
SPI Master Library Module (Polled) Page 1

SPITM Master Library Module (Polled)

1. Introduction ... 2

2. Module Features ... 2

3. List of Component Modules... 3

4. Using the Library Module in a Project .. 3

5. List of Shared Parameters ... 4

Shared Functions.. 4

Shared Macros.. 4

6. Functions... 5

7. Macros.. 7

8. Error and Status Flags ... 8

SPI Master Library Module (Polled) Page 2

1. Introduction

The SPIMPol is a general-purpose library module. It configures the MSSP/SSP/BSSP module in
Master mode and helps in communicating with the SPI Slave and with the Microwire® Slave.

The module code is linkable and relocatable, which provides the user, the facility to use it without
modifications.

By using this Module one can write his application to interact with any of the SPI or the Microwire
Slaves like EEPROM, ADC, Digital Potentiometer, LCD etc.

The module allows user to concentrate more on his application’s development by providing these
library functions.

2. Module Features

It supports following features:-

• It provides simple and primitive functions to communicate with the SPI Slave.
• It generates Error flags on the occurrence of an error. All error conditions are passed through

the ‘W’ Register.

SPI Master Library Module (Polled) Page 3

3. List of Component Modules

SPIMPol.P16.ex.txt This is an example file developed to demonstrate the use of the
library functions for PIC16 family.

SPIMPol.P18.ex.txt This is an example file developed to demonstrate the use of the
library functions for PIC18 family.

SPIMPol.asm This is the SPI Master code implementation file. One needs to
include this file in their project.

16SPIMP.asm This is the SPI Master code implementation file for PIC16 family.
The SPIMPol.asm file will include this file if the PIC16 family
processor is used.

18SPIMP.asm This is the SPI Master code implementation file for PIC18 family.
The SPIMPol.asm file will include this file if the PIC18 family
processor is used.

SPIMPol.inc This file contains the definitions of all the shared parameters and the
macros. One needs to include this in the Assembly file where the
library functions and macros are called. This file is taking care of
definition of all Extern Global parameter so one can directly call
library routines in their program.

P16xxx.inc General purpose processor definition file for PIC16 family
P18xxx.inc General purpose processor definition file for PIC18 family

4. Using the Library Module in a Project

Please follow the steps below to use this library module in your project.

1. Use the Application Maestro to configure the module as required.
2. At the ‘Generate Files’ step, save the output to the directory where your project code resides.
3. Launch MPLAB, and open the project’s workspace.
4. Verify that the Microchip language tool suite is selected (Project>Select Language Toolsuite).
5. In the Workspace view, right-click on the “Source Files” node. Select the “Add Files” option.

Select SPIMPol.asm and click OK.
6. Now right-click on the “Linker Scripts” node and select “Add Files”. Add the appropriate linker

file (.lkr) for the project’s target microcontroller.
7. Add any other files that the project may require. Save and close the project.
8. In your main source (assembler) file, add include directive at the head of the code listing to

include SPIMPol.inc. By doing so, all files required to make the generated code work in
your project will be included by reference when you build the project.

9. To use the module in your application, invoke the functions or macros as needed.

SPI Master Library Module (Polled) Page 4

5. List of Shared Parameters

Shared Functions
SPIMPolInit It is used for Synchronous Serial Port Initialization It

initializes Port according to the options opted through
Application Maestro.

SPIMPolPut It is used for transmitting a byte on SPI Bus.
SPIMPolGet It is used for reading the received byte.
SPIMPolIsTransmitOver It is used for checking/waiting for completion of

transmission.
SPIMPolIsDataReady It is used for checking/waiting for reception of data on

SPI Bus.

Shared Macros
mSPIMPolSetClockIdleState This sets the Idle state of the Clock line, ‘Hi’ (High) or

‘Lo’ (Low).
mSPIMPolSetTransmitOnClockEdge This sets the Clock edge at which the data is to be

Transmitted, ‘IdleToActive’ or ‘ActiveToIdle’.
mSPIMPolSetSampleAtDataOut This sets at which phase of the Data Out, the Data In

should be sampled, ‘Mids’ (Middle) or ‘Ends’ (End).
mSPIMPolDisable Disables Synchronous Serial Port.

SPI Master Library Module (Polled) Page 5

6. Functions

Function SPIMPolInit
Preconditions TRIS bits of SCK and SDO should be made output.

TRIS bit of SDI should be made input.
TRIS bit of Slave Chip Select pin (if any used) should be made output.

Overview This function is used for initializing the MSSP/SSP/BSSP module. It
initializes the module according to Application Maestro options.

Input Application Maestro options
Output None
Side Effects Bank selection bits and ‘W’ register are changed
Stack Requirement 1 level deep

Function SPIMPolPut
Preconditions ‘SPIMPolInit’ should have been called.
Overview This function sends the byte in ‘W’ Reg. over SPI bus and checks for

Write Collision.
Input 'W' Register.
Output 'W' Register. It will have:

‘0’ - On proper initialization of transmission.
‘SPIMErrWriteCollision’ - On occurrence of the Write Collision error.

Side Effects Bank selection bits and ‘W’ register are changed
Stack Requirement 1 level deep

Function SPIMPolGet
Preconditions ‘SPIMPolIsDataReady’ should return a ‘0’.
Overview This function reads the byte received.
Input None
Output ‘W’ Register.
Side Effects Bank selection bits and ‘W’ register are changed
Stack Requirement 1 level deep

Function SPIMPolIsTransmitOver
Preconditions ‘SPIMPolPut’ should have been called.
Overview In Non Blocking Option –

This function checks whether the transmission of the byte is completed.
In Blocking Option –
This function waits till the transmission of the byte is completed.

Input None
Output In Non Blocking Option –

 'W' Register. It will have:
 ’0’ - If the transmission is over.
 ‘SPIMTransmitNotOver’ - If the transmission is not yet over.
In Blocking Option –
 None

Side Effects Bank selection bits and ‘W’ register are changed
Stack Requirement 1 level deep

SPI Master Library Module (Polled) Page 6

Function SPIMPolIsDataReady
Preconditions ‘SPIMPolPut’ should have been called. ‘SPIMPolPut’ initiates the

reception also.
Overview In Non Blocking Option –

This checks weather the Data is received. It also checks for the Over flow
error.
In Blocking Option –
It checks for the Over flow error. If there is no error waits till Data is ready.

Input None
Output 'W' Register. It will have:

In Non Blocking Option –
 ‘0’ - If the Data is ready
 ‘SPIMDataNotReady’ - If Data is not ready
In Blocking Option –
 None

Side Effects Bank selection bits and ‘W’ register are changed
Stack Requirement 1 level deep

SPI Master Library Module (Polled) Page 7

7. Macros

Macro mSPIMPolSetClockIdleState
Overview This Macro is used to specify the Idle State of the Clock pin (SCK).
Input The Clock pin Idle state:

‘Hi’ (for High)
‘Lo’ (for Low)
Example- To set Clock pin Idle State High,
mSPIMPolSetClockIdleState Hi

Output None
Side Effects Bank selection bits are changed.
Stack Requirement None

Macro mSPIMPolSetTransmitOnClockEdge
Overview This Macro is used to specify on what edge of the Clock the transmission

should take place.
Input Transmission at the clock edge:

‘IdleToActive’
‘ActiveToIdle’
Example- To transmit on Clock edge Idle to Active
mSPIMPolSetTransmitOnClockEdge IdleToActive

Output None
Side Effects Bank selection bits are changed.
Stack Requirement None

Macro mSPIMPolSetSampleAtDataOut
Overview This Macro is used to specify the sampling phase of the Data In, with

respect to Data Out.
Input Sampling phase with respect to Data Out:

‘Mids’ (Middle)
‘Ends’ (End).
Example- To sample at mid of Data Out
mSPIMPolSetSampleAtDataOut Mids

Output None
Side Effects Bank selection bits are changed.
Stack Requirement None

Macro mSPIMPolDisable
Overview Disables the MSSP/SSP/BSSP module.
Input None
Output None
Side Effects Bank selection bits are changed.
Stack Requirement None

SPI Master Library Module (Polled) Page 8

8. Error and Status Flags

All errors/status are set as a content of ‘W’ Register. Individual errors/status are unique. Please
refer below list for the information.

SPIMErrWriteCollision This indicates that, Write collision has occurred while trying to
transmit the byte.

SPIMTransmitNotOver This indicates that, the transmission is not yet over. This is to be
checked only when Non Blocking option is opted.

SPIMDataNotReady This indicates that, the Data is not yet fully received. This is to be
checked only when Non Blocking option is opted.

