Robotics - Single view, Epipolar geometry, Image Features

Simone Ceriani

ceriani@elet.polimi.it

Dipartimento di Elettronica e Informazione
Politecnico di Milano

12 April 2012

Outline

(1) Pin Hole Model
(2) Distortion
(3) Camera Calibration
(4) Two views geometry
(5) Image features
(6) Edge, corners
(7) Exercise

Outline

(1) Pin Hole ModelDistortionCamera CalibrationTwo views geonImage featufesEdge, cornersExercise

Pin hole model - Recall

PROJECTION

THE INTRINSIC CAMERA MATRIX

or calibration matrix
$\mathbf{K}=\left[\begin{array}{ccc}f_{x} & s & \mathbf{c}_{x} \\ 0 & f_{y} & \mathbf{c}_{y} \\ 0 & 0 & 1\end{array}\right]$

- f_{x}, f_{y} : focal lenght (in pixels) $f_{x} / f_{y}=s_{x} / s_{y}=a$: aspect ratio
- s : skew factor
pixel not orthogonal usually 0 in modern cameras
- $\mathbf{c}_{x}, \mathbf{c}_{y}$: principal point (in pixel) usually \neq half image size due to misalignment of CCD

$$
\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{K} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right]
$$

$$
\left[\begin{array}{c}
u \\
v
\end{array}\right]=\left[\begin{array}{c}
\frac{f_{x} X}{Z}+\mathbf{c}_{x} \\
\frac{f_{y} Y}{Z}+\mathbf{c}_{y}
\end{array}\right]
$$

Points in the world

Consider

- $\mathbf{p}^{\left({ }^{\prime}\right)}=\left[\begin{array}{cccc}f_{x} & s & \mathbf{c}_{x} & 0 \\ 0 & f_{y} & \mathbf{c}_{y} & 0 \\ 0 & 0 & 1 & 0\end{array}\right] \mathbf{P}^{(0)}$
- $\mathbf{P}^{(0)}=\mathbf{T}_{o w}^{(O)} \mathbf{P}^{(w)}$
extrinsic camera matrix
One step
- $\mathbf{p}^{\left(\mathbf{1}^{\prime}\right)}=\left[\begin{array}{ll}\mathbf{K} & \mathbf{0}\end{array}\right]\left[\begin{array}{ll}\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right] \mathbf{P}^{(W)}$
- $\pi=\left[\begin{array}{ll}\mathrm{KR} & \mathrm{Kt}\end{array}\right]$ complete projection matrix

Note

- \mathbf{R} is $\mathbf{R}_{o W}^{(O)}$
- \mathbf{t} is $\mathbf{t}_{O W}^{(O)}$
- i.e., the position and orientation of W in O

CAMERA REFERENCE SYSTEM

- z: front
- y : down

WORLD REFERENCE SYSTEM

- x : front
- z: up

Rotation of O w.R.T. W

- Rotate around y of 90°
z^{\prime} front
- Rotate around z^{\prime} of -90°
$y^{\prime \prime}$ point down
- $\mathbf{R}_{W O}^{(W)}=\mathbf{R}_{y}\left(90^{\circ}\right) \mathbf{R}_{z}\left(-90^{\circ}\right)$
- $\mathbf{R}_{W O}^{(W)}=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=$

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

- $\mathbf{R}_{O W}^{(O)}=\mathbf{R}_{W O}^{(W)^{T}}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0\end{array}\right]$

Calculate $\mathbf{I}_{P_{o}}$

- 3D lines not coded in 3D remember duality points \leftrightarrow planes
- $\mathbf{p}^{\left(\mathbf{I}^{\prime}\right)}=\left[\begin{array}{ll}\mathbf{K} & \mathbf{0}\end{array}\right] \mathbf{P}^{(0)}$
- $\mathbf{p}^{\left(\mathbf{I}^{\prime}\right)}=\left[\begin{array}{ll}\mathbf{K} & \mathbf{0}\end{array}\right][X, Y, Z, W]^{T}$
- $\mathbf{p}^{\left(\mathbf{(}^{\prime}\right)}=\mathbf{K}[X, Y, Z]^{T}$
W "cancelled" by zeros fourth column
- $\mathbf{d}^{(\mathbf{0})}=\mathbf{K}^{-1}[u, v, 1]^{T}$
- $\overline{\mathbf{d}}^{(\mathbf{0})}=\mathbf{d}^{(\mathbf{0})} /\left\|\mathbf{d}^{(\mathbf{0})}\right\|$: unit vector

CALCULATE $\mathbf{P}^{(0)}$?

- No, only $\mathbf{I}_{P_{o}}$: interpretation line
- $\forall \mathbf{P}_{i}^{(O)} \in \mathbf{I}_{P_{0}}$ image is $\mathbf{p}^{(\mathbf{I})}$
- $\mathbf{P}_{i}^{(\mathbf{0})}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]+\lambda\left[\begin{array}{c}\overline{\mathbf{d}}^{(\mathbf{0})} \\ 0\end{array}\right], \lambda>0$
$\mathbf{I}_{\text {Po }}$ in parametric form

Interpretation line direction

- $\mathbf{d}^{(\mathbf{0})}=\mathbf{K}^{-1}[u, v, 1]^{T}$
- $\mathbf{K}^{-1}=\left[\begin{array}{cccc}1 / f_{x} & 0 & -\mathbf{c}_{x} / f_{x} & 0 \\ 0 & 1 / f_{y} & -\mathbf{c}_{y} / f_{y} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
assume skew $=0$
- $\mathbf{d}^{(\mathbf{0})}=\left[\frac{u-\mathbf{c}_{x}}{f_{x}}, \frac{v-\mathbf{c}_{y}}{f_{y}}, 1\right]^{T}$
- $\mathbf{P}_{\lambda=\left\|\mathbf{d}^{(0)}\right\|}^{(\mathbf{0})}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}\mathbf{d}^{(\mathbf{0})} \\ 0\end{array}\right]$ lies on π_{N}
- If $u=\mathbf{c}_{x}, v=\mathbf{c}_{y}, \mathbf{d}$ is the principal direction

Normalized image plane

- Distance 1 from the optical center
- Independent of camera intrinsic

Given a cartesian point $\mathbf{P}^{(O)}=[X, Y, Z]^{T}$

$$
\mathbf{P}_{\pi_{N}}^{(O)}=[X / Z, Y / Z, 1]^{T}
$$

Interpretation line in the world - 1

CONSIDER

- Interpretation line in camera coordinate

$$
\mathbf{P}_{i}^{(\mathbf{0})}=\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]+\lambda\left[\begin{array}{c}
\overline{\mathbf{d}}^{(\mathbf{0})} \\
0
\end{array}\right]
$$

- Interpretation line in world coordinate

$$
\begin{aligned}
\mathbf{P}_{i}^{(\mathbf{w})} & =\left[\begin{array}{cc}
\mathbf{R}_{O W}^{(O)^{T}} & -\mathbf{R}_{O W}^{(O)^{T}} \mathbf{t}_{O W}^{(O)} \\
\mathbf{0} & 1
\end{array}\right]\left(\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]+\lambda\left[\begin{array}{c}
\overline{\mathbf{d}}^{(\mathbf{0})} \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\mathbf{R}_{O W}^{(O)^{T}} \mathbf{t}_{O W}^{(O)} \\
1
\end{array}\right]+\left[\begin{array}{c}
\lambda \mathbf{R}_{O W}^{(O)^{T}} \overline{\mathbf{d}}^{(\mathbf{0})} \\
0
\end{array}\right] \\
& =\mathbf{0}^{(W)}+\lambda \overline{\mathbf{d}}^{(\mathbf{W})}
\end{aligned}
$$

- Camera center in world coordinate + direction rotated as world reference

Interpretation line in the world - 2

CONSIDER

- Interpretation line in world coordinate

$$
\begin{aligned}
\mathbf{P}_{i}^{(\mathbf{w})} & =\lambda \mathbf{R}_{O W}^{(O)^{T}} \overline{\mathbf{d}}^{(\mathbf{0})}-\mathbf{R}_{O W}^{(O)^{T}} \mathbf{t}_{O W}^{(O)} \\
& =\lambda \mathbf{R}_{O W}^{(O)^{T}} \mathbf{K}^{-1}\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]-\mathbf{R}_{O W}^{(O)^{T}} \mathbf{t}_{O W}^{(O)}
\end{aligned}
$$

- Complete projection matrix

$$
\boldsymbol{\pi}=\left[\begin{array}{ll}
\mathbf{K R}_{O W}^{(O)} & \mathbf{K t}_{O W}^{(O)}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{M} & \mathbf{m}
\end{array}\right]
$$

- $-\mathbf{M}^{-1} \mathbf{m}=-\mathbf{R}_{O W}^{(O)^{T}} \mathbf{K}^{-1} \mathbf{K} \mathbf{t}_{O W}^{(O)}=-\mathbf{R}_{O W}^{(O)^{T}} \mathbf{t}_{O W}^{(O)}=\mathbf{t}_{W O}^{(W)}$:
camera center in world coordinate $\mathbf{O}^{(W)}$

Principal ray

Interpretation line of principal point

- $\mathbf{d}^{(\mathbf{0})}=\mathbf{K}^{-1}\left[\begin{array}{c}\mathbf{c}_{x} \\ \mathbf{c}_{y} \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
z-axis of the camera reference system
- $\mathbf{d}^{(\mathbf{w})}=\mathbf{R}_{O W}^{(O)^{T}}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{c}\mathbf{c}_{x} \\ \mathbf{c}_{y} \\ 1\end{array}\right]$
z-axis of the camera in world reference system
- $\mathbf{P}_{i}^{(\mathbf{W})}=\lambda \mathbf{M}^{-1}\left[\begin{array}{c}\mathbf{c}_{x} \\ \mathbf{c}_{y} \\ 1\end{array}\right]-\mathbf{M}^{-1} \mathbf{m}$
parametric line of z-axis of the camera in world reference system

Vanishing points

- $\mathbf{V}_{x}^{(\mathrm{w})}=[1,0,0,0]^{\top}$
- $\mathbf{V}_{y}^{(\mathbf{w})}=[0,1,0,0]^{\top}$
- $\mathbf{V}^{(\mathbf{W})}=[0,0,1,0]^{\top}$

Projection on the image

- $\mathbf{p}^{\left(\mathbf{1}^{\prime}\right)}=\left[\begin{array}{ll}\mathbf{M} & \mathbf{m}\end{array}\right]\left[\begin{array}{l}\mathbf{d} \\ 0\end{array}\right]=\mathbf{M d}$
- $\mathbf{p}_{x}^{\left({ }^{(1)}\right)}=\left[\begin{array}{ll}\mathbf{M} & \mathbf{m}\end{array}\right] \mathbf{V}_{x}^{(\mathbf{W})}=\mathbf{M}^{(1)}$
- $\mathbf{p}_{x}^{\left({ }^{(\prime)}\right)}=\left[\begin{array}{ll}\mathbf{M} & \mathbf{m}\end{array}\right] \mathbf{V}_{y}^{(\mathbf{w})}=\mathbf{M}^{(2)}$
- $\mathbf{p}_{z}^{\left(\mathbf{I}^{\prime}\right)}=\left[\begin{array}{ll}\mathbf{M} & \mathbf{m}\end{array}\right] \mathbf{V}_{\mathrm{z}}^{(\mathbf{w})}=\mathbf{M}^{(3)}$

ORIGIN

$$
\text { - } \mathbf{O}^{(\mathbf{w})}=[0,0,0,1]^{\top}
$$

Projection on the image

$$
\text { - } \mathbf{p}^{\left(\mathbf{l}^{\prime}\right)}=\left[\begin{array}{ll}
\mathbf{M} & \mathbf{m}
\end{array}\right]\left[\begin{array}{l}
\mathbf{0} \\
1
\end{array}\right]=\mathbf{m}
$$

Note

- Col 1 of π is image of x vanishing point
- Col 2 of π is image of y vanishing point
- Col 3 of π is image of w vanishing point
- Col 4 of π is image of $\mathbf{O}^{(W)}$

Angle of View

Given

- Image size: $[w, h]$
- Focal lenght: f_{x} (assume $f_{x}=f_{y}$)

Angle of view

- $\theta=2 \operatorname{atan} 2\left(w / 2, f_{x}\right)$
- $\theta<180^{\circ}$

EXAMPLES

14 mm

28 mm

20 mm

35 mm

50 mm

From past exam

Ex. 4-20 November 2006

Problem

- Given $\pi=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 3 & 1 & 0 & 4 \\ 1 & 2 & 3 & 1\end{array}\right]$
- Where is the camera center in world reference frame?

SOLUTION

- $\boldsymbol{\pi}=\left[\begin{array}{ll}\mathrm{M} & \mathbf{m}\end{array}\right]$
- $\mathbf{O}^{(W)}=-\mathbf{M}^{-1} \mathbf{m}$
- $\mathbf{M}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -3 & 1 & 0 \\ 5 / 3 & -2 / 3 & 1 / 3\end{array}\right]$
- $\mathbf{O}^{(W)}=\left[\begin{array}{l}-1 \\ -1 \\ 2 / 3\end{array}\right]$

Outline

(2) DistortionCamera CalibrationTwo views geonImage featuresEdge, cornersExercise

Distortion

DIStORTION

- Deviation from rectilinear projection
- Lines in scene don't remains lines in image

ORIGINAL IMAGE

CORRECTED

Distortion

DISTORTION

- Can be irregular
- Most common is radial (radially symmetric)

Radial Distortion

BARREL DISTORTION

Magnification decrease with distance from optical axis

PINCUSHION DISTORTION

Magnification increase with distance from optical axis

CONSIDER

- $\mathbf{P}^{(O)}=[X, Y, Z]^{T}$ in camera reference system
- Calculate $\mathbf{p}^{(1)}=[x, y, 1]^{T}=[X / Z, Y / Z, 1]^{T}$ on the normalized image plane DISTORTION MODEL
- $\tilde{\mathbf{p}}^{(1)}=\left(1+\mathbf{k}_{1} r^{2}+\mathbf{k}_{2} r^{4}+\mathbf{k}_{3} r^{6}\right) \mathbf{p}^{(1)}+d_{x}$
- $r^{2}=x^{2}+y^{2}$: distance wrt optical axis $(0,0)$
- $d_{x}=\left[\begin{array}{l}2 p_{1} x y+p_{2}\left(r^{2}+2 x^{2}\right) \\ p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x y\end{array}\right]:$ tangential distortion compensation

ImAGE COORDINATE

- $\tilde{\mathbf{p}}^{\left({ }^{(\prime)}\right.}=\mathbf{K} \tilde{\mathbf{p}}^{(1)}$: pixel coordinate of $\mathbf{P}^{(O)}$ considering distortion

Brown distortion model

From image points

- $\tilde{\mathbf{p}}^{\left(I^{\prime}\right)}$ in image (pixel)
- Calculate $\tilde{\mathbf{p}}^{(1)}=\mathbf{K}^{-1} \tilde{\mathbf{p}}^{\left({ }^{\prime}\right)}=[x, y, 1]^{T}$ on the (distorted) normalized image plane
- Undistort: $\mathbf{p}^{(1)}=\operatorname{dist}^{-1}\left(\tilde{\mathbf{p}}^{(1)}\right)$
- Image projection: $\mathbf{p}^{\left(\mathbf{I}^{\prime}\right)}=\mathbf{K} \mathbf{p}^{(\mathbf{1})}$

$\underline{E v A L U A T I O N ~ O F ~}$ dist $^{-1}(\cdot)$

- No analytic solution
- Iterative solution ($N=20$ is enough):

1: $\mathbf{p}^{(1)}=\tilde{\mathbf{p}}^{(1)}$: initial guess
2: for $i=1$ to N do
3: $\quad r^{2}=x^{2}+y^{2}, k_{r}=\left(1+\mathbf{k}_{1} r^{2}+\mathbf{k}_{2} r^{4}+\mathbf{k}_{3} r^{6}\right), d_{x}=\left[\begin{array}{l}2 p_{1} x y+p_{2}\left(r^{2}+2 x^{2}\right) \\ p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x y\end{array}\right]$
4: $\quad \mathbf{p}^{(1)}=\left(\tilde{\mathbf{p}}^{(1)}-d_{x}\right) / k_{r}$
5: end for

Outline

(3) Camera CalibrationTwo views geopImage featuresEdge, cornersExercise

Camera calibration

INTRINSIC CALIBRATION

- Find parameters of \mathbf{K}
- Nominal values of optics are not suitable
- Differences between different exemplar of same camera/optic system
- Include distortion coefficient estimation

ExTRINSIC CALIBRATION

- Find parameters of $\pi=\left[\begin{array}{ll}\mathrm{M} & \mathbf{m}\end{array}\right]$
- i.e., find \mathbf{K} and \mathbf{R}, \mathbf{t}

Camera calibration - Approaches

Calibration

- Very large literature!
- Different approaches

Known 3D pattern

Methods

- Based on correspondances
- Need for a pattern

> Planar Pattern

Camera calibration - Formulation

FORMULATION

- \mathbf{M}_{i} : model points on the pattern
- $\mathbf{p}_{i j}$: observation of model point i in image j
- $\mathbf{p}=\left[f_{x}, f_{y}, s, \cdots k_{1}, k_{2}, \cdots\right]^{T}$: intrinsic parameters
- $\mathbf{R}_{j}, \mathbf{t}_{j}$: pose of the patter wrt camera reference frame j

$$
\text { i.e., } \mathbf{R}_{C P_{j}}^{(C)}, \mathbf{t}_{C P_{j}}^{(C)}
$$

- $\hat{\mathbf{m}}\left(\mathbf{p}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{M}_{i}\right)$: estimated projection of \mathbf{M}_{i} in image j.

Estimation

- $\underset{\mathbf{p}, \mathbf{R}_{j}, \mathbf{t}_{j}}{\operatorname{argmin}} \sum_{j} \sum_{i} \mathbf{p}_{i j}-\mathbf{m}_{i j}\left(\mathbf{p}, \mathbf{R}_{j}, \mathbf{t}_{j}, \mathbf{M}_{i}\right)$: observation of model point i in image j $\mathbf{p}, \mathrm{R}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}}$
- Gives both intrinsic (unique) and extrinsic (one for each image) calibration
Z. Zhang, "A flexible new technique for camera calibration", 2000

Heikkila, Silvén, "A Four-step Camera Calibration Procedure with Implicit Image Correction", 1997

Camera Calibration Toolbox for Matlab

Collect images

AUTOMATIC CORNERS IDENTIFICATION

Find chessboard external corners

CALIBRATION

Camera Calibration Toolbox for Matlab - http://www.vision.caltech.edu/bouguetj/calib_doc/

Outline

Pin Hole Model2 DistortionCamera Calibration
(4) Two views geometryImage featuresEdge, cornersExercise

Epipolar geometry introduction

Epipolar geometry

- Projective geometry between two views
- Independent of scene structure
- Depends only on
- Cameras parameters
- Cameras relative position
- Two views
- Simultaneously (stereo)
- Sequentially (moving camera)

Bumblebee camera

Robot head with two cameras

Correspondence

CONSIDER

- \mathbf{P} a 3D point in the scene
- Two cameras with π and π^{\prime}
- $\mathbf{p}=\boldsymbol{\pi} \mathbf{P}$ image on first camera
- $\mathbf{p}^{\prime}=\boldsymbol{\pi}^{\prime} \mathbf{P}$ image on second camera
- \mathbf{p} and \mathbf{p}^{\prime} : images of the same point
\rightarrow correspondence

CORRESPONDENCE GEOMETRY

- p on first image
- How \mathbf{p}^{\prime} is constrained by \mathbf{p} ?

Correspondences and epipolar geometry

SUPPose (1)

- P, a 3D point imaged in two views
- \mathbf{p}_{L} and \mathbf{p}_{R} image of \mathbf{P}
- $\mathbf{P}, \mathbf{p}_{L}, \mathbf{p}_{R}, O_{L}, O_{R}$ are coplanar on π
- π is the epipolar plane

Suppose (2)

- \mathbf{P} is unknown
- \mathbf{p}_{L} is known
- Where is \mathbf{p}_{R} ?
or how is constrained \mathbf{p}_{R} ?
- $\mathbf{P}_{i}=O_{L}+\lambda \mathbf{d}_{\mathbf{p}_{L} O_{L}}$ is the interpretation line of \mathbf{p}_{L}
- \mathbf{p}_{R} lies on a line:
intersection of π with the $2^{\text {nd }}$ image
\rightarrow epipolar line

Epipolar geometry - Definitions

BASE LINE

- Line joining O_{L} and O_{R}
$\underline{\operatorname{EPIPOLES}\left(\mathbf{e}_{L}, \mathbf{e}_{R}\right)}$
- Intersection of base line with image planes
- Projection of camera centres on images
- Intersection of all epipolar lines

Epipolar Line

- Intersection of epipolar plane with image plane

Epipolar PLANE

- A plane containing the baseline
- It's a pencil of planes
- Given an epipolar line is possible to identify a unique epipolar plane

Epipolar constraints

Correspondences problem

- Given \mathbf{p}_{L} in one image
- Search on second image along the epipolar line
- 1D search!
- A point in one image "generates" a line in the second image

CORRESPONDENCES EXAMPLE

The fundamental matrix F

EPIPOLAR GEOMETRY

- Given \mathbf{p}_{L} on one image
- \mathbf{p}_{R} lies on \mathbf{I}_{R}, i.e. the epipolar line
- $\mathbf{p}_{R} \in \mathbf{I}_{R} \leftrightarrow \mathbf{p}_{R}^{T} \mathbf{I}_{R}=0$
- Thus, there is a map $\mathbf{p}_{L} \rightarrow \mathbf{I}_{R}$

The fundamental matrix \mathbf{F}

- $\mathbf{I}_{R}=\mathbf{F} \mathbf{p}_{L}$
- \mathbf{F} is the fundamental matrix
- $\mathbf{p}_{R} \in \mathbf{I}_{R} \leftrightarrow \mathbf{p}_{R}^{T} \mathbf{F} \mathbf{p}_{L}=0$

The fundamental matrix \mathbf{F} properties

Properties

- If \mathbf{p}_{L} correspond to $\mathbf{p}_{R} \rightarrow \mathbf{p}_{L} \mathbf{F} \mathbf{p}_{R}=0$, necessary condition for correspondence
- If $\mathbf{p}_{L} \mathbf{F} \mathbf{p}_{R}=0$ interpretation lines (a.k.a. viewing ray) are coplanar
- \mathbf{F} is a 3×3 matrix
- $\operatorname{det}(\mathbf{F})=0$
- $\operatorname{rank}(\mathbf{F})=2$
- \mathbf{F} has 7 dof (1 homogeneous, 1 rank deficient)
- $\mathbf{I}_{R}=\mathbf{F} \mathbf{p}_{L}, \mathbf{I}_{L}=\mathbf{F}^{T} \mathbf{p}_{R}$
- $\mathbf{F e}_{L}=0, \mathbf{F}^{T} \mathbf{e}_{R}=0$, i.e.: epipoles are the right null vector of \mathbf{F} and \mathbf{F}^{T}

Proof: $\forall \mathbf{p}_{L} \neq \mathbf{e}_{L}, \quad \mathbf{I}_{R}=\mathbf{F} \mathbf{p}_{L}$ and $\mathbf{e}_{R} \in \mathbf{I}_{R} \rightarrow \forall \mathbf{p}_{L} \quad \mathbf{e}_{R}^{T} \mathbf{F} \mathbf{p}_{L}=0 \rightarrow \mathbf{F}^{T} \mathbf{e}_{R}=0$

F calculus

From calibrated cameras

- π_{L} and π_{R} are known
- $\mathbf{F}=\left[\mathbf{e}_{R}\right]_{\times} \boldsymbol{\pi}_{R} \boldsymbol{\pi}_{L}^{+}$ where
- $\mathbf{e}_{R}=\boldsymbol{\pi}_{R} \mathbf{O}_{L}=\boldsymbol{\pi}_{R}\left(-\mathbf{M}_{L}^{-1} \mathbf{m}_{L}\right)$
- $\pi_{L}^{+}=\pi_{L}^{T}\left(\pi_{L} \pi_{L}^{T}\right)^{-1}$: pseudo-inverse
- $\mathbf{a} \times \mathbf{b}=[\mathbf{a}]_{\times} \mathbf{b}$ where $[\mathbf{a}]_{\times}=\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]$

Calibrated cameras with \mathbf{K} and \mathbf{R}, \mathbf{t}

- $\boldsymbol{\pi}_{L}=\mathbf{K}_{L}\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$: origin in the left camera
- $\boldsymbol{\pi}_{R}=\mathbf{K}_{R}\left[\begin{array}{ll}\mathbf{R} & \mathbf{t}\end{array}\right]$
- $\mathbf{F}=\mathbf{K}_{R}^{-T}[\mathbf{t}]_{\times} \mathbf{R} \mathbf{K}_{L}^{-1}$
- Special forms with pure translations, pure rotations, ...

F estimation - procedure sketch

From uncalibrated images

- Get point correspondances ("by hand" or automatically)
- Compute \mathbf{F} by consider that
- $\mathbf{p}_{R}^{T} \mathbf{F p}_{L}=0$
- At least 7 correspondances are needed
but the 8 -point algorithm is the simplest
- Impose $\operatorname{rank}(\mathbf{F})=2$

Details

"Multiple View Geometry in computer vision"
Hartley Zisserman. Chapters 9,10,11,12.

Projective reconstruction

F IS NOT UNIQUE

- If estimated by correspondences
- Without any additional constraints allow at least a projective reconstruction

Metric reconstruction and reconstruction

ADDITIONAL CONSTRAINTS

- Parallelism, measures of some points, ...
- \rightarrow allow affine/similar/metric reconstruction

Triangulation

SUPPOSE

- \mathbf{p}_{R} and \mathbf{p}_{L} are correspondent points
- π_{L} and π_{R} are known
- Due to noise is possible that interpretation lines don't intersect
- $\mathbf{p}_{L} \mathbf{F p}_{R} \neq 0$

3D POINT COMPUTATION

- $\underset{\operatorname{argmin}}{ } d\left(\hat{\mathbf{p}}_{L}, \mathbf{p}_{L}\right)^{2}+d\left(\hat{\mathbf{p}}_{R}, \mathbf{p}_{R}\right)^{2}$ $\hat{\mathbf{p}}_{L}, \hat{\mathbf{p}}_{R}$
- subject to $\hat{\mathbf{p}}_{L} \mathbf{F} \hat{\mathbf{p}}_{R}=0$

Outline

Pin Hole ModelDistortionCamera Calibration(5) Image features
(6) Edge, cornersExercise

Features in image

What is a feature?

- No common definition
- Depends on problem or application
- Is an interesting part of the image

Types of features

- Edges
- Boundary between regions
- Corners / interest points
- Edge intersection
- Corners
- Point-like features
- Blobs
- Smooth areas that define regions

Edges

Corners

Blob

Black \& White threshold

Thresholding

- On a gray scale image $I(u, v)$
- If $I(u, v)>T \quad I^{\prime}(u, v)=$ white
- else $I^{\prime}(u, v)=$ black

PROPERTIES

- Simplest method of image segmentation
- Critical point: threshold T value
- Mean value of $I(u, v)$
- Median value of $I(u, v)$
- (Local) adaptive thresholding

Filtering

KERNEL MATRIX FILTERING

- Given an image $I(i, j), i=1 \cdots h, j=1 \cdots w$
- A kernel $H(k, z), k=1 \cdots r, z=1 \cdots c$
- $I^{\prime}(i, j)=\sum_{k} \sum_{z} I(i-\lfloor r / 2\rfloor+k-1, j-\lfloor c / 2\rfloor+z-1) * H(k, z)$
- special cases on borders

$I(i, j)$				
2	2	2	3	
2	1	3	3	
2	2	1	2	
1	3	2	2	

$H(k, z)$

1	1	1
-1	2	1
-1	-1	1

FinAL RESULT

2	2	2	3
-2	2	3	3
-2	-2	1	2
1	3	2	2

$I^{\prime}(2,2)$			
5	4	4	-2
9	6		

5	4	4	-2
9	6	14	5
11	7	6	5
9	12	8	5

Filter Examples - 1

IDENTITY

Translation

Filter Examples - 2

$\underline{\text { Average }(5 \times 5)}$

Filter Examples - 3

$$
\text { GAUSSIAN }-\sim N(0, \sigma)
$$

GaUssian vs Average

Smoothing

Generally expect

- Pixels to "be like" neighbours
- Noise independent from pixel to pixel

IMPLIES

- Smoothing suppress noises
- Appropriate noise model (?)
$\sigma=0.05$

$\sigma=0.1$

Image Gradient - 1
$\underline{\text { Horizontal Derivatives }\left(\nabla I_{x}\right)}$

$*$| 1 | 0 | -1 |
| :--- | :--- | :--- |
| 1 | 0 | -1 |
| 1 | 0 | -1 |$=$

Image Gradient - 2

VERTICAL DERIVATIVES $\left(\nabla I_{y}\right)$

$*$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| -1 | -1 | -1 |$=$

Rough edge detector

$$
\underline{\nabla I_{x}^{2}+\nabla I_{y}^{2}}
$$

then apply threshold...

Outline

Pin Hole ModelDistortion

Camera CalibrationTwo views geonImage features

6 Edge, cornersExercise

Canny Edge Detector

Criterion

- Good detection: minimize probability of false positive and false negatives
- Good localization: Edges as closest as possible to the true edge
- Single response: Only one point for each edge point (thick $=1$)

PROCEDURE

- Smooth by Gaussian $(S=I * G(\sigma))$
- Compute derivatives $\left(\nabla S_{x}, \nabla S_{y}\right)$

Alternative in one step: Filter with derivative of Gaussian

- Compute magnitude and orientation of gradient

$$
\left(\left\|\nabla S_{x}\right\|=\sqrt{\nabla S_{x}^{2}+\nabla S_{y}^{2}}, \theta_{\nabla S}=\operatorname{atan} 2 \nabla S_{y}, \nabla S_{x}\right)
$$

- Non maxima suppression

Search for local maximum in the gradient direction $\theta_{\nabla S}$

- Hysteresis threshold

Weak edges (between the two thresholds) are edges
if connected to strong edges (greater than high threshold)

Canny Edge Detector - Non Maxima Suppression

Non Maxima Suppression

ExAMPLE

Original image

Non-maxima
suppressed

Canny Edge Detector - Hysteresis threshold

Hysteresis threshold example

Lines from edges
How to find lines?

- Hough Transformation after Canny edges extraction
- Use a voting procedure
- Generally find imperfect instances of a shape class
- Classical Hough Transform for lines detection
- Later extended to other shapes (most common: circles, ellipses)

Corners - Harris and Shi Tomasi

EdGE INTERSECTION

- At intersection point gradient is ill defined
- Around intersection point gradient changes in "all" directions
- It is a "good feature to track"

CORNER DETECTOR

- Examine gradient over window - $C=\sum \sum_{w}\left[\begin{array}{cc}\nabla I_{x}^{2} & \nabla I_{x} \nabla I_{y} \\ \nabla I_{x} \nabla I_{y} & \nabla I_{y}^{2}\end{array}\right]$
- Shi-Tomasi: corner if min eigenvalue $(C)>T$
- Harris: approximation of eigenvalues

Template matching - Patch

Filtering with a template

- Correlation between template (patch) and image
- Maximum where template matches
- Alternatives with normalizations for
 illumination compensation, etc.

Good features

- On corners: higher repeatability (homogeneous zone and edges are not distinctive)

Template matching - SIFT

Template matching issues

- Rotations
- Scale change

SIFT

- Scale Invariant Feature Transform
- Alternatives descriptor to patch
- Performs orientation and scale normalization
- See also SURF (Speeded Up Robust Feature)

SIFT EXAMPLE

D. Lowe - "Object recognition from local scale-invariant features" - 1999

Outline

Pin Hole ModelDistortionCamera CalibrationTwo views geonImage featuresEdge, corners(7) Exercise

Camera matrix - 1

Given

- $\mathbf{P}=\left[\begin{array}{cccc}122.5671 & -320.0000 & -102.8460 & 587.3835 \\ -113.7667 & 0.0000 & -322.2687 & 350.6050 \\ 0.7660 & 0 & -0.6428 & 4.6711\end{array}\right]$
- $f_{x}=f_{y}=320$
- $c_{x}=160$
- $c_{y}=120$

QUESTIONS

- Where is the camera in the world?
- Compute the coordinate of the vanishing point of x, y plane in the image
- Where is the origin of the world in the image?
- Write the parametric 3D line of the principal axis in world coordinates

Camera matrix - 2

Where is the camera in the world?

- $\mathbf{P}=\left[\begin{array}{ll}\mathrm{KR} & \mathrm{Kt}\end{array}\right]$
- $\mathbf{K}=\left[\begin{array}{lllllll}320 & 0 & 1600 & 320 & 1200 & 0 & 1\end{array}\right]$
- $\mathbf{R}=\mathbf{K}^{-1} \mathbf{P}(1: 3,1: 3)$
- $\mathbf{t}=\mathbf{K}^{-1} \mathbf{P}(1: 3,4)$
- $\mathbf{T}_{W C}^{(W)}=\left[\begin{array}{ll}\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1\end{array}\right]^{-1}$

P contains the world wrt camera

- Camera is at $[-4,-0.5,2.5]$
- Rotation around axis x, y, z is $\left[-130^{\circ}, 0.0^{\circ},-90^{\circ}\right]$
- To be more clear, remove the rotation of camera reference frame
- $\mathbf{T}_{W C}^{(W)} \mathbf{R}_{z}\left(90^{\circ}\right), \mathbf{R}_{y}\left(-90^{\circ}\right)$ rotation around axis x, y, z is $\left[0^{\circ}, 40.0^{\circ}, 0^{\circ}\right]$

Camera matrix - 3

VANISHING POINT OF x, y PLANE IN THE IMAGE

- $\mathbf{v}_{x}=\mathbf{P}[1,0,0,0]^{T} \equiv[160.0,-148.5,1]^{T}$
- $\mathbf{v}_{y}=\mathbf{P}[0,1,0,0]^{T} \equiv[1,0,0]^{T}$ (improper point)
- Remember: they are the $1^{\text {st }}$ and $2^{\text {nd }}$ column of \mathbf{P}

Where is the origin of the world in the image?

- $\mathbf{o}=\mathbf{P}[0,0,0,1]^{T} \equiv[125.75,75.05,1]^{T}$
- Remember: it is the $4^{\text {st }}$ column of \mathbf{P}

PRINCIPAL AXIS IN WORLD COORDINATES

- $\mathbf{P}=\left[\begin{array}{ll}\mathbf{M} & \mathbf{m}\end{array}\right]$
- $\mathbf{O}^{(w)}=-\mathbf{M}^{-1} \mathbf{m}=[-4,-0.5,2.5]^{T}$
- $\mathbf{d}^{(W)}=\mathbf{M}^{-1}\left[c_{x}, c_{y}, 1\right]^{T}=[0.766,0,-0.6428]^{T}$
- $\mathbf{a}^{(W)}=\mathbf{O}^{(W)}+\lambda \mathbf{d}^{(W)}$

Questions

- Where is the intersection between principal axis and the floor?
- Calculate the field of view of the camera (image size is 320×240)
i.e., the portion of the plane imaged by the camera

Camera matrix - 6

Intersection between principal axis and the floor

- $\mathbf{a}^{(W)}=\mathbf{O}^{(W)}+\lambda \mathbf{d}^{(W)}$
- $\mathbf{a}_{z=0}^{(W)}=[X, Y, 0]^{T}$
- $\lambda_{z=0}=-\mathbf{O}_{z}^{(W)} / \mathbf{d}_{z}^{(W)}=3.89$
- $\mathbf{a}_{z=0}^{(W)}=[-1.02,-0.5,0]^{T}$

Field of view (1)

- $\mathbf{a}_{1}^{(W)}=\mathbf{O}^{(W)}+\lambda_{1} \mathbf{M}^{-1}[0,0,1]^{T}$
- $\mathbf{a}_{2}^{(W)}=\mathbf{O}^{(W)}+\lambda_{2} \mathbf{M}^{-1}[320,0,1]^{T}$
- $\mathbf{a}_{3}^{(W)}=\mathbf{O}^{(W)}+\lambda_{3} \mathbf{M}^{-1}[0,240,1]^{T}$
- $\mathbf{a}_{4}^{(W)}=\mathbf{O}^{(W)}+\lambda_{4} \mathbf{M}^{-1}[320,240,1]^{T}$
- calculate λ_{i} such that $\mathbf{a}_{i}^{(W)}$ has $z=0$

Camera matrix - 7

Field of view (2)

- Transformation between plane $z=0$ and image plane is a 2D homography
- Consider $\mathbf{p}_{z=0}=[x, y, 0,1]^{\top}$;
- Projection Pp $_{z=0}$
- Notice that $\mathbf{p}_{z=0}=\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]}_{\mathbf{W}}[x, y, 1]^{\top}$
- $\mathbf{H}=\mathbf{P W}$ is the homography
maps points (x, y) on the $z=0$ plane to the image
- $\mathbf{H}^{\prime}=\mathbf{H}^{-1}$ is the inverse homography
maps image points (u, v) to the $z=0$ plane

Camera matrix - 8

Field of view (2) (Continue)

- $\mathbf{H}=\left[\begin{array}{ccc}122.56 & -320.00 & 587.38 \\ -113.76 & 0.00 & 350.60 \\ 0.76 & 0 & 4.67\end{array}\right]$
- $\mathbf{p}_{1_{z=0}}=\mathbf{H}^{\prime}[0,0,1]^{T}$
- $\mathbf{p}_{2_{z=0}}=\mathbf{H}^{\prime}[320,0,1]^{T}$
- $\mathbf{p}_{3_{z=0}}=\mathbf{H}^{\prime}[0,240,1]^{T}$
- $\mathbf{p}_{4 z=0}=\mathbf{H}^{\prime}[320,240,1]^{T}$

The 3D world with the camera reference system (green), the world reference system (blue), the principal axis (dashed blue) and the Field of view (FoV) (grey)

Questions

- There is a "flat robot" moving on the floor, imaged by the camera
- Two distinct and coloured point are drawn on the robot.

$$
\mathbf{p}_{1}^{(R)}=[-.3,0]^{T}, \mathbf{p}_{2}^{(R)}=[.3,0]^{T}
$$

- Could you calculate the robot position and orientation?

Camera matrix - 10

ROBOT POSE

- Call $\mathbf{p}_{1}^{\prime}, \mathbf{p}_{2}^{\prime}$ the points in the image
- $\mathbf{p}_{1_{z=0}}=\mathbf{H}^{\prime} \mathbf{p}_{1}^{\prime}$
- $\mathbf{p}_{2 z=0}=\mathbf{H}^{\prime} \mathbf{p}_{2}^{\prime}$
- Position: $\frac{1}{2}\left(\mathbf{p}_{1_{z=0}}+\mathbf{p}_{2_{z=0}}\right)$
- $\mathbf{d}=\mathbf{p}_{2_{z=0}}-\mathbf{p}_{1_{z=0}}$
- Orientation: atan2 $\left(\mathbf{d}_{y}, \mathbf{d}_{x}\right)$

A complete execution with a robot trajectory depicted in the world (top) and in the image (bottom)

Camera matrix - 11

A complete execution with a robot trajectory depicted in the world (top) and in the image (bottom). A Square is drawn on the floor to check correctness of the calculated vanishing point \times (see previous questions)

