feature is experimental, and

the current APIs are subject to possible changes.

Using the encodeFloat method of Lucene’s PayloadHelper class and the

setPayload method of the Token class, our SemanticFilter adds as payloads

of the semantic Tokens the float values of the spaceSeparatedBoosts option

specified in schema.xml. These float values will be used to fine-tune the

scoring of our semantic Term matches: values greater than 1 will increase

their rank, while values smaller than 1 will decrease it.

A the time of this writing, Solr doesn’t have query side support for pay-

loads. An issue report regarding this missing functionality is present in

JIRA5.

• Key: SOLR-1337

• Type: New Feature

• Status: Open

• Priority: Major

• Created: August 5th, 2009

4.4 Subclassing Similarity - PayloadsBoostingSim-

ilarity

In Solr’s schema.xml configuration file it is possible to use a <similarity>

declaration to specify the subclass of Similarity that we want to use when

dealing with the index. If no Similarity class is specified, the Lucene De-

faultSimilarity is used. The Similarity class6 is a native Lucene concept that

determines how much of the score calculations for the various types of queries

is executed.

The score of query q for document d correlates to the cosine-distance or

dot-product between document and query vectors in a Vector Space Model

5https://issues.apache.org/jira/browse/SOLR-1337
6http://lucene.apache.org/java/2_4_0/api/org/apache/lucene/search/Similarity.html
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(VSM) of Information Retrieval. A document whose vector is closer to the

query vector in that model is scored higher. The score is computed as follows:

score(q, d) = coord(q, d) · queryNorm(q) ·

X

t in q

( tf(t in d) · idf(t)2 · t.getBoost() · norm(t, d) )

(4.1)

where:

1. tf(t in d) correlates to the term’s frequency, defined as the number of

times term t appears in the currently scored document d. Documents that

have more occurrences of a given term receive a higher score. The default

computation for tf(t in d) in DefaultSimilarity is:

tf(t in d) = frequency1/2 (4.2)

2. idf(t) stands for Inverse Document Frequency. This value correlates

to the inverse of docFreq (the number of documents in which the term t

appears). This means rarer terms give higher contribution to the total score.

The default computation for idf(t) in DefaultSimilarity is:

idf(t) = 1 + log(
numDocs

docFreq + 1
) (4.3)

3. coord(q,d) is a score factor based on how many of the query terms are

found in the specified document. Typically, a document that contains more

of the query’s terms will receive a higher score than another document with

fewer query terms. This is a search time factor computed in coord(q,d) by

the Similarity in effect at search time.

4. queryNorm(q) is a normalizing factor used to make scores between

queries comparable. This factor does not affect document ranking (since

all ranked documents are multiplied by the same factor), but rather just

attempts to make scores from different queries (or even different indexes)

comparable. This is a search time factor computed by the Similarity in

effect at search time. The default computation in DefaultSimilarity is:

queryNorm(q) = queryNorm(sumOfSquaredWeights) =
1

sumOfSquaredWeights1/2
(4.4)

The sum of squared weights (of the query terms) is computed by the

query Weight object. For example, a boolean query computes this value as:

sumOfSquaredWeights = q.getBoost()2 ·

X

t in q

(idf(t) · t.getBoost())2 (4.5)
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5. t.getBoost() is a search time boost of term t in the query q as spec-

ified in the query text (see query syntax), or as set by application calls to

setBoost(). Notice that there is really no direct API for accessing a boost of

one term in a multi term query, but rather multi terms are represented in a

query as multi TermQuery objects, and so the boost of a term in the query

is accessible by calling the sub-query getBoost().

6. norm(t,d) encapsulates a few (indexing time) boost and length factors:

• Document boost - set by calling doc.setBoost() before adding the doc-

ument to the index.

• Field boost - set by calling field.setBoost() before adding the field to a

document.

• lengthNorm(field) - computed when the document is added to the index

in accordance with the number of tokens of this field in the document,

so that shorter fields contribute more to the score. LengthNorm is

computed by the Similarity class in effect at indexing.

When a document is added to the index, all the above factors are mul-

tiplied. If the document has multiple fields with the same name, all their

boosts are multiplied together:

norm(t, d) = doc.getBoost() · lengthNorm(field) ·
Y

field f in d named as t

f.getBoost() (4.6)

However the resulted norm value is encoded as a single byte before being

stored. At search time, the norm byte value is read from the index direc-

tory and decoded back to a float norm value. This encoding/decoding, while

reducing index size, comes with the price of precision loss - it is not guar-

anteed that decode(encode(x)) = x. For instance, decode(encode(0.89)) =

0.75. Also notice that search time is too late to modify this norm part of

scoring, e.g. by using a different Similarity for search.

To manage the scoring of semantic Terms we created a custom Similarity

class, PayloadsBoostingSimilarity, that extends Lucene’s DefaultSimilarity.

In it, we override the scorePayload function (which returns 1 by default),

and use PayloadHelper’s decodeFloat method to extract from the payload

and return our boost value (that will be retrieved by Lucene’s BoostingTer-

mQuery, described in paragraph 4.5). A PayloadsBoostingSimilarityFactory

was implemented (to create our custom Similarity) and added to schema.xml.
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4.5 BoostingTermQuery

To invoke the (overridden) scorePayload method of PayloadsBoostingSimi-

larity we use BoostingTermQuery7, currently the only payload aware Query

available in Lucene. BoostingTermQuery is very similar to the SpanTer-

mQuery8, except that it factors in the value of the payload located at each

of the positions where the Term occurs. In the current implementation of

BoostingTermQuery (left untouched), payload scores are averaged across

Term occurrences in the document.

4.6 Custom query parser - PayloadsQParserPlugin

Solr’s QParserPlugin9 can be used to create custom query structures for Solr.

To handle the payloads of the semantic Tokens we created PayloadsQParser-

Plugin, that extends QParserPlugin and uses Lucene’s BoostingTermQuery

to search for individual Terms specified in the user’s query.

Specifying the same sequence of SemanticFilter instances in the query-

time analyzer (via schema.xml) the query expression will be broken down

into the same shingles that are created at index time. To disable query time

expansion the onlyTokenize option must be set to "true". When setting it

to "false", the number of hierarchy levels used in the expansion must be set

to prevent unwanted matches. Not limiting the levels could allow unwanted

documents to appear in query results; a search for Sicily, for example, would

retrieve documents containing the term Santiago De Compostela because

both locations have Europe in their full semantic expansions.

The current implementation of PayloadsQParserPlugin performs queries

for multiple terms (both single and multi-word) using the boolean OR op-

erator. This has been implemented declaring in our custom QParserPlugin

a BooleanQuery10 and adding to it the individual BoostingTermQueries as

"should occur" BooleanClauses11.

7http://lucene.apache.org/java/2_2_0/api/org/apache/lucene/search/payloads/BoostingTermQuery.html
8http://lucene.apache.org/java/2_2_0/api/org/apache/lucene/search/spans/SpanTermQuery.html
9http://lucene.apache.org/solr/api/org/apache/solr/search/QParserPlugin.html

10http://lucene.apache.org/java/2_3_1/api/org/apache/lucene/search/BooleanQuery.html
11http://lucene.apache.org/java/2_3_1/api/org/apache/lucene/search/BooleanClause.html
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Results

5.1 Examples

In this section we use Solr’s analysis administration capabilities (located

by default at http://localhost:8080/solr/admin/analysis.jsp) to conveniently

create some semantic expansion examples. The Analysis page accepts snip-

pets of text for both queries and documents, as well as the Field name that

identifies how the text should be analyzed, and returns stepwise results of

the text as it is being modified. After illustrating an index expansion exam-

ple, we provide a scoring output sample (as XML output) and an example of

how expanding the submitted query string can further increase the number

of relevant documents retrieved.

5.1.1 Index expansion

To expand semantically our indexed documents, we have to configure prop-

erly our index analyzer in the schema.xml configuration file, as shown in Fig.

5.1.

The first option that needs to be set is the tokenizer class we intend

to use. For our examples we chose one of the most commonly used tok-

enizers: the WhitespaceTokenizer. We therefore set the tokenizer class to

solr.WhitespaceTokenizerFactory. We then listed two instances of our Se-

manticFilter: the first one will use the GeoNames parser, and the second one

the Ontology parser, in this order. The GeoNames parser, besides adding

the geonames-id as a token with 0.1F as boost value, will expand identified

locations four levels up their geographical hierarchy. The tokens added will

have the boost values specified with the spaceSeparatedBoosts option:
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Figure 5.1: schema.xml index analyzer settings for index time expansion

• geonames-hierarchy-1: 0.4F

• geonames-hierarchy-2: 0.16F

• geonames-hierarchy-3: 0.064F

• geonames-hierarchy-4: 0.0256F

For our test case we have chosen to multiply by 0.4 the boost value

as we go up in hierarchy level to reflect the decrease of relevancy. The

values of the spaceSeparatedTypes option will be used by the SemanticFilter

to set the token types. The Ontology parser will expand identified terms

three levels up in their taxonomy hierarchy, and will also add terms that are

connected to them in our test ontology via the isRelatedTo and isSynonymOf

relationships. The semantic tokens obtained with the Ontology parser will

have the following types and boosts:

• isNarrowerThan-1: 0.4F

• isNarrowerThan-2: 0.16F

• isNarrowerThan-3: 0.064F

• isRelatedTo: 0.4F

• isSynonymOf: 0.7F

We chose to decrease the boosts as we go up in hierarchy level like we did

with the GeoNames parser, to influence coherently the scoring of matched

documents. The onlyTokenize option is set to false in both instances of our

SemanticFilter, because we don’t need to disable the semantic expansion of

the indexed documents.
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Figure 5.2: sample document input for index time expansion

To test the semantic expansion at index time we use the Field Analysis

function of Solr’s analysis administration interface. The data input of our

sample document is displayed in Fig. 5.2.

For the field name option we specify the features field, that in schema.xml

is described as being of fieldType text. We then insert in the Field value

(Index) field the sample document:

bed and breakfast in Monza

After enabling all the extra options (verbose output and highlight matches),

we click Analyze to see the indexing steps performed by our analyzer.

Our sample document is first broken down into tokens by the Whites-

paceTokenizer as seen below:

[bed] [and] [breakfast] [in] [Monza]

This fist step is displayed in Fig. 5.3.

Each token occupies one term position, has its term text, its term type

(currently set to word, the default value) and information on starting and

ending characters (source start,end). Currently no payloads have been cre-

ated.

At this point, our SemanticFilter uses the GeonamesParser to expand

the token Monza with the hierarchy levels above and the geonames-id, as

displayed below:
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Figure 5.3: tokens created by WhitespaceTokenizer at index time

[bed] [and] [breakfast] [in] [Monza]

[6537122]

[Europe]

[Italy]

[Lombardy]

[Milan]

The tokens are added in the term position of the token that is being ex-

panded (Monza). As you can see in Fig. 5.4, each token added semantically

has its own payload, that is displayed in the hexadecimal system. The values

of the payloads (after being converted from hexadecimal to float) and the

token types are the ones specified in schema.xml (see Fig. 5.1). The original

terms that were expanded semantically have been marked as processed (by

changing the term type).

Now the tokens are processed by our Ontology parser. The term bed and

breakfast is identified, isolated as a single token, and expanded semantically:

[bed and breakfast] [in] [Monza]

[sleep] [6537122]

[accommodation] [Europe]

[Italy]

[Lombardy]

[Milan]

Fig. 5.5 shows the final result of the index time expansion as displayed

by Solr’s Field Analysis function.

The two terms added semantically (sleep and accommodation) have the

payload values (displayed in hexadecimal) specified in schema.xml and term

types that reflect their relationship with the term being expanded. The

expanded term’s type is set to processed. At this point, all the desired

expansions have been performed, and the document is ready to be added to

the index.
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Figure 5.4: GeonamesParser index time expansion
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Figure 5.5: OntologyParser index time expansion
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5.1.2 Query processing

To prevent unwanted behavior when performing queries on indexed docu-

ments, it is important to process the query string in a way that ensures the

best results when attempting to match the contents of the index. A good

start is to process the query with the same analyzer used on the documents

before they are indexed. In our case, though, it is important to control the

semantic expansion process to prevent unwanted matches between the query

and indexed documents. If we process the query string visiting Milan with

the same analyzer used on the indexed documents without controlling the

semantic expansion, the resulting tokens:

[visiting] [Milan]

[6537122]

[Europe]

[Italy]

[Lombardy]

would be matched, for example, with all documents containing names

of places in Europe (or documents containing the term Europe). Therefore,

searching for visiting Milan could yield results such as hotels in Helsinki,

sightseeing in Paris, and so on. For this reason, when setting in schema.xml

the same analyzer used to create our index, we change the onlyTokenize

option to true, as shown in Fig. 5.6. This way, even though the terms

present in the query string won’t be expanded, multi-word terms (such as

New York) will still be identified and merged into a single term, that is the

fundamental unit of search.

The query string must be inserted in the Field value (Query) field, as

shown in Fig. 5.7.

In Fig. 5.8 we see how, after clicking on Analyze, WhitespaceTokenizer

breaks down our query string into tokens.

Then, SemanticFilter identifies but doesn’t expand Milan (because we

blocked the expansion with our onlyTokenize option), as seen in Fig. 5.9.

The output from the OntologyParser is identical, because in our sample

ontology there aren’t any terms that are present in the inputted query.

Having enabled the highlight matches option, Solr’s Field Analysis func-

tion now highlights the matched terms, as shown in Fig. 5.10

5.1.3 Scoring

To obtain the results and scoring output we must first add documents to our

index. To do so we use the post.jar utility located in the example/exampledocs/
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Figure 5.6: schema.xml index and query analyzer settings for index time expansion

Figure 5.7: sample document input for index time expansion
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Figure 5.8: query string broken down into tokens by WhitespaceTokenizer

Figure 5.9: query string processed with semantic expansion disabled

folder of Solr’s nightly builds. The two documents we used for our exam-

ple were structured in XML (as displayed below) and added to Solr’s index

following the instructions of Solr’s official tutorial1.

<add>

<doc>

<field name="id">0</field>

<field name="features">bed and breakfast in Monza</field>

</doc>

<doc>

<field name="id">1</field>

<field name="features">nightlife in Milan</field>

</doc>

</add>

To retrieve the ranked results in XML format we submit the query visiting

Milan with a web browser:

http://127.0.0.1:8080/Solr/select?q={!payloads%20f=features}visiting%20Milan&debugQuery=true

1located at http://lucene.apache.org/solr/tutorial.html
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Figure 5.10: highlighting of matches in Solr’s Field Analysis function
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Figure 5.11: XML query output - results

In Fig. 5.11 we can see the portion of XML output that displays the

returned results. As expected, the document bed and breakfast in Monza is

listed after nightlife in Milan.

In Fig. 5.12 we have the portion of XML output that displays the scoring

process.

5.1.4 Query expansion

It is possible to further increase the number of relevant documents retrieved

by expanding semantically the terms of the query string. As shown in Fig.

5.13, we set the onlyTokenize option to leave semantic expansion enabled for

both the indexed document and the query string. It is important, though, to

limit the hierarchy levels of our query string’s semantic expansion to prevent

the retrieval of irrelevant documents.

The data input of our query expansion example is displayed in Fig. 5.14.
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Figure 5.12: XML query output - scoring
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Figure 5.13: schema.xml settings for index and query expansion

We use as sample document the string bed and breakfast in Monza, and as

query string visiting Legnano. Legnano is a town in the Province of Milan.

Our query string will be expanded as described below:

[visiting] [Legnano]

[6537118]

[Milan]

In Fig. 5.15 we see how WhitespaceTokenizer breaks down our query

string into tokens.

Then, SemanticFilter identifies and expands Legnano, as seen in Fig.

5.16. The expansion has been limited to one level. The output from the

OntologyParser is identical, because in our sample ontology there aren’t any

terms that are present in the inputted query.

Our sample document (bed and breakfast in Monza) has been processed

like already described in section 5.1.1, and Milan, the matched term, appears

highlighted, as already shown in Fig. 5.10, because it has been matched with

the expansion of Legnano.
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Figure 5.14: inputting the query expansion example data

Figure 5.15: tokens created by WhitespaceTokenizer at query time
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Figure 5.16: query expansion performed by GeonamesParser



Chapter 6

Conclusions and Future

Developments

6.1 Conclusions

Stored information is near useless if users can’t search it efficiently, retrieving

the documents relevant to their information needs. Traditional syntactic-

only search, albeit reliable and efficient, is greatly limited by the gap between

the way machines work and the way we think.

Coupling the Vector Space Model with semantic expansion helps us close

this gap by using knowledge representation data we can build for our custom

application or obtain from numerous sources. We therefore created a working

prototype of a search engine based on this model that uses a payloads-based

approach to ensure control over the ranking process. The tests described

in the previous chapter show how our platform enriches search results with

documents that traditional search engines fail to retrieve.

Our project gives developers the tools to semantically increase the quality

of search results by increasing Recall while tailoring returned results to fit

the customization needs of different fields, user bases and document sets.

6.2 Future Developments

Being a working prototype, the current implementation of the project lacks

some refinements that require software implementation not related to its

core functionality, or that won’t be necessary once the software reaches its

deployment phase.
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The two parsers developed for the current implementation access two

very different kinds of data.

The GeoNames parser has access to vast amounts of geographical infor-

mation that have not been filtered to fit the needs of custom implementations

of our platform. For example, the term "or" is matched with the State of

Oregon (U.S.A.) when performing a name_equals search in GeoNames, be-

cause "OR" is listed among Oregon’s alternateNames (a field in the XML

search output). If "or" isn’t excluded from the geographical processing (for

example using Solr’s StopFilterFactory) it may lead to false positives.

Handling of Polysemy, not implemented in the current release, is another

issue that must be addressed when customizing the project for specific needs.

Even some major cities share the same name, like "San José", the capital

city of Costa Rica, and "San Jose", in California. A possible solution to this

problem can be achieved by evaluating the context in which a specific term

is placed. Analyzing other words present in the document it is possible to

contextualize terms affected by Polysemy.

The Ontology parser accesses data that was created manually to perform

simple tests aimed at verifying that the software behaves as designed. In the

transition from the prototype to a product ready for deployment, it will be

necessary to carefully analyze the case scenario the platform is being cus-

tomized for, and evaluate the tradeoffs between trimming down and filtering

existing data sets (eg. GeoNames, Wordnet, etc) and building them from

scratch.

Storing all the data used for the semantic expansions in an SQL database

would increase the performance of index and query time parsing. Using a

database would enable setting different boosts for different term expansions

based on specific customization needs related to the data and user base of

the finished product.

The boost values employed in our indexing and query examples were

chosen to reflect the decrease in relevancy as we climb up hierarchy levels.

As the project nears the final stages that precede its deployment, it is also

important to research the best boost values to employ.
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