
POLITECNICO DI MILANO
Corso di Laurea MAGISTRALE in Ingegneria Informatica
Dipartimento di Elettronica, Informazione e Bioingegneria

A LIGHTWEIGHT OPEN-SOURCE
COMMUNICATION FRAMEWORK
FOR NATIVE INTEGRATION OF

RESOURCE-CONSTRAINED
ROBOTICS DEVICES WITH ROS

AI & R Lab
Laboratorio di Intelligenza Artificiale
e Robotica del Politecnico di Milano

Relatore: Prof. Andrea BONARINI
Correlatore: Ing. Martino MIGLIAVACCA

Tesi di Laurea di:
Andrea ZOPPI, matricola 765662

Anno Accademico 2011-2012

A chi mi supporta e mi sopporta

Contents

Abstract XI

Sommario XIII

Ringraziamenti XV

1 Introduction 1

2 State of the art 7
2.1 The need for rapid-prototyping frameworks 7
2.2 Robot Operating System . 8

2.2.1 Architecture . 8
2.2.2 Development process . 10

2.3 Open Robot Control Software 10
2.3.1 Architecture . 11
2.3.2 Development process . 12

2.4 Lightweight Communications and Marshaling 12
2.4.1 Architecture . 13
2.4.2 Development process . 14

2.5 Rapid Robot Prototyping . 14
2.5.1 Architecture . 15
2.5.2 Development process . 16

2.6 Framework comparison and observations 16

3 Research strategy 19
3.1 Objectives . 19
3.2 Strategy . 21

4 The ROS communications model 25
4.1 Definitions . 25
4.2 Overview . 28
4.3 Remote procedure calls . 29

4.3.1 Roles . 30

I

4.3.2 Value types . 30
4.3.3 Request and response 30

4.4 Connection patterns . 32
4.5 Data streams . 33

4.5.1 Type descriptors . 34
4.5.2 Message structure . 37
4.5.3 Connection header . 38

5 The proposed framework – µROSnode 41
5.1 Implementation choices . 41

5.1.1 Language observations 42
5.1.2 Footprint optimizations 42

5.2 Framework description . 43
5.2.1 Base module . 44
5.2.2 Connectivity module . 46
5.2.3 XML-RPC module . 47
5.2.4 TCPROS module . 48
5.2.5 Node module . 49
5.2.6 Threading module . 50
5.2.7 User module . 50
5.2.8 Message types module 51
5.2.9 Handlers module . 51

5.3 Development tools . 51
5.3.1 Code generator . 51
5.3.2 Static stack analysis . 62
5.3.3 Demonstration projects 64

5.4 Integration with user applications 65

6 Experimental results and evaluation 67
6.1 Benchmarks . 67

6.1.1 Communication setup 68
6.1.2 R2P_GW module . 69
6.1.3 Raspberry Pi . 77

6.2 Case study – Triskar2 . 83
6.2.1 Triskar2 . 83
6.2.2 Software architecture . 85
6.2.3 Observations . 87

7 Conclusions and future research directions 89

Bibliography 91

A ROS-related API documentation 95
A.1 ROS Master API . 95

A.1.1 registerService() . 95
A.1.2 unregisterService() . 96
A.1.3 registerSubscriber() . 96
A.1.4 unregisterSubscriber() 96
A.1.5 registerPublisher() . 97
A.1.6 unregisterPublisher() . 97
A.1.7 lookupNode() . 98
A.1.8 getPublishedTopics() . 98
A.1.9 getTopicTypes() . 98
A.1.10 getSystemState() . 99
A.1.11 getUri() . 99
A.1.12 lookupService() . 99

A.2 ROS Parameter Server API . 100
A.2.1 deleteParam() . 100
A.2.2 setParam() . 100
A.2.3 getParam() . 101
A.2.4 searchParam() . 101
A.2.5 subscribeParam() . 102
A.2.6 unsubscribeParam() . 102
A.2.7 hasParam() . 102
A.2.8 getParamNames() . 103

A.3 ROS Slave API . 103
A.3.1 getBusStats() . 103
A.3.2 getBusInfo() . 103
A.3.3 getMasterUri() . 104
A.3.4 shutdown() . 104
A.3.5 getPid() . 105
A.3.6 getSubscriptions() . 105
A.3.7 getPublications() . 105
A.3.8 paramUpdate() . 105
A.3.9 publisherUpdate() . 106
A.3.10 requestTopic() . 106

A.4 Node API . 107
A.4.1 urosNodePublishTopic() 107
A.4.2 urosNodeUnpublishTopic() 107
A.4.3 urosNodeSubscribeTopic() 108
A.4.4 urosNodeUnsubscribeTopic() 108
A.4.5 urosNodePublishService() 109
A.4.6 urosNodeUnpublishService() 109

A.4.7 urosNodeCallService() 109
A.4.8 urosNodeSubscribeParam() 110
A.4.9 urosNodeUnsubscribeParam() 110
A.4.10 urosNodeResolveTopicPublisher() 111
A.4.11 urosNodeResolveServicePublisher() 111

B Useful listings 113
B.1 Disclaimer . 113
B.2 XML-RPC grammar . 114

B.2.1 Document Type Definition 114
B.2.2 XML Schema . 114

B.3 TCPROS syntax . 116
B.4 Case study . 116

B.4.1 Triskar2 message types 116
B.4.2 Triskar2 teleoperator node 117
B.4.3 Triskar2 urosgen configuration 119
B.4.4 Triskar2 gateway handler routines 119

B.5 Code generator configuration demo 121
B.6 Stack usage analyzer configuration demo 122

List of Figures

2.1 ROS logo . 8
2.2 Conceptual topic flow . 9
2.3 Orocos framework . 11
2.4 Orocos component interface . 12
2.5 lcm-spy screenshot . 14
2.6 TiltOne R2P-based robot . 15

3.1 Legacy ROS versus µROSnode robot designs 22

4.1 Sequence diagram of a getPid() XML-RPC call example 31
4.2 Topic connection summary . 33
4.3 Service call summary . 34
4.4 Message dump . 38
4.5 Service call dump . 38
4.6 Service response dump . 39
4.7 Service error response dump . 39
4.8 Connection header request . 40
4.9 Connection header response . 40

5.1 µROSnode logo . 42
5.2 Logical view of µROSnode modules 44
5.3 Code generator flowchart . 52
5.4 Static stack analysis flowchart 63

6.1 R2P_GW prototype board . 69
6.2 Turtlesim R2P_GW firmware footprint 71
6.3 Transmission performance on R2P_GW, on-the-fly 74
6.4 Reception performance on R2P_GW, buffered messages 75
6.5 Reception performance on R2P_GW, on-the-fly 76
6.6 Raspberry Pi model B . 78
6.7 Transmission performance on RasPi, on-the-fly 80
6.8 Reception performance on RasPi, buffered messages 81
6.9 Reception performance on RasPi, on-the-fly 82

V

6.10 The Triskar2 robot . 84
6.11 Triskar2 kinematics diagram . 84
6.12 Teleoperator devices and connections 85
6.13 Triskar2 topics graph . 87
6.14 Triskar2 teleoperator screenshot 88

List of Tables

2.1 Framework feature comparison 17

4.1 ROS to C type mapping . 37
4.2 Connection header fields . 40

6.1 Turtlesim R2P_GW firmware footprint 70
6.2 Turtlesim stack usages on R2P_GW 72
6.3 Teleoperator user input bindings 87

VII

List of Listings

2.1 LCM message types for path planning 13

4.1 getPid() call . 32
4.2 getPid() response . 32
4.3 Topic message type . 35
4.4 Clean expanded topic message type 35
4.5 ROS service descriptor . 36
4.6 ROS service descriptor . 36

5.1 Message record . 53
5.2 Message length computation . 53
5.3 Message initialization . 54
5.4 Message cleanup . 54
5.5 Message reception and unmarshaling 55
5.6 Message marshaling and transmission 55
5.7 Service records . 57
5.8 Service message length computations 57
5.9 Service message initializations 58
5.10 Service message cleanups . 58
5.11 Service request message reception and unmarshaling 59
5.12 Service response message marshaling and transmission 59
5.13 Type registrations . 59
5.14 Topic publisher handler . 60
5.15 Topic subscriber handler . 60
5.16 Service publisher handler . 61
5.17 Service call handler . 61
5.18 Turtlesim configuration for urosgen.py 65

B.1 Disclaimer . 113
B.2 XML-RPC DTD . 114
B.3 XML-RPC XML Schema . 114
B.4 TCPROS EBNF syntax . 116
B.5 triskar/Velocity message type 116

IX

B.6 triskar/Proximity message type 116
B.7 Triskar2 teleoperator node . 117
B.8 Triskar2 urosgen configuration 119
B.9 Triskar2 velocity publisher handler 119
B.10 Triskar2 proximity subscriber handler 120
B.11 Demo configuration file for urosgen.py 121
B.12 Demo configuration file for urosstan.py 122

Abstract

The ongoing evolution of computing devices, especially of embedded systems,
introduces new opportunities to enhance robotics software.
The goal of this thesis is to develop a rapid prototyping robotics communication
framework which can run on cheap embedded systems, while still having native
compatibility with an existing widespread high-level framework, typically run
on powerful computers.
We created µROSnode, an open source communication framework with small
code and memory footprints, able to run on recent advanced microcontrollers,
and having native compatibility with the popular ROS robotics framework,
which follows the publish/subscribe approach. The developer, often accustomed
to ROS nowadays, can still write high-level software for it, with the non-trivial
capability to interface directly to hardware modules running µROSnode.
The framework is written in ANSI C89, supported by almost all of the compilers
targeting embedded systems, and which can be easily integrated with other
common programming languages. The codebase is partitioned into purpose-
specific modules and extensively documented, to improve ease of use and
maintenance. In order to assist the user in the development of µROSnode-
based software, we developed a code generator and a static stack analysis tool.
We performed some simple benchmarks to determine the maximum transmission
and reception throughput of a topic with variable-sized messages, running on a
Raspberry Pi and a STM32F407 microcontroller (ARM-CM4 core). On both
platforms it was possible to reach several thousands of messages per second
without too much effort if messages are rather small or processed on-the-fly.
We also measured the usage of both program and working memories by a ROS
turtlesim clone, which easily fitted tight resource constraints of the STM32F407.
An existing robot, whose hardware/software architecture was built around a
CAN bus, was interfaced to ROS through an inexpensive CAN-to-Ethernet
gateway running µROSnode on a STM32F407.

XI

Sommario

La continua evoluzione dei dispositivi di calcolo, specialmente dei sistemi em-
bedded, introduce nuove opportunità per migliorare il software per la robotica.
Lo scopo della tesi è di sviluppare un framework di comunicazione robotica per
la prototipazione rapida, che possa funzionare su sistemi embedded economici,
mantenendo compatibilità nativa con uno dei diffusi framework esistenti di
alto livello, che tipicamente funzionano su computer avanzati.
Abbiamo creato µROSnode, un framework di comunicazione open source con
piccola occupazione in memoria, che possa funzionare sugli avanzati microcon-
trollori recenti e con compatibilità nativa con il popolare framework ROS, che
segue l’approccio publish/subscribe. Lo sviluppatore, oggigiorno spesso abituato
al sistema ROS, può continuare a sviluppare software per esso, con la non
banale possibilità di interfacciarsi direttamente a moduli hardware funzionanti
tramite µROSnode.
Il framework è scritto in ANSI C89, supportato pressoché dalla totalità dei
compilatori per sistemi embedded, il quale può essere facilmente integrato
da altri linguaggi di programmazione. Il codice è suddiviso in moduli per
compiti specifici e largamente documentato, per migliorare facilità d’uso e
manutenzione. Al fine di assistere l’utente nello sviluppo di software basato su
µROSnode, abbiamo sviluppato un generatore di codice e uno strumento per
l’analisi statica degli stack.
Abbiamo compiuto dei semplici benchmark per determinare la massima capa-
cità di trasmissione e ricezione di un singolo topic con messaggi a dimensione
variabile, su un Raspberry Pi e un microcontrollore STM32F407 (core ARM-
CM4). Per entrambe le piattaforme è stato possibile raggiungere capacità
di diverse migliaia di messaggi al secondo senza particolari sforzi in caso di
messaggi piccoli o processati al volo.
Abbiamo anche misurato l’occupazione nelle memorie programma e centrale
di un clone del turtlesim di ROS, che ha rispettato agevolmente i severi limiti
dell’STM32F407.
Un robot esistente, la cui architettura hardware/software fu costruita intorno a
un bus CAN, è stato interfacciato a ROS tramite un gateway CAN-a-Ethernet
in cui opera µROSnode su un STM32F407.

XIII

Ringraziamenti

«Dimmi con chi vai e ti dirò chi sei,
e se so di che cosa ti occupi

saprò che cosa puoi diventare»
Johann Wolfgang von Goethe

Questo elaborato di tesi rappresenta solo il culmine della mia carriera scolastica,
mi è doveroso ringraziare chi mi ha permesso di poterla portare a termine con
successo e dedizione, in particolare in questo percorso magistrale.

Vorrei ringraziare innanzitutto il Professor Bonarini, per avermi permesso di
sviluppare il lavoro di tesi in un ambito che mi piace parecchio, ossia quello
dei sistemi embedded applicati alla robotica.
A mio favore anche l’eccellente supporto di Martino, grazie al quale ho final-
mente sviluppato una piccola piattaforma embedded, dal design della scheda
allo sviluppo di un moderno firmware, passando per una miriade di trucchi e
aneddoti.
Un ringraziamento anche ai professori del Politecnico di Milano per la nobile
missione a cui si dedicano.

La compagnia di studio è stata determinante per confrontarsi, comprendere ciò
che sfugge, trovare nuove soluzioni, superare le comuni frustrazioni e compiacersi
dei risultati ottenuti.
Un plauso a Sebastiano, compagno inseparabile in tutto ciò, a cui devo parte
del mio merito; a Stefano per l’approccio serio e razionale; a Daniele e Andrea,
con cui il sorriso e l’entusiasmo non sono mai mancati; a tutti gli altri compagni
e compagne con cui ho condiviso fatiche e gioie in questi anni.

Ma gli omaggi non riguardano solo l’ambiente accademico. Ci sono parecchi
amici che mi hanno supportato, tra cui i temerari compaesani compagni di
avventure: Beppe, Tizio, Nik, Leske, Mile, Marco, Glauco, Mitch, Davide,
Lukus, Andre, Gino, Cangio, Nagia, eccetera eccetera, così come Eddy, Gabriele
e altri amici sparsi per il Mondo.
Grazie anche ai colleghi di Digital Jockey, con cui condivido la passione per

XV

l’audio e le tecnologie digitali: Bazzooka, Cioce, Spazialex, Attica, Rudy,
Maxmora, Animal, Nuwanda, Cybermix, Alessio, Luca, Hackid, MaxB, Gigi,
Franco, per citare coloro che in maggior misura hanno contribuito in qualche
modo anche alla mia preparazione ingegneristica.
Naturalmente anche alle signorine devo molto, specialmente a: Elenina, Giuly,
Ginny, Sandry, Very, Ila, Ele, Vane, Sarah, Lucia. È grazie a donne come voi
che posso dimostrare e migliorare il mio essere Uomo, e non solo "ingegnere".
La vostra presenza è indispensabile!

Un ringraziamento profondo e dovuto va alla mia famiglia. Senza il costante
supporto dei miei genitori non avrei certamente potuto dedicarmi a questa
impresa, che è un punto di arrivo nella mia carriera scolastica quanto un poten-
ziale punto di inizio per un’interessante carriera lavorativa. Una riconoscenza
anche a Vale, quella bella, che da brava sorella mi dispensa ottimi consigli e so
che ci tiene molto.
Ringrazio anche i miei nonni che, avendo vissuto in uno dei secoli più rivoluzionari,
col loro immenso bagaglio di esperienze e di sacrifici hanno spianato la strada
su cui dovrò "ingegnerizzare" i miei. Vi voglio bene.

Chapter 1

Introduction

Robotics research brings to a high degree of innovation. Many new ideas for
future robotics products are conceived every year, targeting a broad range of
fields, and requiring multidisciplinary skills. Therefore, researchers need to
build and evaluate new ideas quickly, without spending too much time in the
development of every subsystem composing the whole robot.
Robots are composed by parts which often belong to a standard set of mechan-
ical, electrical, and software components. While mechatronics parts have been
available for a long time, thus providing well established interfaces, the ongoing
evolution of computing devices, especially of embedded systems, introduces
new opportunities to enhance robotics software.
Several software frameworks were proposed to build robotics communications
systems, artificial intelligence, motion control, and so on, assisting the researcher
in the rapid development of robotics software.

The goal of this thesis is to develop a rapid prototyping robotics communication
framework which can run on cheap embedded systems, while still having native
compatibility with an existing widespread high-level framework, typically
run on powerful computers. This would allow the development of low-cost
hardware modules able to communicate with one of the state-of-the-art, high-
level frameworks, to enhance the rapid-prototyping development cycle on the
low-level side.
We created µROSnode, an open source communication framework with small
code and memory footprints, able to run on the latest microcontrollers, and
having native compatibility with the popular ROS robotics framework. The
framework is written in ANSI C89, supported by almost all of the compilers
targeting embedded systems, and which can be easily integrated with other
common programming languages. The code is partitioned into purpose-specific
modules and extensively documented, to improve ease of use and maintenance.

The choice of a BSD license makes it free software, modifiable by anyone
and employable for commercial products. A code generator and a static stack
analysis tool assist in the development of the user application, so that repetitive
coding is lightened, and the memory usage on resource-constrained platforms
is kept under control. A set of benchmarks prove its good performance on
low-cost embedded systems, and a demonstration project on a real-life robot
was easy to develop.

We first analyzed the requirements for rapid prototyping in the robotics field.
The most intuitive way is to assemble some ready-to-use parts together, and
apply a high-level behavior to them. While mechatronics parts often share
a roughly common interface, robotics software is still under heavy evolution.
However, there are some widely accepted software frameworks which help in
the rapid development of the robotics software.
ROS [22] is the most popular framework nowadays, providing a huge repository
of pre-made software packages, support for both high-performance (C++) and
high-level/scripting (Python, Lisp) languages; communication over XML-RPC,
TCP (TCPROS), and UDP (UDPROS); an automated compilation toolchain
by a strict filesystem structure; compatibility wrappers for many other robotics
frameworks.
Orocos [4] follows strict software engineering rules and development cycle, and
targets realtime robots; its runtime architecture is CORBA-based.
LCM [12] is a lightweight high-performance system for low-latency communi-
cations among processes over UDP.
R2P [2] is a hybrid hardware/software framework to build the robot electronics
out of small and cheap hardware modules, which communicate through a robust
CAN bus, and has support for hard-realtime applications.

The state-of-the-art offers frameworks which are either very good at the software,
communication, or hardware level, but there is no framework which helps
in blending of all of them together. Moreover, high-level robotics software
is usually run on fairly powerful computers, while the hardware is driven
by industrial processors or microcontrollers, which cannot manage a huge
computation load.
That being so, we outlined our research strategy to develop a framework which
can be used to interface high-level robotics software with the hardware. The
framework should have small footprint and simple architecture, so that it can
fit into a microcontroller of nowadays. Since most embedded systems do not
have a compiler toolchain support as advanced as general-purpose computers or
workstations do, the choice for the programming language is limited. There is
mature support only for C and C++ targeting embedded system architectures,
while other languages are experimental or compatible with only a few platforms.

2

For maximum compatibility and performance we chose ANSI C (a.k.a ISO
C89). Compared to C++ it has some restrictions, but compiler support is still
more mature; all of the C89 features are available, while some C++ features
(e.g., RTTI and exceptions) must be disabled on resource-constrained platforms.
However, it is still possible to write wrappers for C++, and even for other
higher level languages (Python, Java, C#, and so on).

Since ROS is the most widely accepted framework for the development of high-
level robotics applications, we chose to develop a lightweight communications
framework, µROSnode, which has native support for ROS protocols, and can
be run even on cheap embedded systems based on recent microcontrollers. The
user, often a robotics researcher accustomed to ROS nowadays, can still write
software for it, with the non-trivial capability to interface directly to hardware
modules connected via the IP network protocol (e.g., via Ethernet).
In order to assist the user in the development of µROSnode-based software,
we also developed a code generator and a static stack analysis tool. The code
generator creates the desired topic and service handler function stubs, as well
as (un)marshaling functions for the involved data types. The stack analyzer is
useful to keep the stack usage under control when developing applications for
memory-constrained platforms, for instance to size the stacks assigned to topic
and service handler thread pools.

We then performed quantitative and qualitative analyses of our work, to prove
its effectiveness. The target platforms were an Ethernet board driven by
a STM32F407 microcontroller (ARM-CM4 core), which is tightly resource
constrained, and a Raspberry Pi model B (ARM-11 core), which is a popular
extremely-low-cost embedded computer.
For the quantitative analysis we performed some simple benchmarks to deter-
mine the maximum transmission and reception throughput of a variable-sized
topic. Both the platforms can reach several thousands of messages per second
without too much effort if messages are rather small (less than 500 B, common
for simple sensors) or can be processed on-the-fly. When buffering large mes-
sages (more than 1 kB) the overall performance decreased dramatically, not
because of our framework itself, but because of expected limitations of both
the target processors and the 100 Mb/s Ethernet links.
On the first board we also measured the usage of both program and working
memory by a ROS turtlesim clone. The results proved that a fully-featured
µROSnode implementation has a rather low impact on the program memory,
in the order of less than 40 kB when compiled with optimizations; XML-RPC
and TCPROS thread pools require less than 1300 B for their stacks in the
worst case, which is reasonable considering the complexity of such protocols
and their management.

3

The qualitative analysis consisted in the development of a µROSnode-based
firmware for a real-life robot, the omnidirectional three-wheeler Triskar2, which
is controlled through a CAN-to-Ethernet gateway communicating with some
R2P boards. Thanks to the code generator, the well-documented API, and
the simple software architecture, the development did not require much effort,
indeed the whole firmware was written and tested in less than a week by a
single person.

As proven by experimental results, µROSnode fits the missing link between
high- and low-level robotics software frameworks. It is lightweight enough
to run elementary tasks on modern microcontrollers with good performance
and low memory requirements. Its development cycle is eased by the simple
software architecture, assistance by development tools, and extensive API
documentation. Native compatibility with ROS ensures its effectiveness when
building robot prototypes out of fairly inexpensive robotics components running
µROSnode.

Future work may include C++ support, by writing wrappers around the C
implementation, or as a stand-alone C++ version. UDPROS may be added for
low-latency applications and wireless connection efficiency. Existing products
may be made ROS-ready by building proprietary-to-ROS hardware adapter
running µROSnode, or by writing a custom µROSnode-based firmware if a
product already features Ethernet or Wi-Fi. Being employable by inexpen-
sive embedded systems, µROSnode can be used for low-cost educational or
recreational products connected to ROS.

The structure of this thesis is explained in the following.
Chapter 2 presents the state-of-the-art robotics frameworks, in terms of soft-
ware, communication, and hardware features. Through their comparison, we
identified a missing link between high- and low-level frameworks.
Chapter 3 describes the objectives and the strategy of the research, in order
to develop a communication framework capable of running on cheap embedded
systems, with native compatibility to an existing high-level framework, ROS.
This will fill the gap between the high-level, number crunching software frame-
works, and the cheap hardware platforms.
Chapter 4 illustrates the ROS communication features, adopted by our work
to maintain native compatibility with ROS itself.
Chapter 5 shows the detailed architecture of our communication framework,
µROSnode, the code generator tool, and the static stack analysis tool.
Chapter 6 contains experimental results, which prove the effectiveness of our
framework both in performance (quantitative analysis) through some network
benchmarks, and in ease of development (qualitative analysis) by controlling a

4

real-life robot through a ROS-based application.
Chapter 7 draws conclusions about our work, and outlines some possible
future research directions to undertake.
Appendix A lists the API to manage topics, services, and ROS parameters.
Appendix B contains some useful listings, like grammar definitions and
demonstration scripts.

5

6

Chapter 2

State of the art

In the following, the state-of-the-art works related to robotics, communication,
and rapid prototyping frameworks are described, highlighting their objectives,
architecture, and typical usage scenarios. By analyzing their advantages and
disadvantages, we will show that there is still a gap to fill between high-level
frameworks which run on powerful computers, and those which are mainly
focused on the hardware or the communication sides. These observations will
lead to our proposal, illustrated in the next chapters.

2.1 The need for rapid-prototyping frameworks

Robot development is a truly multidisciplinary task, involving mainly mechani-
cal structures, electronics design, software engineering, and artificial intelligence.
Each of these disciplines needs its own environment to build a complete robot,
requiring time, planning, hardware, and operation.
On the contrary, a robotics researcher should build new ideas in a fast, cheap,
and easy way. So, it is needed to provide friendly environments, which reduce
the resource requirements to build a new idea, not necessarily in its optimized
final form, but at least as a meaningful approximation.
Also, most parts of a robot, either physical or virtual, share a common design,
so a robot prototype could be built without redesigning everything from scratch,
but rather by assembling pre-made parts. Indeed, by partitioning the develop-
ment into purpose-specific tasks, the design, operation, and maintenance of
the whole system are much easier than by reinventing the wheel every time;
this is a well-known strategy in any fields.
Pre-made parts share a well defined interface, and they were already tested by
the manufacturer, who can keep the price lower thanks to mass-production.

Figure 2.1: ROS logo

Throughout our work we will focus mainly on software environments for rapid
robot development. Such environments come in the form of frameworks, which
are sets of tools and libraries with which the user build complex software out
of some small and purpose-specific pieces. For example, to control a robot it is
needed to gather data from sensors, reason about their values, and generate
commands for the actuators.
An intuitive way is to have a piece of software for each of the sensors, connected
to a virtual brain (or even multiple ones), which is then connected to the
software components of every actuator. Such a framework typically provides the
underlying communication subsystem, to which user modules can communicate
through a well-defined API.
The most widespread frameworks also supply some modules commonly used,
like those for image elaboration, robotic arm operation, odometry, and so on,
as well as some tools to ease development and debugging.

2.2 Robot Operating System

The Robot Operating System (ROS [22], logo in Figure 2.1) is a meta operating
system targeted at the rapid development of robotic software, developed by
Willow Garage. It has become a very widespread framework, probably the
most active and adopted one in the research field, supplying a large number of
pre-made packages. Its source code is released under a revised BSD license, so
that it can be freely modified and employed by hobbyists and institutions, but
also by commercial companies; by the way, some packages are released under
more restrictive licenses, like the common GPL. It natively runs on Ubuntu
Linux, but has some degree of support for other Unix-like operating systems.
ROS client (core) libraries are written primarily in C++, Python, and Lisp,
with experimental support for Java, Lua, and Mono/.NET.

2.2.1 Architecture

The ROS framework is highly modular. Software developed with ROS is
composed by a set of Nodes, which are virtual processing elements providing
very specific interface and operation. For example, there exist Nodes for

8

topicpublisher

subscriber

subscriber

subscriber

message

publication

subscription

message

message

message

Figure 2.2: Conceptual message flow of a published and subscribed topic

the elaboration of point clouds, those to extract geometrical primitives out
of stereo images, others for the path planning, artificial intelligence, motion
control, interfaces to common peripherals (e.g., joysticks, Microsoft Kinect,
laser scanners, servomotors), and so on.

Nodes by themselves have little purpose, but by connecting them together it
is possible to build a very complex robotics application. Nodes communicate
through a publish/subscribe technique. Nodes producing some kind of data
publish it by a topic of specific type, and those Nodes which need such data
receive it by subscribing to that topic; this concept is depited in Figure 2.2.

ROS supports continuous data streaming through topics, but also supports
request/response calls to global services, and shared environment parameters.
The setup and control of the Node network (called computation graph) are
made through a XML-RPC -based protocol, which ensures maximum portability
among any platforms with TCP/IP capabilities; there is a centralized Node,
the Master, which supervises the whole network. Instead, topic and service
data streams employ a custom low-level protocol, which is typically TCP-based,
but also UDP-based for latency-sensitive applications. In-depth information
about the ROS communication system can be found in Chapter 4.

Software developed with ROS can be grouped into stacks and packages. A ROS
package is a container of software which provides a specific functionality to
be reused with ease. For instance, there exist packages for a particular sensor,
or for a specific recognition algorithm. A package may contain ROS Nodes,
ROS-independent libraries, data sets, configuration files, or anything else that
logically constitutes an useful module. A stack is a container of packages
which share a common goal; for example, computer vision or motion planning.
Stacks can have dependencies on other stacks, in order to be maintained
independently. Some rules define the filesystem structure of packages and
stacks, so that they can be built through an automated toolchain, based on

9

the CMake build system [5], keeping the code well organized and maintainable
by different people.

2.2.2 Development process

Developing robotics software with ROS is straightforward. The user has to
know how to navigate inside the ROS meta-filesystem and workspaces (folders
which include package source code), how to create a Node, and how to make it
communicate with the rest of the computation graph. This knowledge base is
well documented inside the ROS Wiki [25], and the set of automated commands
of the meta-OS shortens the creation of a bare-bone application.

Then, the user has to outline the software capabilities of the robot. Most of
the times, there already exist some ROS packages which provide them, so it is
often a matter to just pick the right ones from the official repositories. If some
features are missing, specific user Nodes can be written with ease, thanks to
the good support for common high level languages; typically, C++ is used for
high performance, Python for its simplicity, and Lisp for artificial intelligence.

After writing the user application out of Nodes, the workspace has to be
compiled into its binary form, by using the automated package compilation
flow defined by ROS. Nodes will then need to be instantiated and connected
together through launch files.

If needed, the developer can capture the data being exchanged inside the
computation graph thanks to a set of debugging tools. They can inspect the
current state of the network, or record streams for further analysis, elaboration,
and replay.

2.3 Open Robot Control Software

Open Robot Control Software (Orocos, [4]) is a software framework for the
control of realtime robots, mainly the industrial ones. It is written in C++
under the GNU Lesser GPL. Its aim is to provide a highly modular, high-
performance, easy-to-use framework for complex robot control and machine
learning. There exist some offspring projects for non-realtime control based on
Orocos.

10

Figure 2.3: Orocos framework

2.3.1 Architecture

The framework is split into the following libraries, grouped by Figure 2.3:
the Orocos Real-Time Toolkit (RTT), the Orocos Components Library (OCL),
the Orocos Kinematics and Dynamics Library (KDL), and the Orocos Baye-
sian Filtering Library (BFL). The RTT provides the infrastructure and the
functionalities to build robotics applications in C++. The emphasis is on
realtime, on-line interactive and component-based applications. OCL provides
some ready to use control Components. Both Component management and
Components for control and hardware access are available. The KDL is a C++
library which allows to calculate kinematic chains in realtime. BFL provides an
application independent framework for inference in dynamic bayesian networks,
i.e. recursive information processing and estimation algorithms based on Bayes’
rule, such as (extended) Kalman Filters, particle filters (sequential Monte
methods), and so on.

Being a modular framework, an Orocos application is made of networked
purpose-specific components. A CORBA-based communications system is used
for the setup and control of the network, so that applications follow an effective
software engineering approach. There are five distinct (and optional) ways in
which an Orocos component can be interfaced, as seen in Figure 2.4: through
its properties (parameters modifiable at run-time), events (functions executed
when a change occurs), methods (immediate-result functions), commands
(procedures to reach a goal) and data flow ports (thread-safe un-/buffered data
transport channels). Besides defining the above component communication
mechanisms, Orocos allows the Component or Application Builder to write
hierarchical state machines which use these primitives; this is the Orocos way
of defining application specific logic. State machines can be (un)loaded at
run-time in any component.

11

Figure 2.4: Orocos component interface

2.3.2 Development process

The Orocos community already provides pre-made components to be used to
create the user application; otherwise, one has to write his own components.
The application can be setup through XML properties or command/method
interfaces.

2.4 Lightweight Communications and Marshaling

The Lightweight Communications and Marshaling framework (LCM, [12]),
developed by the Massachusetts Institute of Technology, offers a very high
performance communications system over UDP/IP, so that multiple processes
can exchange data with high throughput and low latency. It is designed for
very complex robotics software, which need optimized communications to
satisfy soft-realtime constraints, in a modular fashion, and with the minimum
requirements. The most prominent application was for the 2007 DARPA Urban
Challenge [12], in which the MIT team governed an autonomous car by running
70 concurrent processes spread across 10 networked workstations, with a very
heterogeneous network traffic (almost 100 data types involved). It is used also
for aerial, underwater, and land robots.

A set of tools helps in the development of user applications, and thanks to
the protocol design they have almost no impact on the network performance.
LCM has support for C, C++, Java, Python, MATLAB, and C#, so that it
can be natively used with many operating systems and for different purposes
(high performance, prototyping, and simulation). It is released under the GNU

12

1 struct waypoint_t {
2 string id;
3 float position[2];
4 }
5
6 struct path_t {
7 int64_t timestamp;
8 int32_t num_waypoints;
9 waypoint_t waypoints[num_waypoints];

10 }

Listing 2.1: LCM message types for path planning

Lesser GPL.

2.4.1 Architecture

LCM is a networked communications framework, in which a network Node
is typically a single process of the operating system. This guarantees the
isolation of memory address spaces for each Node, which helps in keeping
the application safe and easy to maintain. Nodes communicate through a
publish/subscribe approach, in that Nodes can publish or subscribe to topics.
By not requiring centralized control, topics are stateless, reducing protocol and
software complexities. LCM employs only UDP multicast messaging, so that a
message is sent once for the whole network, scaling very well with the number
of Nodes. UDP is a best-effort protocol directly based on IP, so that there is
no flow control at all. A dropped packet is not resent, reducing the latency
of successive packets, thus making soft-realtime applications possible. If flow
control is required, it can be implemented on a higher network layer.

Messages of a topic must be of the same data type. The type descriptor is
written in a simple C-like formal language, so that a tool can generate native
source code for all of the languages supported by LCM. Each message is headed
by the 64-bit hash code of its type descriptor, providing type checking for each
message being received. Listing 2.1 displays an example of path planning
message types, described with the custom C-like language defined by LCM.

A network debugger, lcm-spy of Figure 2.5, simply subscribes to all of the
topics being exchanged across the network, and visualizes message contents
(syntax is inferred by type descriptors). Thanks to the multicast protocol, the
debugger is almost completely transparent to the network. It can also record
the network traffic, which can be analyzed or elaborated for later replay.

13

Figure 2.5: Screenshot of lcm-spy capturing messages

2.4.2 Development process

To build an application for LCM, a developer must outline the needed topics
and message types. Actual (un)marshaling source code is generated for the
chosen programming language through the generator supplied with LCM. The
application should then be partitioned into sub-processes, each providing a
specific logical functionality. Then, processes are developed and run.

Since there is no centralized build toolchain, nor any particular rules for the
source code organization, everything is up to the user’s appeal. LCM is just a
communication framework, with no interest in providing pre-packaged modules,
nor in defining software engineering rules.

2.5 Rapid Robot Prototyping

Rapid Robot Prototyping (R2P, [2]) is a hardware/software framework for the
robotics research. It has been designed to be low-cost, lightweight, easy to use,
and with realtime capabilities. The idea is to shorten development times when
researching for a new robot design, by employing small and cheap hardware
modules. Sure enough, most of the time is often spent in the development
of the mechanics, electronics and their firmware from scratch rather in the
development of the actual robot application, even for simple designs [2]. By
giving the researcher a set of hardware modules commonly found in robots,
realtime communication and operating systems, and a set of development tools,
one can make a working physical prototype in a shorter time. R2P is the most
promising hybrid hardware/software framework for rapid robot prototyping.

14

Figure 2.6: TiltOne, a self-balancing robot controlled through R2P

2.5.1 Architecture

R2P has a hybrid hardware/software nature. It employs a publish/subscribe
technology just like the other state-of-the-art frameworks, both for commu-
nications among physical nodes (boards) and virtual nodes (intra-process
communications). The framework is written in C++, and currently supports
the ChibiOS/RT RTOS [6].

A R2P hardware module is a tiny board which provides a basic functionality,
for example DC motor control, 13-dof IMU (3 acc + 3 gyro + 3 mag +
barometer + GPS), ultrasonic or generic Sharp distance sensors, an Ethernet
gateway, and so on. Such boards are connected across a CAN bus through
Ethernet patch cables, thanks to the high availability and low cost of both CAN
controllers and Ethernet cables. The CAN bus allows the implementation of
hard-realtime message loops, and is also widely used in harsh environments, such
as in the automotive and industrial fields, being a well-established technology.
Interconnection cables carry both the differential CAN signals and 5 V power
rails for low-power (up to very few amperes) circuits; if high voltage or current
are needed (e.g., for DC motors), then auxiliary power sources must be added
to the design. Figure 2.6 shows the architecture of a self-balancing robot,
TiltOne [20], which uses a R2P network to gather data from sensors and to
actuate motors, connected to an external workstation for debugging and user
control.

There are three kinds of topic scheduling: hard-realtime, soft-realtime, and non-
realtime. Hard-realtime topics exploit the hardware priority packet arbitration
defined by the CAN specifications. Their messages are arranged by a time-
triggered scheduler, hosted by a centralized node (fairly elected among all of the
nodes). A fixed time quantum of the scheduler is declared, and is split into time

15

slices, each assigned to at most one control loop publisher; this constitutes the
(fixed) scheduling policy of hard-realtime control loop messages. Soft-realtime
is satisfied by an Earliest Deafline First scheduler, applied to the free time
slices of the hard-realtime scheduler; this is useful for sporadic or low-latency
events with soft-realtime requirements. Any remaining free time slices can be
used to exchange non-realtime topic messages.

It is possible to employ a packet capture tool which is completely transparent to
the network, thanks to the inherent broadcast nature of the CAN bus. Again,
a standard set of tools allows live recording and analysis of the exchanged
messages, as well as record and replay features.

2.5.2 Development process

A robotic researcher may choose R2P when willing to build a new physical
prototype idea. The researcher should first outline the hardware requirements
of the structure being developed; for instance, the need for motors, distance
sensors, a bridge to Wi-Fi, and so on, suggesting the appropriate pre-made
R2P hardware module to be used. Otherwise, designing a custom board is
rather simple, requiring only a CAN bus interface, commonly found in almost
all of the latest microcontrollers.

After choosing or designing the right hardware modules, the user has to write
their firmware application; the simple R2P API makes the writing of custom
firmware rather easy. The R2P roadmap proposes some code generators, which
will automatically generate a working application template out-of-the-box, and
a high-level scripting language for those users who are less knowledgeable about
firmware programming; this in turn would help in porting R2P applications to
different embedded platforms.

2.6 Framework comparison and observations

All of the state-of-the-art frameworks described previously excel in some fields,
but they also show lacks elsewhere.

ROS is the best choice when developing robotics research software, thanks to
its immense library of ready-to-use algorithms and the automated development
process. Being an highly active and successful project, bugs can be fixed quickly,
and the huge user base can make the library grow even more. By contrast,
the use of high-level languages and protocols make it unsuitable for simple
and cheap robots, like those affordable by students or hobbyists, requiring a

16

Feature ROS Orocos LCM R2P
Publish/Subscribe X X X X
Scripting languages X X planned
Embedded systems support rosserial X X
Lightweight X X
Realtime support X X
Package repository X X planned
Connectivity (transport) TCP, UDP TCP, generic UDP CAN, generic

Table 2.1: Comparison of the state-of-the-art robotics software frameworks

moderately powerful computer to be run (no microcontrollers).

Orocos perfectly follows software engineering principles, which helps in making
long-term, high-quality realtime robot control. As such, it is more suitable
for industrial-grade robots rather than rapid prototyping of new ideas, also
because of the relatively complex software architecture (if compared to ROS).

LCM is a very high efficiency communications framework, which can fit in any
UDP-capable computer, from workstations to embedded systems. Although
simplicity and performance are the key features of this project, it is merely a
communications system, lacking any higher level features, such as ready-to-use
robotic algorithms, automated toolchains, or even Quality of Service over UDP
itself.

R2P is a promising hybrid hardware/software system for the rapid development
of new robotic ideas, which is lightweight, realtime, and targeted at cheap
embedded systems. Despite of the almost plug-and-play nature, it does not
provide any higher level libraries yet, reducing the appeal for a novice.

Overall, there are frameworks which are good either at the software/communica-
tions level, or at the lower/hardware levels. We could not find a state-of-the-art
framework which can be used for rapid-prototyping among all of these levels.
Indeed, the researcher can be fast and assisted only at some stages of the de-
velopment, while other stages still need to be done alone currently. Table 2.1
summarizes the features of the state-of-the-art frameworks.
These observations have driven us to outline and develop a framework which
interfaces to computation graphs of ROS, to exploit its high-level rapid proto-
typing features, but can still be run on cheap embedded systems, like the R2P
Ethernet gateway module. The proposal illustrated in Chapter 5 can fit the
missing link between high- and low-level rapid prototyping.

17

18

Chapter 3

Research strategy

In the previous chapter, state-of-the-art robotics software frameworks were
described, each with its benefits and drawbacks. In this chapter, we illustrate
our research objectives and strategy, which will lead to the proposed framework
described in the next chapters.

3.1 Objectives

It is very important to provide a good framework both in the hardware and
software domains, so that it is possible to develop robots without spending
too many resources, primarily time and money. Previous works are either very
good in the software or in the hardware domains on their own, but there seems
to be a missing link between them.
Sometimes, prepackaged algorithms are available only for frameworks which
are excessively complex for the actual application. Instead of losing time for
the reimplementation of those algorithms for a simpler system, it is common
to equip the robot with a more powerful computer. This would be a price
and performance overkill, which cannot turn into a future product without
re-engineering at some point of the design process. Again, such a powerful
computer may not be suitable for the specific robot domain, because of the
required size and weight; think about a quadrotor, which cannot equip a
desktop-grade computer. For these reasons, we will focus on embedded systems
in our research.

Framework design Instead of proposing a brand new software framework,
we are going to enhance an existing one towards embedded systems development.
As seen in the previous chapter, some works like LCM and R2P are already

available on embedded platforms, but both miss the availability of user level
device libraries. By contrast, ROS has plenty of packages ready to be used,
but ROS itself is not well suitable for embedded systems.
By extending existing frameworks, it is still possible to take advantage of their
benefits, while trying to solve its drawbacks, or at least part of. Frameworks
are designed to be modular, and the purpose of our research is to let simple,
cheap peripheral modules communicate with the central framework modules
(often workstations) in a native way.

Small footprint However, the development of an embedded system always
copes with some resource constraints. An embedded system, with respect to a
desktop computer or a workstation, has often tight constraints about memory
size, CPU speed, and timings. A well endowed microcontroller of nowadays
is equipped with roughly 1 MB of code memory (ROM, EEPROM, Flash),
256 kB RAM, and 200 DMIPS.
While not being able to host a full framework in its entirety, a microcontroller
can still manage the the native communication protocols of the framework itself.
A piece of embedded hardware would still communicate with the framework
out-of-the-box, with the possibility to run prepackaged algorithms, and without
the need of proxies or bridges to handle different protocols.

Portability The proposed framework should also be portable. This is a tricky
feature in the field of embedded systems, because the hardware abstraction layer
is almost incompatible even among devices of the same family. Also, embedded
system compilers often fall behind those for generic-purpose computers; the
most recent programming languages (or their updates) are not available, or
the compiler implementation is not fully standard-compliant.

Handiness Last but not least, the code should be easy to use. A simple
design with simple code, good documentation, and utility tools can make the
development process more efficient and less error-prone. Since the target of
our work is rapid robot prototyping, it must be understood and modified in
the shortest possible time, so that users can focus on their goals rather than
on the software framework library itself.

To summarize, the enhanced system should have the following features:

• support for an existing framework;
• small code/memory footprint;
• portable among different hardware/software architectures;

20

• simple and clean design.

3.2 Strategy

Our work is an extension of an existing framework. Among the ones described
in the state-of-the-art presented in Chapter 2, we have found that the most
suitable for rapid prototyping purposes is ROS. Its development is the most
active, and the availability of hundreds of fully modular packages shortens
development times. Conversely, its lack of an embedded systems point of view
discourages its use for simple systems, although there are some workarounds
(e.g., rosserial).
The framework we are proposing, called µROSnode, is designed to run on
embedded systems. Indeed, an user accustomed to ROS can still use its
packages on the central computer, and deploy on peripheral modules which
can natively communicate with ROS.
A consequence of native ROS support on microcontrollers is that it would be
possible to directly connect µROSnode-based devices to a ROS-based network.
Take the example of a simple robot, as in Figure 3.1a, made of an iRobot
Create [13] moving base controlled via RS232, a Sick LMS100 [27] Ethernet
laser scanner, and a custom IMU board yet to be designed. These devices are
connected to a host computer running a ROS application which uses them. As
they do not communicate with ROS directly, the host must run custom ROS
nodes which interface with their low-level drivers to ROS itself.
Instead, take the example in Figure 3.1b. The laser scanner runs a modified
µROSnode-based firmware by exploiting the available Ethernet port; the
custom IMU board, designed from scratch, is programmed around µROSnode;
an inexpensive adapter board interfaces the RS232 mobile robot platform to
Ethernet by an inexpensive adapter board. With this design, the user only has
to connect them to ROS (e.g., by linking to the host through Ethernet cables)
and start developing the application, without worrying about the low-level
protocols or device drivers. This design eases prototyping of new ideas, and
provides the user a homogeneous API.

Communication The communication stack of ROS (see Chapter 4) was not
designed to be used by resource-constrained platforms (unlike LCM and R2P),
but rather for easy integration by different programming language libraries.
Anyway, it is still possible to keep its implementation small enough to be
deployed on a microcontroller, as proven in Chapter 6.
A major flaw of ROS for memory-constrained systems is that it communicates

21

Ethernet

RS232

RS232
Sick

IMU

brain iRobot

ROS core

iRobot Create

IMU board

Sick LMS100

/laser_scan

/imu
/velocity

IMU protocol

Sick protocol

iRobot protocol

(a) devices with legacy centralized ROS adapter Nodes

Ethernet

Ethernet

Ethernet

Sick

IMU

brain

 ROS core

iRobot Create
IMU board

Sick LMS100

/imu

/laser_scan

/velocity

iRobot

RS232
iRobot protocol

iRobot adapter board

 μROSnode

 μROSnode

 μROSnode

(b) ROS-ready devices by using µROSnode

Figure 3.1: A simple robot running ROS, the legacy way and the µROSnode way

through point-to-point TCP channels most of the times. This choice has an
impact on the bandwidth, RAM allocation, and threads, because each channel
needs its own management, while with a broadcast approach (UDP is capable
of) they are unified per topic, not per channel. The UDP version of the ROS
protocol is still experimental at the moment of writing, so we have to deal with
the allocation of one channel per each TCP connection.
Despite of being a design flaw, we will prove that the TCP approach is not a
major issue with simple systems based on microcontrollers. For example, they
can hardly saturate a 100 Mbps Ethernet link, and the user is aware of the fairly
small number of simultaneous connections manageable by a microcontroller.

Language One of our objectives is software portability. In the embedded
systems domain, portability is essentially assured by only one programming
language, ANSI C. This language is broadly available for embedded systems of
nowadays. Almost all of the embedded-grade C compilers can manage code
written in pure ANSI C, thanks to its maturity. This ensures that object code
generated by ANSI C compliant compilers will work as it should, while this is
not always true for other languages.
Also, software written in ANSI C is still compatible with most of C++ and

22

Objective C compilers, so there is still the possibility to integrate it with these
higher level languages the native way, or by writing idiomatic wrappers. Inci-
dentally, some features of a full C++ implementation (e.g., RTTI, exceptions)
will make the object code explode in size only because they are enabled, thus
exceeding the MCU code memory size. C++ without them is simply C with
some syntax sugar, a redundancy with the additional risk of non-compliance
as stated before.

System abstraction Software portability for embedded systems is fulfilled
also through an appropriate hardware abstraction layer. Our design includes
bindings to the low-level features of the hardware, so that the user can write
or choose the low-level drivers which best match the target architecture.
Our framework needs low-level binding for communication, multithreading,
and memory management. Communication libraries talk to a TCP/IP stack
in a common fashion.
A multithreaded environment is needed because it drastically simplifies the
development of a complex firmware, and the overhead introduced by an multi-
threaded environment is marginal on modern MCUs.
Memory management drivers should handle dynamic allocations (e.g., memory
heaps). All of these features are often provided by an adequate operating
system, and writing of bindings is rather straightforward.
The API chosen for the deployment on general-purpose computers is POSIX,
which is available in most of the operating systems. In the case of micro-
controllers, we have chosen ChibiOS/RT, which supports some of the most
advanced microcontrollers available nowadays, and LWIP as its TCP/IP stack.

Coding style and tools The design of the proposed framework, extensively
described in Chapter 5, consists of a few abstract entities, which are managed
through a simple and clean software interface. The modular approach is also
reflected on the filesystem structure of the package.
The code follows mostly the style rules of ChibiOS/RT, which are derived from
the canonical K&R (Kernighan and Ritchie) style. There are other coding rules
which are aimed at portability (e.g., MISRA rules), but we think that K&R-
derived styles are still the most clean and intelligible. The code also features
extensive self-documentation for Doxygen, a widespread self-documentation
tool.
The user is provided with a code generator, which can generate templates
suitable for the target application by specifying the needed topics, services,
and their respective message types.
A static analyzer can help in the development targeted at memory-constrained

23

platforms, by estimating the total stack usage of a set of functions (entry points
of threads).

In conclusion, the enhanced framework of our research has the following main
features:

• native compatibility with the ROS communication stack;
• code written in ANSI C;
• preconfigured for POSIX, and ChibiOS/RT + LWIP;
• simple modular design;
• extensively self-documented for Doxygen;
• a code generator for user application message management;
• static stack usage analyzer.

24

Chapter 4

The ROS communications
model

Before going ahead to the detailed description of the research work, a detailed
knowledge of the communication protocol is essential. This chapter illustrates
the protocol defined by the current implementation of ROS, Groovy. It is the
one adopted by our framework, to have native compatibility with ROS itself.

4.1 Definitions

The following are the definitions of terms occurring frequently within the
ROS environment, as stated by the ROS documentation. The reader is aware
that some terms can have a different meaning outside ROS, and the present
document may make an ambiguous use because of the lack of valid synonyms.

Name Graph resource names are an important mechanism in ROS for provid-
ing encapsulation. Each resource is defined within a namespace, which it
may share with many other resources. In general, resources can create
resources within their namespace and they can access resources within or
above their own namespace. Connections can be made between resources
in distinct namespaces, but this is generally done by integration code
above both namespaces. This encapsulation isolates different portions
of the system from accidentally grabbing the wrong named resource or
globally hijacking names.
Names are resolved relatively, so resources do not need to be aware of
which namespace they are in. This simplifies programming as nodes
that work together can be written as if they were all in the top-level

namespace. When these nodes are integrated into a larger system, they
can be pushed down into a namespace that defines their collection of
code.

Computation Graph The Computation Graph is a peer-to-peer network,
which consists of nodes connected together in any mesh topologies, ex-
changing topics or providing services.

Node A node is a process that performs computation. Nodes are combined
together into a graph and communicate with one another using stream-
ing topics, RPC services, and the Parameter Server. These nodes are
meant to operate at a fine-grained scale; a robot control system will
usually comprise many nodes. For example, one node controls a laser
range-finder, one Node controls the robot’s wheel motors, one node per-
forms localization, one node performs path planning, one node provide a
graphical view of the system, and so on.

The use of nodes in ROS provides several benefits to the overall system.
There is additional fault tolerance as crashes are isolated to individual
nodes. Code complexity is reduced in comparison to monolithic systems.
Implementation details are also well hidden as the nodes expose a minimal
API to the rest of the graph and alternate implementations, even in other
programming languages, can easily be substituted.

All running nodes have a graph resource name that uniquely identifies
them to the rest of the system.

Master node The Master node provides naming and registration services
to the rest of the nodes in the ROS system. It tracks publishers and
subscribers to topics as well as services. The role of the Master is to
enable individual ROS nodes to locate one another. Once these nodes
have located each other they communicate by peer-to-peer connections.

The Master node also provides the Parameter Server.

Message Nodes communicate with each other by publishing messages to
topics. A message is a simple data structure, comprising typed fields.
Standard primitive types (integer, floating point, boolean, and so on)
are supported, as are arrays of primitive types. Messages can include
arbitrarily nested structures and arrays.

Nodes can also exchange a request and response message as part of a
ROS service call.

Topic Topics are named buses over which nodes exchange messages. Top-
ics have anonymous publish/subscribe semantics, which decouples the

26

production of information from its consumption. In general, nodes are
not aware of who they are communicating with. Instead, nodes that are
interested in data subscribe to the corresponding topic, while nodes that
generate data publish to the corresponding topic. There can be multiple
publishers and subscribers to a topic.

Topics are intended for unidirectional, streaming communication. Nodes
that need to perform remote procedure calls, i.e. receive a response to a
request, should use services instead. There is also the Parameter Server
for maintaining global parameters.

Each topic is strongly typed by the ROS message type used to publish to
it and nodes can only receive messages with a matching type. The Master
does not enforce type consistency among the publishers, but subscribers
will not establish message transport unless the types match. Furthermore,
all ROS clients check to make sure that the MD5 matches. This check
ensures that the ROS nodes were compiled from consistent code bases.

Service Services are used to execute request/response calls of raw data. A
service consists of two messages (the request and the response) exchanged
in a way similar to topic messages. If more than one Node advertise
the same service, only the last one will be considered when trying to
establish a service stream.

Parameter A parameter is a globally defined variable, stored by the Parameter
Server. Parameters are named using the normal ROS naming convention.
This means that ROS parameters have a hierarchy that matches the
namespaces used for topics and nodes. This hierarchy is meant to protect
parameter names from colliding. The hierarchical scheme also allows
parameters to be accessed individually or as a tree.

Publisher A publisher node of a specific topic generates and sends TCPROS
messages to all of the topic subscribers.

Subscriber A subscriber node of a specific topic receives TCPROS messages
from all of the topic publishers.

Parameter server A parameter server is a shared, multi-variate dictionary
that is accessible via network APIs. Nodes use this server to store and
retrieve parameters at runtime. As it is not designed for high-performance,
it is best used for static, non-binary data such as configuration parameters.
It is meant to be globally viewable so that tools can easily inspect the
configuration state of the system, and modify if necessary.

27

The Parameter Server is implemented using XML-RPC and runs inside
of the ROS Master, which means that its API is accessible via normal
XML-RPC calls.

API Set of software methods exposed by a process, so that other processes
can call it.

URI Textual representation of a node API address, in the format:
protocol://host:port

where protocol is either http or rosrpc, and host is either a host name or
an IP address. The port is the API port number.

Remote procedure call A technique to call a method on a remote machine,
and receive its result.

XML-RPC Portable XML-based protocol to execute remote procedure calls.
For detailed information, see below.

TCPROS TCP-based protocol used by topic/service binary data streams.
For detailed information, see below.

4.2 Overview

The communication layer of ROS, part of the ros_comm stack, follows the
publish/subscribe paradigm, as depicted in Figure 2.2. The network, also
called computation graph, involves several nodes, either physical or virtual,
which are assigned an unique name. A node is a process which gathers data
from its inputs, executes computations, and generates data for its outputs.
Each node is specialized to a particular function, and does not rely on the
existence of other nodes (purely modular design). A node can publish some
topics, which other nodes can subscribe to; services work a similar way. Topics
and services are assigned a known type, delivered with their respective ROS
package (e.g., std_msgs/Float).

For example, think about a simple autonomous rover, equipped with two
motors, a set of distance sensors, and the brain computer hosting the ROS
framework. A possible ROS network can consist of a node per each sensor
or wheel, and a node for the robot brain. Let us suppose that each sensor_X

node publishes a topic called sensor_X/distance, where X is the identifier of
the sensor itself. The implementation samples a value measured by the actual
sensor at a fixed rate, converts it to the representation advertised for the topic,
and sends a marshaled message to the topic subscribers. In a similar manner,
each wheel_Y node subscribes to a topic called wheel_Y/speed, with reference

28

to the speed of the Y -th wheel. The implementation continuously receives a
subscribed topic message, converts its unmarshaled speed value to a voltage,
and applies the latter to the wheel DC motor to obtain the communicated speed.
Instead, the brain node subscribes to all of the sensor_X/distance topics, and
publishes all of the wheel_Y/speed topics. Its implementation can follow a
suitable logic which determines the wheel speeds by the distances measured
by the sensors, for example to move the robot while avoiding obstacles. Its
communication flow should be deducible by the reader now.

There can also exist some globally declared services (a sort of special request/re-
sponse topics) and parameters. For example, the brain node publishes the
service sleeping which replies true if the robot is in an idle state, or false if
the robot is fully operational. This way, sensor_X and wheel_Y nodes can call
the sleeping service, and switch off their hardware modules if the response is
true. Again, a global parameter called max_speed holds the maximum speed
value, useful to calibrate the behavior of wheel modules.

A special node, the Master node, acts as a centralized dispatcher when connect-
ing together publishers and subscribers. It keeps track of published/subscribed
topics/services, and in the current implementation it is also the centralized
directory for globally defined parameters (the parameter server).

Communication with the Master node is accomplished by the exchange of
XML-RPC messages, through remote procedure calls. The topic and service
data streams between peers are encoded in a custom protocol, TCPROS. Both
these protocols will be extensively explained below. ROS connection addresses
are sent in URI format.

4.3 Remote procedure calls

ROS nodes are capable of calling remote procedures, available through the
API exposed by the nodes themselves. Remote procedure calls are executed
by using the XML-RPC protocol, which is a subset of the XML specification
(see Appendix B.1 for its XML Schema and DTD). These calls are used to
manage the status of the computation graph and some global settings, and are
not supposed for the actual data streams (which use TCPROS or UDPROS
instead). XML-RPC was chosen by the designers of ROS because of its large
availability of supported languages. The use of XML as its basis makes it
simple to debug by a human, and its text-only nature makes it independent by
the transport layer encoding format; indeed, it is encapsulated inside HTTP
transfers, which prefer text-only contents. Also, XML-RPC calls are stateless,

29

a property which simplifies the control logic, since there is no state to keep
track of. On the language side, its XML tags follow strict syntax rules, and
they lack any attributes. These characteristics make its parsing much easier
than XML, while keeping most of its advantages.

4.3.1 Roles

Every ROS node hosts a XML-RPC server. Depending on the role, the set
of callable methods is different, and they are defined by the appropriate API.
The Master API exposes the methods managed by the unique Master node,
for example those for (un)registrations of topics and services. The Slave
API declares the methods managed by a generic node (Slave), for instance
the request to establish a topic stream, or the shutdown command. The
Parameter Server API is used by the unique Parameter Server, which manages
the centralized directory of shared global parameters. Detailed information
about the APIs is given in Appendix B.1.

4.3.2 Value types

In XML-RPC, method parameters and return values are enclosed by the value

entity, and can belong only to a small set of types (value children):

• string is an ASCII string. This is the default value type, where not stated
otherwise. The only illegal characters are & and <, encoded respectively
as & and <.

• int or i4 is a 32-bit signed integer, in decimal representation, prefixed
by - if negative.

• boolean can be either 0 or 1.
• double is a real number, in decimal representation, prefixed by - if
negative.

• dateTime.iso8601 is a date/time value, in ISO-8601 format.
• base64 is a binary string encoded with the Base64 algorithm.
• array is a list of values, globally enclosed by a data entity.
• struct, also called map, is an associative collection. Each entry is a

member, with a name string and a generic value.

4.3.3 Request and response

Remote procedure calls consist of two phases: the request, and the response. A
caller (client) sends the method request to the callee (server), which processes

30

/rosnode /turtlesim

getPid("/rosnode")

[1, "", 6544]

Figure 4.1: Sequence diagram of a getPid() XML-RPC call example

it. After processing, the callee returns a response, which can be either the call
result if successful, or a fault if unsuccessful.

A request is introduced by the methodCall entity, whose method name is spec-
ified by the methodName string. Following the method name, a params entity
encloses a list of param children, where each one contains a value. The listed
params are the method parameters, and depend on the API specification. Usu-
ally, the first parameter is the name of the caller node within the computation
graph.

A response contains the value returned by the remote method. In ROS, the
value is an array with three fields. The first field, the status code, is an integer
with one of the following values:

• -1 if there was an error by the caller, for example due to wrong API
method name, parameters or types. The method is not executed at all.

• 0 if there was a failure while executing the method call by the remote
node.

• 1 if the call was successful.

The second field is for status string, a human readable text which explains the
reason of the status code value. Its value is optional (it can be empty).
The third field, the return value, contains the actual XML-RPC value returned
by the method call. Its meaning is defined by the specific API.

If the response is a XML-RPC fault, it means that there was a hard error,
typically a request non XML-RPC compliant.

An example of XML-RPC call to getPid() is shown by Figure 4.1, with
request and response dumps respectively in Listing 4.1 and Listing 4.2.

31

1 POST /RPC2 HTTP/1.1
2 Content-Type: text/xml
3 Content-Length: 178
4
5 <?xml version="1.0"?>
6 <methodCall>
7 <methodName>getPid</methodName>
8 <params>
9 <param>

10 <value><string>/rosnode</string></value>
11 </param>
12 </params>
13 </methodCall>

Listing 4.1: Example of getPid() XML-RPC call contents over HTTP

1 HTTP/1.1 200 OK
2 Content-Type: text/xml
3 Content-Length: 309
4
5 <?xml version="1.0"?>
6 <methodResponse>
7 <params>
8 <param>
9 <value>

10 <array>
11 <data>
12 <value><i4>1</i4></value>
13 <value></value>
14 <value><i4>6544</i4></value>
15 </data>
16 </array>
17 </value>
18 </param>
19 </params>
20 </methodResponse>

Listing 4.2: Example of getPid() XML-RPC response contents over HTTP

4.4 Connection patterns

A node on its own has no purpose, and needs to be connected to other nodes
some way. In the following, a generic communication pattern is shown, to let a
node connect to its peers, and eventually instantiate the required topic data
streams. A special case involves service calls.

Upon the introduction of a node to the computation graph, the node has
to register its published and/or subscribed topics to the Master node. Each
topic publisher is registered through a registerPublisher() remote procedure
call, while each topic subscriber is registered through a registerSubscriber()

call. The Master is thus omniscient, and can connect together publishers and
subscribers of the same topic.

Whenever a node registers its subscribed topics to the Master, a successful
response includes the list of publisher URIs already registered. The caller node
can then connect to these publishers to receive topic messages. Whenever a
new publisher registers to the Master, the latter issues a publisherUpdate()

32

Figure 4.2: Summarized steps to establish a topic data stream [23]

call to the subscribers, with the updated list of available publisher URIs. Topic
message streams are exchanged by the TCPROS protocol.

A symmetric case is the unregistration. Publishers are unregistered through
a unregisterPublisher() remote procedure call to the Master node, while
subscribers are unregistered through a unregisterSubscriber() call. By the
way, it is up to publishers and subscribers to close any established data streams
for the unregistered topics.

Services work in a slightly different way. The same service can be published by
multiple nodes, but only the last advertisement is taken into consideration. A
node willing to call the service first looks up the service URI by the Master,
through a lookupService() remote call. Then, it actually calls the service
provider via an appropriate request message. The service provider processes
the request and generates a response message, if successful; otherwise, a
response with an error message is replied. All of these messages are exchanged
by the TCPROS protocol, where the response is headed by an additional ok
byte (to distinguish success or fault).

4.5 Data streams

While XML-RPC provides an easy and clean protocol for remote method calls,
its verbosity and text-centric encoding make it unsuitable for high bandwidth
and low latency tasks. This is the case of data streams, like the ones sent
by sensors or to actuators. ROS defines a custom binary protocol for such
streams; this permits the transfer of raw data among nodes, with the minimum
required message length (maximizing bandwidth) and almost no processing

33

Figure 4.3: Summarized steps to execute a service call [23]

time (minimizing latencies). For detailed information about the topic and
service message grammars, please refer to Section 5.3.1.

4.5.1 Type descriptors

Data streams are based on the exchange of messages of a particular type,
specified by the topic/service at registration time (see previous section). A
message is a sequence of values, arranged in the order defined by the type
descriptor. In ROS, there exist two kinds, the topic descriptor, and the service
descriptor. We will consider the topic descriptor first, because service types
are just a simple extension.

Topic types A ROS topic message descriptor is written as a plain text file,
where the file name coincides with the type name, plus the .msg extension.
Every line can define a strong-typed variable, where the type is either a
primitive type, or the name of another message type descriptor, or even an
array (fixed or variable) of any of such types. Thus, messages can be nested,
and, being strongly typed, their streaming is simplified (no dynamic types to
handle). Descriptors can also declare constant names of primitive types.

Listing 4.3 shows the rosgraph_msgs/msg/Log.msg contents, while Listing 4.4
is its clean expanded version, generated by rosmsg show.

Service types While topics are uni-directional, thus needing only the def-
inition of one message type, services work on a request/response approach.

34

1 ##
2 ## Severity level constants
3 ##
4 byte DEBUG=1 #debug level
5 byte INFO=2 #general level
6 byte WARN=4 #warning level
7 byte ERROR=8 #error level
8 byte FATAL=16 #fatal/critical level
9 ##

10 ## Fields
11 ##
12 Header header
13 byte level
14 string name # name of the node
15 string msg # message
16 string file # file the message came from
17 string function # function the message came from
18 uint32 line # line the message came from
19 string[] topics # topic names that the node publishes

Listing 4.3: Contents of rosgraph_msgs/msg/Log.msg

1 byte DEBUG=1
2 byte INFO=2
3 byte WARN=4
4 byte ERROR=8
5 byte FATAL=16
6 std_msgs/Header header
7 uint32 seq
8 time stamp
9 string frame_id

10 byte level
11 string name
12 string msg
13 string file
14 string function
15 uint32 line
16 string[] topics

Listing 4.4: Clean, expanded contents of rosgraph_msgs/msg/Log.msg

So, a service involves two types, the one for the request, and the one for the
response. Service type descriptors are stored similarly to topic types, where
the extension is .srv instead. The descriptor is split into two parts by a --

separator line, where the first part is the request message descriptor, and the
second part is the response message descriptor.

Listing 4.5 is an example of the dynamic_reconfigure/srv/Reconfigure.srv

contents, while Listing 4.6 is its clean expanded version, generated by rossrv

show.

Hashing Because descriptor texts may be different among nodes, while their
names can be the same, there must be a way to determine if two nodes actually
share the same type. For such task, the MD5 sum was chosen for comparing
two different type descriptions. The comparison function executes the following

35

1 Config config
2 ---
3 Config config

Listing 4.5: Contents of dynamic_reconfigure/srv/Reconfigure.srv

1 dynamic_reconfigure/Config config
2 dynamic_reconfigure/BoolParameter[] bools
3 string name
4 bool value
5 dynamic_reconfigure/IntParameter[] ints
6 string name
7 int32 value
8 dynamic_reconfigure/StrParameter[] strs
9 string name

10 string value
11 dynamic_reconfigure/DoubleParameter[] doubles
12 string name
13 float64 value
14 dynamic_reconfigure/GroupState[] groups
15 string name
16 bool state
17 int32 id
18 int32 parent
19 ---
20 dynamic_reconfigure/Config config
21 dynamic_reconfigure/BoolParameter[] bools
22 string name
23 bool value
24 dynamic_reconfigure/IntParameter[] ints
25 string name
26 int32 value
27 dynamic_reconfigure/StrParameter[] strs
28 string name
29 string value
30 dynamic_reconfigure/DoubleParameter[] doubles
31 string name
32 float64 value
33 dynamic_reconfigure/GroupState[] groups
34 string name
35 bool state
36 int32 id
37 int32 parent

Listing 4.6: Clean, expanded contents of dynamic_reconfigure/srv/Reconfigure.srv

operations on each type descriptor:

1. comments are removed;
2. whitespace is removed;
3. package names of dependencies are removed;
4. constants are moved ahead of variable declarations, keeping their arrange-

ment;
5. for nested types, their hashing text is computed and appended to the

current hashing text, in the order they appear;
6. the MD5 sum of the whole hashing text is computed.

If the MD5 sums are the same, then the two descriptors are equal.

36

ROS type C99 type
uint8 uint8_t

uint16 uint16_t

uint32 uint32_t

uint64 uint64_t

int8 int8_t

int16 int16_t

int32 int32_t

int64 int64_t

time uros_time_t

duration uros_time_t

string struct UrosString { size_t length; char *datap; };

type[] struct UrosTcpRosArray { uint32_t length; void *entriesp; };

byte uint8_t

char char

uint uint32_t

int int32_t

Table 4.1: ROS to C type mapping

4.5.2 Message structure

Messages are serialized in little-endian binary form. This makes its processing
straightforward by most of the little-endian CPU architectures available on the
market, such as those based on x86 or ARM designs. Therefore, a data stream
message is much like the serialization of a C struct variable; for example, on
x86 architectures a message is a one-to-one dump of the variable itself, because
of 8 bit field alignments in memory (by contrast, 32 bit on ARM cores).

Primitive types can be directly mapped to C types as seen in Table 4.1.
Variable-length arrays and strings (arrays of chars) are a special case, because
they provide the number of entries by a uint32 length, followed by the serialized
entries themselves. By contrast, fixed-length arrays are treated as a sequence
of entries of the specified type. Any nested types are expanded into their
respective primitive types or arrays.

Ahead of the message content just described, a uint32 value anticipates the
total length of the content itself.

Topic messages Topic messages simply follow the length+content scheme
described above, since a topic involves uni-directional messages of the same
type.

An example of "Hello, World!" message of type std_msgs/String is in Fig-
ure 4.4. Stream offsets are written as hexadecimal indexes in bold font; values
are written as ASCII characters if printable, as hexadecimal numbers otherwise.
Comments on the right indicate the specific field being streamed, and its

37

00 01 02 03 uint32 message_length
11 00 00 00 17

04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 string data
0D 00 00 00 H e l l o , W o r l d ! 13 "Hello, World!"

Figure 4.4: Dump of a "Hello, World!" message of type std_msgs/String

00 01 02 03 uint32 message_length
10 00 00 00 16

04 05 06 07 08 09 0A 0B int64 a
D2 04 00 00 00 00 00 00 1234

0C 0D 0E 0F 10 11 12 13 int64 b
2E 16 00 00 00 00 00 00 5678

Figure 4.5: Dump of a call to service of type rospy_tutorials/AddTwoInts

human-readable value.

Service messages Service requests are serialized the same way as topic
messages. Instead, the serialization of the response needs to take into account
the status of the response, which can be an actual response value, or an error
message.
A so-called ok byte is sent ahead of the response. If 1, it means that the
following streamed data is of the expected service response type. If 0 it means
that there was an error while processing the request, and the following streamed
value is of string type, representing a human-readable error text.

Examples of rospy_tutorials/AddTwoInts service request and response are
shown by Figure 4.5 and Figure 4.6. Instead, a service response reporting
an unknown error can be seen in Figure 4.7.

4.5.3 Connection header

As soon as the topic/service client and the related server connect, they must
agree upon the streaming parameters. They include the topic/service name
and type, the possibility of multiple service requests, the use of bandwidth
optimizations, and so on. All of these parameters are set up by the connection
header, which is a special message sent at the very beginning of the whole
stream, by both endpoints. At first, a header is sent by the client, which acts
as a request. The server will then reply with another header, which acts as a
response.

The connection header is made of fields. They are encoded like strings, thus a
uint32 telling the string length is sent ahead of the string characters. The value
follows the field=value format, where the available fields and their semantics

38

00 uint8 ok
01 acknowledge

01 02 03 04 uint32 message_length
08 00 00 00 8

05 06 07 08 09 0A 0B 0C int64 sum
00 1B 00 00 00 00 00 00 6912

Figure 4.6: Dump of the response to the service call of Figure 4.5

00 uint8 ok
00 error

01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 string error_text
0D 00 00 00 U n k n o w n e r r o r 13 "Unknown error"

Figure 4.7: Dump of a service error response

depend on the topic/service request/response headers. The connection header
is introduced by a uint32 holding the whole header length, just like common
messages.

Table 4.2 summarizes the fields of a connection header, and their presence
within topic, service, or error headers (X), some of which are optional ((X))
or can be probed by the requesting header (the field value equals to *).

Figure 4.8 and Figure 4.9 show respectively the request and response con-
nection headers for the /turtle1/command_velocity of the /turtlesim Node,
by a turtlesim_teleop Node.

39

Field Description Request Response
Tpc Srv Tpc Srv Err

callerid Sender Node name X X (X) X (X)
topic Topic name X
service Service name X
md5sum MD5 sum of the type X* X* X X (X)
type Message type X* X* X X (X)
request_type Service request type X* X
response_type Service response type X* X
message_definition .msg/.srv contents (X) (X) (X) (X) (X)
persistent Persistent service (X)
latching Latched values (X)
tcp_nodelay Nagle alg. disabled (X)
error Error text X

Table 4.2: Connection header fields

00 01 02 03 uint32 header_length
91 00 00 00 145

04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A (string field)
13 00 00 00 c a l l e r i d = / t u r t l e s i m

1B 1C 1D 1E 1F 20 21 22 23 24 25 (string field)
27 00 00 00 m d 5 s u m =
26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35
9 d 5 c 2 d c d 3 4 8 a c 8 f 7
36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45
6 c e 2 a 4 3 0 7 b d 6 3 a 1 3

46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 (string field)
0D 00 00 00 t c p _ n o d e l a y = 0

57 58 59 5A 5B 5C 5D 5E 5F 60 (string field)
1F 00 00 00 t o p i c =
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79
/ t u r t l e 1 / c o m m a n d _ v e l o c i t y

7A 7B 7C 7D 7E 7F 80 81 82 (string field)
17 00 00 00 t y p e =
83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94
t u r t l e s i m / V e l o c i t y

Figure 4.8: Dump of a connection header request

00 01 02 03 uint32 header_length
A5 00 00 00 165

04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E
13 00 00 00 c a l l e r i d = / t e l e o p _ t u r t l e

1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C
0A 00 00 00 l a t c h i n g = 0

2D 2E 2F 30 31 32 33 34 35 36 37
27 00 00 00 m d 5 s u m =
38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47
9 d 5 c 2 d c d 3 4 8 a c 8 f 7

48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57
6 c e 2 a 4 3 0 7 b d 6 3 a 1 3

58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E
32 00 00 00 m e s s a g e _ d e f i n i t i o n =
6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D
f l o a t 3 2 l i n e a r \n

7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D
f l o a t 3 2 a n g u l a r \n

8E 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7 A8
17 00 00 00 t y p e = t u r t l e s i m / V e l o c i t y

Figure 4.9: Dump of a response to the connection header in Figure 4.8

40

Chapter 5

The proposed framework –
µROSnode

According to the objectives of the research, explained in Chapter 3, we designed
and implemented a communication framework, µROSnode (uros inside the
code, logo in Figure 5.1), which has native compatibility with ROS, and is
targeted towards embedded systems software. Its software architecture and
implementation details highlight its modular approach, along with the design
optimized for simplicity and portability. Furthermore, we developed some tools
which help the user integrate the application software with the framework,
by generating (un)marshaling procedures, and estimating the stack usage
for memory-constrained target platforms. A development process is finally
proposed, showing an ideal way to develop an application with our framework
from scratch, or by integration.

5.1 Implementation choices

In the following, the major features and implementation choices are illustrated,
for a better understanding of the work done in the field of embedded systems.
Developing for tightly resource-constrained devices, we had to find the right
compromise between language portability and features, and between footprint
size and code elegance.

Figure 5.1: µROSnode logo

5.1.1 Language observations

The framework is written in almost pure ANSI C89 [1], also known as ISO
C90 [26], in the corrected version supported by GCC [10]. This ensures the
maximum portability across multiple platforms, as extensively illustrated by
the research strategy of Section 3.2. The framework widely uses C99 standard
integer types (e.g., uint32_t), which can mostly be defined in C89 by hand;
actually, any recent compilers support them, by including stdint.h. Conformity
to the C89 standard holds if compiling with gcc -ansi -pedantic.

The choice of this language, despite of its portability, made us accept some
strong limitations not found in other similar languages, notably its widespread
evolution C++. The lack of generic programming features, namespaces and
classes, which could have made the code strictly typed and more readable,
pushed us down to some common compromises.
For example, objects in lists are weakly addressed by pointers to void, where
C++ templates would assign them the right type; the use of typing macros
in this case worsens the readability. The absence of namespaces is solved
by prefixing function names with uros, often followed by the module name
(_lld_+module for low-level drivers); major type names are prefixed by Uros,
minor by uros_. We tried to write a clean codebase, with an user-friendly
coding style, in order to cope with the limitations of ANSI C.

As stated in Chapter 3, not all of the C++ features are available on all of the
embedded systems, or are an overkill. For example, by just enabling RTTI
the compiler generates a much bigger object code, which could not fit into the
small code memory of a microcontroller.
Additionally, the useful exception handling is not supported at all by some
compilers, target architectures, or operating systems. Moreover, the C++
language has not the same mature support of the plain old ANSI C.

5.1.2 Footprint optimizations

Wherever possible, the code was written to minimize memory usage. This
may make the code a little obfuscated, but we tried to minimize the usage of
aliased structures (through unions) only where the stack analysis tool showed

42

a great opportunity to minimize the stack usage. Anyway, such optimizations
are typically for internal use, while the user API is clean.

Thanks to the stack analysis tool, we reduced the number of function calls,
and minimized the function parameters or local variables. Although declaring
more variables with meaningful names and single assignments makes the code
more readable, the compiler was not always capable of optimizing the stack
usage. So, some functions reuse local variables or parameters to reduce the
stack usage, without aggressive reuse to not obfuscate the code.

Objects with a predictable life span are usually placed onto the stack, even
the fairly big ones. This way, the stack analysis tool can keep track of such
objects, and the programmer is aware of the consequences. Furthermore, stack
allocations are faster and managed automatically.
By contrast, heap allocations are slower (even not constant-time) and error-
prone; also, negligent allocation into the heap could saturate it (thus failing)
unpredictably. This is why we encouraged stack allocations throughout the
codebase.

In order to reduce stack usage, we avoided aggressive function nesting wherever
possible, while keeping a reasonable degree of factorization.

Object code size is a minor concern in our perspective, since the latest micro-
controllers have more than enough space, as proven in Section 3.2. Nevertheless,
as common sense suggests, factorization of features, along with a set of prepro-
cessor switches to ignore unused code, can reduce the object code size.
For instance, TCPROS connection header transmission and reception functions,
which are rather lengthy, are shared between the client and the server; similarly,
XML-RPC client calls rely on a common syntax. Some optimizations made
by the compiler can help in reducing the object code footprint too, even those
which target speed.

5.2 Framework description

The framework is composed by software modules which reflect their domain of
expertise. Most of the modules are platform-independent, while some have a
platform-dependent counterpart, prefixed by lld (low-level driver) which binds
to the low-level libraries provided for the specific platform. There are also
some application-dependent modules, which should be provided by the user,
defining callback functions. Optionally, some user modules contain serialization
functions and handlers for ROS topics and services. Major optimizations for
resource-constrained platforms (embedded systems) are highlighted.

43

uros

lld

«global»
Base

«global»
Threading Conn

Handlers

MsgTypes

base threading conn

TcpRosRpcNodeUser

Figure 5.2: Logical view of µROSnode modules

Figure 5.2 shows a logical view of software modules of the framework.

5.2.1 Base module

The urosBase module provides the software features used throughout the
framework, such as basic types and memory management functions. The low-
level counterpart, uros_lld_base, provides bindings for memory management
functions.

Basic types The basic types provided by the framework are those defined by
the C99 standard, plus some commonly used types. In addition, some useful
function types (signatures) are defined, like the predicate, comparison, and
thread entry point signatures.

Strings The string type, UrosString, is used for string management, instead
of the null-terminated strings used by the C language. They consist of a size_t

field which holds the string length, followed by the pointer to the string content.
This representation optimizes string management, for example by parsing and
serialization functions, thanks to the embedded length counter; this allows
to share the same text chunk among different string descriptors, which may
employ only parts of it.

The module provides functions for conversion from C strings (both assigned or

44

cloned), checking functions, and the string comparison function.

Lists The list type, UrosList, is a uni-directional concatenated list of elements
of any types (the user is aware of). The list object itself holds the count of
entries, and the pointer to the first one. List nodes, UrosListNode, consist of a
pointer to the node data, and a pointer to the next node.

The library provides functions for common list operations (addition, removal,
existence of nodes), as well as some predicate function types, used for finding
entries.

Message types A message type record, UrosMsgType, holds the name, the
optional text description, and the MD5 sum of a topic/service message type,
usually well known inside the application domain. Thus, a global list, built at
start-up, keeps all of the message types used within the application; a set of
functions operates on this list.

Service message types are handled the same way, but on a separate global list.

Topic/service descriptors Topics and services share the same descriptor
type UrosTopic. It holds the topic/service name, the pointer to its message type,
the pointer to the handler function, a set of flags, and a reference counter. The
message type is typically contained into the global static register (see above).
The flags specify some connection settings, plus the switch between topic and
service. The reference counter is used so that the descriptor can be shared by
multiple handler instances which refer to it (shared pointer mechanism).

Heap allocators Most of the operations managed by the framework need
dynamic allocations; think about the parsing of an incoming XML-RPC request
holding a list of URIs. The heap allocator technique is used by the framework.
A set of functions permits the dynamic allocation and deletion of memory
chunks of any possible size. The library supports multiple heaps, for those
platforms with disjointed memory spaces, commonly found in embedded system
architectures.

Memory pools A common approach when managing memory blocks of the
same size, for example thread pool stacks, is the memory pool. Blocks work as
an uni-directional list, where each node is a memory chunk with an additional
reserved pointer at the very beginning, which addresses the next node in the
list.

45

A memory pool is defined by the UrosMemPool type. It holds the block size
(comprehensive of the reserved pointer), the pointer to the first block in the
list, and the number of free blocks left, the allocator function and the lock
word (for multithreaded access).
If the allocator function is provided, when the pool is full and a new block is
requested, then the allocator function will create a new block. Otherwise, the
memory pool has fixed size, and the applicant thread is suspended.

The library provides functions for the creation of a memory pool, both dynam-
ically by an allocator function, or from a fixed-size memory chunk (array), and
functions for requesting or releasing blocks.

The memory pool mechanism illustrated above is platform independent, but
can be overridden for native memory pools, if available.

5.2.2 Connectivity module

The urosConn module provides the TCP and UDP connectivity features of
the framework. The low-level counterpart, uros_lld_conn, interfaces to the
network stack chosen by the user.

Addresses The library provides data types for holding an IP number (UrosIp),
and a TCP or UDP address (UrosAddr). Some helper functions can resolve
hostnames or ROS URIs to addresses.

Connection record The connection record, UrosConn, holds the local and
remote addresses, the protocol identifier, and the total number of received and
transmitted bytes. Some fields may be added by the chosen low-level driver.

Comparison with BSD sockets

The connection life cycle and usage are equivalent to the widespread POSIX
sockets [11], with only a few meaningful exceptions, so the reader is aware of
consulting the POSIX sockets manual. The differences, explained below, are
only in the transmission and reception call behaviors. They were introduced
for a higher degree of portability among different network stacks; for example,
there was no other clever way to provide bindings for the LWIP stack, while
keeping a reasonable implementation for POSIX sockets. Connections can also
support timeouts, if available on the target architecture.

46

Transmission A call to urosConnSend() (or related) sends the specified chunk
of data in its entirety, while POSIX sockets can send it partially (even not at
all).

Reception A call to urosConnRecv() (or related) fills a buffer provided by
the low-level driver, instead of a buffer provided by the user as with POSIX
sockets.

5.2.3 XML-RPC module

The urosRpc module provides all of the XML-RPC features needed by a
ROS-compliant Node, like parsing and streaming functions, along with client
calls and the Slave API server.

Parameters A XML-RPC parameter is described by UrosRpcParam. It spec-
ifies the value class (parameter type switch), and the polymorphic value itself.
See Section 4.3 for more information about XML-RPC parameter types.

Parameter lists A parameter list, UrosRpcParamList, is a double-ended,
uni-directional list of UrosRpcParamNode entries. The list descriptor holds the
number of entries and pointers to the head and tail nodes. A node embeds a
UrosRpcParam value, and the pointer to the next node.

Such a structure makes parameter management easier while parsing or pro-
cessing XML-RPC streams. Indeed, nodes are appended at the end (tail), and
the list can still be traversed from the oldest node (head) to the newest node
(tail); by contrast, a UrosList can be managed in constant time and traversed
only in reverse order. The embedding of the value inside the node avoids the
unneeded indirections and heap fragmentation of a UrosListNode.

Parser Being an XML-based language, one of the many XML parsers supplied
by external libraries could be used for XML-RPC parsing. Anyway, most (if
not all) were not designed specifically for resource-constrained platforms, as
embedded systems are. Thus, this module provides an optimized parser, which
can perform a one-pass parsing of the incoming XML-RPC request over HTTP,
with small code and stack footprints.

The UrosRpcParser record holds the last error code (convenient for avoiding
local variables on the stack), the pointer to the connection, and fields for
parsing; among these, the pointer to the received HTTP buffer and its length,

47

and the current cursor status. Moreover, a buffer holds a possible incoming
string entity; indeed, the only case where the LL(k) hypotheses [24] do not
hold is when a value is of string type without string tags, so a workaround
is to prefetch a string of the maximum length possible.

Streamer The library is also capable of streaming XML-RPC messages
over HTTP. The streamer object type is UrosRpcStreamer, which is structured
similarly to the parser; this makes aliasing possible wherever needed, by reusing
a memory chunk for both the parser and the streamer (mutually exclusive),
thus optimizing the memory usage.

Calls A set of all of the possible ROS client calls to the Master, Slave, and
Parameter server APIs is available. Their footprint in both code and memory
usage is kept to a minimum, by exploiting the common syntax and XML-RPC
parameters.

Slave The framework is used to create a Slave ROS Node, so it exposes
its Slave API server, performed by the Slave server thread. It listens to any
incoming XML-RPC request messages, and dispatches them to the appropriate
Slave API method handler, which processes them and generates the expected
response message.

5.2.4 TCPROS module

The urosTcpRos module provides functions to communicate through the
TCPROS protocol.

Connection status The TCPROS connection status is held by the descrip-
tor, UrosTpcRosStatus, which specifies the caller name, the referenced topic or
service descriptor and flags, the exit request flag, and other options.

Functions Since the TCPROS protocol is very close to the binary representa-
tion in memory, its functions are merely shorthands for raw data transmission
and reception. Instead, (un)marshaling routines should be implemented by
application-specific code, inside the urosMsgTypes module (see Section 5.2.8).
A pair of functions can send and receive TCPROS connection headers, for both
publishers and subscribers.

48

Macros Furthermore, to simplify the body of topic/service handler func-
tions, a set of useful macros provided. They are expanded to (un)marshaling
statements, along with meaningful error checking, (un)initialization, and
(de)allocation statements. Those macros are extensively used by those handlers
created by the code generator (see Section 5.3.1).

Arrays In order to manage TCPROS variable-length arrays, records of type
UrosTcpRosArray can be used by (un)marshaling procedures. The array type
holds the number of entries, and a pointer to the entries memory chunk (of
any type, the user is aware of type checking).

5.2.5 Node module

The urosNode module manages the configuration, the status, and the life of
the Node singleton.

Configuration The configuration record, UrosNodeConfig, holds the Node
configuration, loaded at boot time. It consists of the node name, the URI
and the TCP/IP addresses of the remote Master XML-RPC server, the local
XML-RPC Slave server, and the local TCPROS server.

Status The status record, UrosNodeStatus, holds the runtime status of the
Node. It contains the publishers and subscribers lists, the active TCPROS
connections list, the thread (and memory) pools for XML-RPC and TCPROS
handlers, and functions for multithreaded access to all of them.

Registration functions A set of routines is used to manage topic publica-
tions/subscriptions, service publications/calls, and parameter subscriptions.
These routines perform checks and operations on the Node status lists, as well
as automatic management of TCPROS channels to be established or closed.

Node thread The Node thread takes care of the life of the Node. It populates
the thread pools, registers topics/services/parameters to the Master node, keeps
checking if the latter is always reachable, and performs a graceful shutdown in
the reverse order.

49

5.2.6 Threading module

The urosThreading module provides a multithreading environment as needed
by the framework, like threads, synchronization primitives, and thread pools.
The low-level driver, uros_lld_threading, binds to the multithreading API
of the target operating system.

Primitives The synchronization primitives supplied by the framework are
the canonical ones, such as semaphores, mutexes, and condition variables.
Their usage should be straightforward.

Threads As for synchronization primitives, threads follow a canonical ap-
proach. A thread can be created with a stack either from the heap or from a
memory pool; the thread can be eventually joined.

Thread pools The threading library includes a thread pool mechanism,
where thread pools have UrosThreadPool type, and they make use of memory
pools (UrosMemPool) as their stack supplier. The thread pool can be started
(threads created) and stopped (threads joined) gracefully.

5.2.7 User module

Some features of the framework cannot work without some kind of management
by the user application. Callback functions of the urosUser module provide
the link between the framework internals and the user application.

Node configuration persistence If deciding not to load the default, hard-
coded Node configuration at boot time, a pair of load/save functions access a
non-volatile memory device.

Registrations and unregistrations There is a set of functions to manage
message type, topic, and service (un)registration callbacks, triggered by the
Node thread.

Shutdown callback A callback function must be defined to gracefully close
communication channels, and release resources whenever a shutdown() remote
call is issued to the Node.

50

Parameter update callback A further callback function is triggered when-
ever the Master issues a paramUpdate() to this Node, holding the global ROS
parameter name, and its value.

5.2.8 Message types module

An optional module, urosMsgTypes, should provide the (un)marshaling func-
tions of topic and service message types, along with their registration. This
approach is highly suggested, as it keeps the codebase clean and easily main-
tainable. This module is application-dependent, and it can be automatically
generated by the code generator tool. See Section 5.3.1 for in-depth description.

5.2.9 Handlers module

Another optional module, urosHandlers, should provide the topic and ser-
vice handler functions. Like for urosMsgTypes, it is highly suggested, and
automatically generated (at least its skeleton) by the code generator tool of
Section 5.3.1.

5.3 Development tools

In order to facilitate the development of user applications, a code generator, a
stack usage analyzer, and demonstration projects are included by the framework
package.

5.3.1 Code generator

Writing marshaling procedures and topic/service handler routines by hand can
take much time, and it is an error-prone task. The generation of marshaling
procedures can be automated by processing the message descriptors delivered
with ROS packages. Additionally, handler routines share a common skeleton,
which can be exploited and reused. That being so, a generation tool, urogen
(implemented as a Python 2.7 script, urosgen.py), was developed.

Compilation flow

The compilation flow, depicted in Figure 5.3, is pretty straightforward. The
tool is configured through a file (full example in Listing B.11), which lists the

51

rosmsg show rossrv show

Code generator
urosgen.py

Configuration
file

Types source
urosMsgTypes.c

Types header
urosMsgTypes.h

Service types
*.srv

Message types
*.msg

Handlers source
urosHandlers.c

Handlers header
urosHandlers.h

Figure 5.3: Code generator flowchart

topic/service names and types, along with some options. Once the involved
message type names are known, the tool loads their description from the
related .msg and .srv files of the installed ROS packages. Finally, the message
types are processed, thus producing marshaling and unmarshaling functions.
Topic and service handler stubs are generated for those names listed inside
the configuration file. The tool also generates detailed self-documentation for
Doxygen (not reported in listing examples, as well as most of the comments).

Name mangling

All ROS names have a path-like structure, with / (slash) as separator. C
identifiers cannot contain it, so ROS names are mangled by replacing / with
__ (double underscore).

Topic and service mangled names always start with __, since they have an
implicit / at the beginning.

Messages

A message type is loaded from its .msg file through a call to rosmsg show, which
removes comments and has a clean syntax. Its inherent structure mapped
to a C struct, where the mangled name is prefixed by msg__ (msg_name).
Primitive types are directly mapped, while nested message types are declared
separately. In order to conform with the C language, structs are defined in
topological order; this can be done because ROS types cannot have circular
dependencies.

52

1 struct msg__rosgraph_msgs__Log {
2 struct msg__std_msgs__Header header;
3 uint8_t level;
4 UrosString name;
5 UrosString msg;
6 UrosString file;
7 UrosString function;
8 uint32_t line;
9 UROS_VARARR(UrosString) topics;

10 };
11
12 #define msg__rosgraph_msgs__Log__DEBUG ((uint8_t)1)
13 #define msg__rosgraph_msgs__Log__INFO ((uint8_t)2)
14 #define msg__rosgraph_msgs__Log__WARN ((uint8_t)4)
15 #define msg__rosgraph_msgs__Log__ERROR ((uint8_t)8)
16 #define msg__rosgraph_msgs__Log__FATAL ((uint8_t)16)

Listing 5.1: Definition of the rosgraph_msgs/Log descriptor and its constant values

1 size_t length_msg__rosgraph_msgs__Log(
2 struct msg__rosgraph_msgs__Log *objp
3) {
4 size_t length = 0;
5 uint32_t i;
6
7 urosAssert(objp != NULL);
8
9 length += length_msg__std_msgs__Header(&objp->header);

10 length += sizeof(uint8_t);
11 length += sizeof(uint32_t) + objp->name.length;
12 length += sizeof(uint32_t) + objp->msg.length;
13 length += sizeof(uint32_t) + objp->file.length;
14 length += sizeof(uint32_t) + objp->function.length;
15 length += sizeof(uint32_t);
16 length += sizeof(uint32_t);
17 length += (size_t)objp->topics.length * sizeof(uint32_t);
18 for (i = 0; i < objp->topics.length; ++i) {
19 length += objp->topics.entriesp[i].length;
20 }
21
22 return length;
23 }

Listing 5.2: Stream length computation of a rosgraph_msgs/Log message

A message type example, rosgraph_msgs/Log, is in Listing 5.1.

The code generator creates functions for the following operations: initialization,
cleaning, length computation, marshaling, and unmarshaling.

The initialization function (init_+msg_name, Listing 5.3) sets the prelim-
inary, safe values. The cleaning function (clean_+msg_name, Listing 5.4)
deallocates any allocated fields, reaching the safe initialization state.

The length computation function (length_+msg_name, Listing 5.2) computes
the length of the serialized message.

The marshaling function (send_+msg_name, Listing 5.6) serializes the mes-
sage contents and sends them over the outgoing TCPROS stream. Instead,
the unmarshaling function (recv_+msg_name, Listing 5.5) unserializes the
received message from the incoming TCPROS stream.

53

1 void init_msg__rosgraph_msgs__Log(
2 struct msg__rosgraph_msgs__Log *objp
3) {
4 uint32_t i;
5
6 urosAssert(objp != NULL);
7
8 init_msg__std_msgs__Header(&objp->header);
9 urosStringObjectInit(&objp->name);

10 urosStringObjectInit(&objp->msg);
11 urosStringObjectInit(&objp->file);
12 urosStringObjectInit(&objp->function);
13 urosTcpRosArrayObjectInit((UrosTcpRosArray *)&objp->topics);
14 for (i = 0; i < objp->topics.length; ++i) {
15 urosStringObjectInit(&objp->topics.entriesp[i]);
16 }
17 }

Listing 5.3: Initialization of a rosgraph_msgs/Log descriptor

1 void clean_msg__rosgraph_msgs__Log(
2 struct msg__rosgraph_msgs__Log *objp
3) {
4 uint32_t i;
5
6 if (objp == NULL) { return; }
7
8 clean_msg__std_msgs__Header(&objp->header);
9 urosStringClean(&objp->name);

10 urosStringClean(&objp->msg);
11 urosStringClean(&objp->file);
12 urosStringClean(&objp->function);
13 for (i = 0; i < objp->topics.length; ++i) {
14 urosStringClean(&objp->topics.entriesp[i]);
15 }
16 urosTcpRosArrayClean((UrosTcpRosArray *)&objp->topics);
17 }

Listing 5.4: Cleaning function of a rosgraph_msgs/Log descriptor

54

1 uros_err_t recv_msg__rosgraph_msgs__Log(
2 UrosTcpRosStatus *tcpstp,
3 struct msg__rosgraph_msgs__Log *objp
4) {
5 uint32_t i;
6
7 urosAssert(tcpstp != NULL);
8 urosAssert(urosConnIsValid(tcpstp->csp));
9 urosAssert(objp != NULL);

10 #define _CHKOK { if (tcpstp->err != UROS_OK) { goto _error; } }
11
12 recv_msg__std_msgs__Header(tcpstp, &objp->header); _CHKOK
13 urosTcpRosRecvRaw(tcpstp, objp->level); _CHKOK
14 urosTcpRosRecvString(tcpstp, &objp->name); _CHKOK
15 urosTcpRosRecvString(tcpstp, &objp->msg); _CHKOK
16 urosTcpRosRecvString(tcpstp, &objp->file); _CHKOK
17 urosTcpRosRecvString(tcpstp, &objp->function); _CHKOK
18 urosTcpRosRecvRaw(tcpstp, objp->line); _CHKOK
19 urosTcpRosArrayObjectInit((UrosTcpRosArray *)&objp->topics);
20 urosTcpRosRecvRaw(tcpstp, objp->topics.length); _CHKOK
21 objp->topics.entriesp = urosArrayNew(objp->topics.length,
22 UrosString);
23 if (objp->topics.entriesp == NULL) { tcpstp->err = UROS_ERR_NOMEM; goto _error; }
24 for (i = 0; i < objp->topics.length; ++i) {
25 urosTcpRosRecvString(tcpstp, &objp->topics.entriesp[i]); _CHKOK
26 }
27
28 return tcpstp->err = UROS_OK;
29 _error:
30 clean_msg__rosgraph_msgs__Log(objp);
31 return tcpstp->err;
32 #undef _CHKOK
33 }

Listing 5.5: Reception and unmarshaling of a rosgraph_msgs/Log message

1 uros_err_t send_msg__rosgraph_msgs__Log(
2 UrosTcpRosStatus *tcpstp,
3 struct msg__rosgraph_msgs__Log *objp
4) {
5 uint32_t i;
6
7 urosAssert(tcpstp != NULL);
8 urosAssert(urosConnIsValid(tcpstp->csp));
9 urosAssert(objp != NULL);

10 #define _CHKOK { if (tcpstp->err != UROS_OK) { return tcpstp->err; } }
11
12 send_msg__std_msgs__Header(tcpstp, &objp->header); _CHKOK
13 urosTcpRosSendRaw(tcpstp, objp->level); _CHKOK
14 urosTcpRosSendString(tcpstp, &objp->name); _CHKOK
15 urosTcpRosSendString(tcpstp, &objp->msg); _CHKOK
16 urosTcpRosSendString(tcpstp, &objp->file); _CHKOK
17 urosTcpRosSendString(tcpstp, &objp->function); _CHKOK
18 urosTcpRosSendRaw(tcpstp, objp->line); _CHKOK
19 urosTcpRosSendRaw(tcpstp, objp->topics.length); _CHKOK
20 for (i = 0; i < objp->topics.length; ++i) {
21 urosTcpRosSendString(tcpstp, &objp->topics.entriesp[i]); _CHKOK
22 }
23
24 return tcpstp->err = UROS_OK;
25 #undef _CHKOK
26 }

Listing 5.6: Marshaling and transmission of a rosgraph_msgs/Log message

55

Service messages

Service messages are a pair of plain in/out messages, thus being split into an
input struct (in_srv__ + mangled name, in_name) and an output struct

(out_srv__ + mangled name, out_name), shown in Listing 5.7. They are
loaded from the relative .srv file through a call to rossrv show, similarly to
plain messages.

Each of the sub-messages have dedicated initialization (Listing 5.9), cleaning
(Listing 5.10), and length computation (Listing 5.8) functions, with the
assignments and prefixes seen above.

Only the input message has an unmarshaling function (recv_+in_name,
Listing 5.11), while only the output message has a marshaling function
(send_+out_name, Listing 5.12).

Type registrations

The urosMsgTypesRegStaticTypes() procedure registers all message types to
their respective static registers (see Section 5.2.1), as reported by Listing 5.13.

Handler routines

Handler routines, except those for service calls, are supposed to work inside
their own thread. The user can decide whether to place local message variables
on the stack or in the heap, to optimize and harmonize memory management;
as a rule of thumb, small message descriptors are put on the stack, big message
descriptors on the heap.

Topic publishers The topic publisher routine, pub_tpc + mangled name,
generates and sends plain messages to the subscriber, until disconnection.

A generated template can be seen in Listing 5.14, where the message descriptor
is allocated into the heap. The user is only required to remove the dummy
loop statements, and fill in the msgp descriptor fields.

Topic subscribers On the other hand, the topic subscriber routine, sub_tpc
+ mangled name, continuously receives and processes messages until disconnec-
tion.

56

1 struct in_srv__turtlesim__Spawn {
2 float x;
3 float y;
4 float theta;
5 UrosString name;
6 };
7
8 struct out_srv__turtlesim__Spawn {
9 UrosString name;

10 };

Listing 5.7: Definition of the turtlesim/Spawn descriptors

1 size_t length_in_srv__turtlesim__Spawn(
2 struct in_srv__turtlesim__Spawn *objp
3) {
4 size_t length = 0;
5
6 urosAssert(objp != NULL);
7
8 length += sizeof(float);
9 length += sizeof(float);

10 length += sizeof(float);
11 length += sizeof(uint32_t) + objp->name.length;
12
13 return length;
14 }
15
16 size_t length_out_srv__turtlesim__Spawn(
17 struct out_srv__turtlesim__Spawn *objp
18) {
19 size_t length = 0;
20
21 urosAssert(objp != NULL);
22
23 length += sizeof(uint32_t) + objp->name.length;
24
25 return length;
26 }

Listing 5.8: Stream length computation of turtlesim/Spawn messages

As seen in Listing 5.15, the user is only required to process the contents of
the received message, msgp.

Service publishers The service publisher, pub_srv + mangled name, re-
ceives the request message (in_name), processes it, then sends the response
message (out_name) if successful, or the error string if unsuccessful. If persis-
tent, these operations are repeated until disconnection.

Listing 5.16 is the generated template of a service publisher. It is an union
of message reception and transmission, so the user must provide code for both
the request processing and the response generation.

Service calls The service call routine, call_srv + mangled name, is executed
by clients. It sends a request to the publisher, then receives the response or
the error string. As opposed to the other handler routines, which generate or
process messages within their body, the service call routine is used only for

57

1 void init_in_srv__turtlesim__Spawn(
2 struct in_srv__turtlesim__Spawn *objp
3) {
4 urosAssert(objp != NULL);
5
6 urosStringObjectInit(&objp->name);
7 }
8
9 void init_out_srv__turtlesim__Spawn(

10 struct out_srv__turtlesim__Spawn *objp
11) {
12 urosAssert(objp != NULL);
13
14 urosStringObjectInit(&objp->name);
15 }

Listing 5.9: Initialization of turtlesim/Spawn descriptors

1 void clean_in_srv__turtlesim__Spawn(
2 struct in_srv__turtlesim__Spawn *objp
3) {
4 urosAssert(objp != NULL);
5
6 urosStringClean(&objp->name);
7 }
8
9 void clean_out_srv__turtlesim__Spawn(

10 struct out_srv__turtlesim__Spawn *objp
11) {
12 urosAssert(objp != NULL);
13
14 urosStringClean(&objp->name);
15 }

Listing 5.10: Cleaning function of turtlesim/Spawn descriptors

communication; message descriptors are also allocated outside.

An example of generated handler is shown in Listing 5.17. The user is not
required to do anything, but it is suggested to deallocate the request descriptor
before receiving the response, in order to reduce the memory usage.

58

1 uros_err_t recv_in_srv__turtlesim__Spawn(
2 UrosTcpRosStatus *tcpstp,
3 struct in_srv__turtlesim__Spawn *objp
4) {
5 urosAssert(tcpstp != NULL);
6 urosAssert(urosConnIsValid(tcpstp->csp));
7 urosAssert(objp != NULL);
8 #define _CHKOK { if (tcpstp->err) { goto _error; } }
9

10 urosTcpRosRecvRaw(tcpstp, objp->x); _CHKOK
11 urosTcpRosRecvRaw(tcpstp, objp->y); _CHKOK
12 urosTcpRosRecvRaw(tcpstp, objp->theta); _CHKOK
13 urosTcpRosRecvString(tcpstp, &objp->name); _CHKOK
14
15 return tcpstp->err = UROS_OK;
16 _error:
17 clean_in_srv__turtlesim__Spawn(objp);
18 return tcpstp->err;
19 #undef _CHKOK
20 }

Listing 5.11: Reception and unmarshaling of a turtlesim/Spawn request message

1 uros_err_t send_out_srv__turtlesim__Spawn(
2 UrosTcpRosStatus *tcpstp,
3 struct out_srv__turtlesim__Spawn *objp
4) {
5 urosAssert(tcpstp != NULL);
6 urosAssert(urosConnIsValid(tcpstp->csp));
7 urosAssert(objp != NULL);
8 #define _CHKOK { if (tcpstp->err) { return tcpstp->err; } }
9

10 urosTcpRosSendString(tcpstp, &objp->name); _CHKOK
11
12 return tcpstp->err = UROS_OK;
13 #undef _CHKOK
14 }

Listing 5.12: Marshaling and transmission of a turtlesim/Spawn response message

1 void urosMsgTypesRegStaticTypes(void) {
2
3 urosRegisterStaticMsgTypeSZ("rosgraph_msgs/Log",
4 NULL, "acffd30cd6b6de30f120938c17c593fb");
5
6 urosRegisterStaticMsgTypeSZ("std_msgs/Header",
7 NULL, "2176decaecbce78abc3b96ef049fabed");
8
9 urosRegisterStaticSrvTypeSZ("turtlesim/Spawn",

10 NULL, "0b2d2e872a8e2887d5ed626f2bf2c561");
11 }

Listing 5.13: Registration of the static types used in the examples above

59

1 uros_err_t pub_tpc__rosout(UrosTcpRosStatus *tcpstp) {
2
3 UROS_TPC_INIT_H(msg__rosgraph_msgs__Log);
4
5 while (!urosTcpRosStatusCheckExit(tcpstp)) {
6 /* TODO: Generate the contents of the message.*/
7 urosThreadSleepSec(1); continue; /* TODO: Remove this dummy line.*/
8
9 UROS_MSG_SEND_LENGTH(msgp, msg__rosgraph_msgs__Log);

10 UROS_MSG_SEND_BODY(msgp, msg__rosgraph_msgs__Log);
11
12 clean_msg__rosgraph_msgs__Log(msgp);
13 }
14 tcpstp->err = UROS_OK;
15
16 _finally:
17 UROS_TPC_UNINIT_H(msg__rosgraph_msgs__Log);
18 return tcpstp->err;
19 }

Listing 5.14: Generated handler template for a common /rosout publisher

1 uros_err_t sub_tpc__rosout(UrosTcpRosStatus *tcpstp) {
2
3 UROS_TPC_INIT_H(msg__rosgraph_msgs__Log);
4
5 while (!urosTcpRosStatusCheckExit(tcpstp)) {
6 UROS_MSG_RECV_LENGTH();
7 UROS_MSG_RECV_BODY(msgp, msg__rosgraph_msgs__Log);
8
9 /* TODO: Process the received message.*/

10
11 clean_msg__rosgraph_msgs__Log(msgp);
12 }
13 tcpstp->err = UROS_OK;
14
15 _finally:
16 UROS_TPC_UNINIT_H(msg__rosgraph_msgs__Log);
17 return tcpstp->err;
18 }

Listing 5.15: Generated handler template for a /rosout subscriber

60

1 uros_err_t pub_srv__reconfigure(UrosTcpRosStatus *tcpstp) {
2
3 UROS_SRV_INIT_HISO(in_srv__dynamic_reconfigure__Reconfigure,
4 out_srv__dynamic_reconfigure__Reconfigure);
5
6 do {
7 UROS_MSG_RECV_LENGTH();
8 UROS_MSG_RECV_BODY(inmsgp, in_srv__dynamic_reconfigure__Reconfigure);
9

10 /* TODO: Process the request message.*/
11 tcpstp->err = UROS_OK;
12 urosStringClean(&tcpstp->errstr);
13 okByte = 1;
14
15 clean_in_srv__dynamic_reconfigure__Reconfigure(inmsgp);
16
17 /* TODO: Generate the contents of the response message.*/
18
19 UROS_SRV_SEND_OKBYTE_ERRSTR();
20 UROS_MSG_SEND_LENGTH(&outmsg, out_srv__dynamic_reconfigure__Reconfigure);
21 UROS_MSG_SEND_BODY(&outmsg, out_srv__dynamic_reconfigure__Reconfigure);
22
23 clean_out_srv__dynamic_reconfigure__Reconfigure(&outmsg);
24 } while (tcpstp->topicp->flags.persistent &&
25 !urosTcpRosStatusCheckExit(tcpstp));
26 tcpstp->err = UROS_OK;
27
28 _finally:
29 UROS_SRV_UNINIT_HISO(in_srv__dynamic_reconfigure__Reconfigure,
30 out_srv__dynamic_reconfigure__Reconfigure);
31 return tcpstp->err;
32 }

Listing 5.16: Generated handler template for a service publisher

1 uros_err_t call_srv__reconfigure(
2 UrosTcpRosStatus *tcpstp,
3 struct in_srv__dynamic_reconfigure__Reconfigure *inmsgp,
4 struct out_srv__dynamic_reconfigure__Reconfigure *outmsgp
5) {
6
7 UROS_SRVCALL_INIT(in_srv__dynamic_reconfigure__Reconfigure,
8 out_srv__dynamic_reconfigure__Reconfigure);
9

10 UROS_MSG_SEND_LENGTH(inmsgp, in_srv__dynamic_reconfigure__Reconfigure);
11 UROS_MSG_SEND_BODY(inmsgp, in_srv__dynamic_reconfigure__Reconfigure);
12
13 /* TODO: Dispose the contents of the request message.*/
14
15 UROS_SRV_RECV_OKBYTE();
16 UROS_MSG_RECV_LENGTH();
17 UROS_MSG_RECV_BODY(outmsgp, out_srv__dynamic_reconfigure__Reconfigure);
18
19 tcpstp->err = UROS_OK;
20 _finally:
21 return tcpstp->err;
22 }

Listing 5.17: Generated handler template for a client service call

61

5.3.2 Static stack analysis

When dealing with tightly resource-constrained platforms running multiple
threads, it is important to keep the stack usage at a minimum. This is even
more important when exploiting thread pools with homogeneous stack size,
because this size depends on the maximum stack depth reached by any of its
worker threads. A static stack analysis tool come handy to estimate, better if
precisely, the stack usage of a set of functions of interest. The stack analysis
tool provided with µROSnode is urosstan, implemented by the urosstan.py

Python script.

Analysis flow

A diagram of the compilation flow is shown in Figure 5.4. The user supplies
the configuration file (actual example in Listing B.12) and the static analysis
outputs to the tool. For each entry point, it builds the call graph, and it
traces the paths with maximum stack usage. The tool then outputs the list of
unresolved symbols, a report for every entry point, and a summary.

Configuration

The user must provide a configuration file, which specifies the analysis options,
and the sets of entry points, custom terminator symbols, and source file
mappings.

Entry points An analysis is performed for each entry point (global function
name) listed in the entry point set. Each entry point is assigned a value which
indicates the stack depth before entering it.

Terminators The user may want to cut away some call graph branches, or to
manually define the stack usage of unresolved symbols. For instance, external
library functions or assembly calls cannot be analyzed, but the user can still
provide the maximum number of bytes allocated by those call triggers. This
way, the call graph analysis is stopped when reaching any of the terminator
symbols provided by the user.

File mappings The stack analyzer relies upon the static analysis generated
by the GCC toolchain. The mapping set maps each source file to the .gkd,

62

GCC toolchain GNU nm

Analysis results

Static stack analyzer
urosstan.py

Configuration
file

RTL dumps
*.gkd

Stack reports
*.su

Object files
*.o

Symbol lists
*.nm

Source code
*.c *.cpp

Figure 5.4: Static stack analysis flowchart

.su, and .nm outputs; respectively, the GCC RTL dump, the GCC stack usage
report, and the GNU nm object symbols.

Observations about the effectiveness

Despite of its usefulness, there are often serious obstacles which reduce the
effectiveness of the static analysis. Primarily, it analyzes the output files of the
GCC toolchain only for C/C++ source files. External libraries and assembly
code cannot be tracked by the GCC static analysis, thus being impossible to
build the complete call graph, or to exploit some stack usage reports.

Moreover, indirect functions assigned at runtime cannot be tracked by static
analysis tools. This is why the user should be aware of providing a meaningful
list of entry points.

Nevertheless, recursion is an unremovable obstacle for static analysis. The tool
can spot cycles within the call graphs, so the user is encouraged to profile their
impact on the stack usage at runtime.

Anyway, the tool is still very useful to discover paths with unexpectedly deep
allocation on stacks, or to have a better idea of the overall stack usage of the
analyzed code. This way, the user can optimize the allocation of local variables,
or harmonize stack allocation wherever possible.

The tool shows its best usefulness when there is full access to the source code,
written entirely in C/C++. By the way, the maximum precision can still be

63

achieved if the usage of all of the assembler and library functions are specified
inside the configuration file. If some of the information is missing but known
to be bounded, for example through their full-coverage runtime profiling data,
then the analysis can report at least conservative results.

It is important to point out that urosstan currently supports only the GCC
toolchain for a C/C++ codebase, because this is the toolchain we used through-
out the development of our projects. If the user is interested only of the overall
stack allocation, then a pure C/C++ codebase can be compiled with GCC and
no optimizations, still providing a rough conservative analysis. If the target
toolchain is different, the equivalence of the object code is coarse, but still
effective for preliminary analysis.

5.3.3 Demonstration projects

The package provides a turtlesim demo, which is almost equivalent to the
turtlesim_node [7] official ROS node. It supports all of its topics, services and
parameters, exploiting almost all of the features needed by a real-life Node.
The maximum number of turtles is bounded by the MAX_TURTLES constant. The
turtle pose is updated at 1 kHz, and streamed at 100 Hz.

Message types and handlers were first generated with the configuration file
shown by Listing 5.18. Since the names of turtleX/* topics and services
change with the turtle, their creation and deletion were moved to the application
(app) module. This module handles the turtle spawn and kill operations, as
well as the generation of /rosout messages.

The static stack analysis configuration file is shown in Listing B.12.

The demo comes into two ports: one developed with only POSIX API, and
a second one which runs under ChibiOS/RT with the LWIP network stack.
Eclipse project files are included.

Project: turtlesim-posix demo

This demo follows the POSIX standard for all of its low-level features. It was
tested with Linux Mint 14 Nadia on a standard laptop, and Raspbian Wheezy
on a Raspberry Pi model B with 256 MB of RAM (see Section 6.1.3).

When the /turtlesim node is shut down, the application will exit.

64

1 # urosgen.py configuration file for turtlesim
2
3 [Options]
4 author = Andrea Zoppi <texzk@email.it>
5 licenseFile = ../../../COPYING
6 includeDir = ../include
7 sourceDir = ../src
8 nodeName = turtlesim
9 fieldComments = false

10
11 [PubTopics]
12 rosout = rosgraph_msgs/Log
13 turtleX/pose = turtlesim/Pose
14 turtleX/color_sensor = turtlesim/Color
15
16 [SubTopics]
17 turtleX/command_velocity = turtlesim/Velocity
18
19 [PubServices]
20 clear = std_srvs/Empty
21 kill = turtlesim/Kill
22 spawn = turtlesim/Spawn
23 turtleX/set_pen = turtlesim/SetPen
24 turtleX/teleport_absolute = turtlesim/TeleportAbsolute
25 turtleX/teleport_relative = turtlesim/TeleportRelative
26
27 [CallServices]
28 # none

Listing 5.18: Turtlesim configuration file for urosgen.py

Project: turtlesim-chibios+lwip

This demo uses a combination of the ChibiOS/RT RTOS and the LWIP network
stack, and can run on an ARM Cortex M4 core. Specifically, it was tested
with ChibiOS/RT 2.5.2 and LWIP 1.4.1. The processor is a STM32F407 on a
custom board with Ethernet capabilities (see Section 6.1), by using a DP83848
PHY in RMII mode. The USB port is used as a serial port terminal/shell
emulator.

When the /turtlesim node is shut down, only the Node stops running, while
the other features of the board keep running.

5.4 Integration with user applications

µROSnode was developed to be integrated into the user application with low
effort. In the following, generic integration requirements are illustrated.

Makefile scripts The µROSnode package supplies a set of Makefile scripts
to be included into the root Makefile; they can be found in the mk folder. The
main script, uros.mk, defines the lists of core source and header files, which
are required.
In addition, the user has to include scripts for the target platform, which define

65

the lists of low-level-driver source and header files. If a subsystem of the target
platform is not yet supported, it can be developed by the template files found
in the template/src/lld folder; comments labeled with TODO give instructions
for a correct implementation.

Configuration µROSnode needs to be configured for the user application.
A shared header file, urosconf.h, must be included by the application, and
provides settings for the µROSnode subsystems. A template can be found in
the template/include folder of the µROSnode package. Comments assist the
user in tuning the required settings.

Callbacks The User module (see Section 5.2.7) requires some callback func-
tions to be defined inside the urosUser.c application source file. A template
file in template/src assists in the development of such callback functions.

Handler functions The user should create the Message types and the Han-
dlers modules (see Section 5.2.8 and Section 5.2.9), so that µROSnode can
properly process message streams of topics and services. This task is assisted
by the code generator tool extensively illustrated in Section 5.3.1.

Initialization The µROSnode framework must be initialized by calling
urosInit(), which initializes the global state. This should be done when
the platform is completely initialized.
The Node is brought to life as soon as the actual user application is run. This is
accomplished by a call to urosNodeCreateThread() to create the Node thread,
which keeps track of the Node life cycle; topics, services, and parameters are
registered and unregistered by the Node thread. This thread exits when the
Node is shut down.

66

Chapter 6

Experimental results and
evaluation

In order to prove the effectiveness of µROSnode, both quantitative and qual-
itative analyses were accomplished. The quantitative analysis consists of a
set of benchmarks which show the performance of some basic yet meaningful
applications, suggesting any possible bottlenecks. Instead, the qualitative
analysis focuses more on the ease of software development on a real-life robot,
to spot implementation difficulties of a µROSnode-based application.

6.1 Benchmarks

The performance of µROSnode was evaluated through a suite of benchmarks.
Designing benchmarks is not a trivial task, because it is almost impossible to
approximate real-life applications, especially in the robotics research field.
Some basic benchmarks measured the memory occupation and speed perfor-
mance of a µROSnode-based firmware, giving an idea of the overhead introduced
by µROSnode on simple embedded systems based on recent microcontrollers.

Although these benchmarks are rather simple, even slightly more complex ones
would rely more on the multithreading and networking subsystems than on
µROSnode itself.
For instance, the CPU impact with many concurrent topics is mainly caused
by the RTOS thread synchronization performance, while other effects are
caused by the networking subsystem configuration choices (buffering, TCP
segmentation, timeouts, and so on).
Nevertheless, every real-life application needs the integration of multiple subsys-

tems running concurrently, on different operating systems, different hardware,
and implementing complex communication patterns.

6.1.1 Communication setup

The communication performance was measured by connecting the R2P_GW
board (see Section 6.1.2) to a standard notebook host, mounting an Intel T6500
processor (dual core, 2.1 GHz), through a 100 Mb/s Ethernet connection. The
firmware was compiled with GCC at the maximum default optimization level
(-O3), disabling both assertions and error messages.

The communication performed by our tests consist of a single TCPROS topic
being continuously streamed. The topic is of std_msgs/String type, so that
it is possible to easily assign contents with fixed length to each test. The
global parameter /benchmark_size controls the string length, while the global
parameter /benchmark_rate controls the message rate. The /benchmark_rate

parameter was set to 0 (no delays between messages) for both benchmarks, to
reach the maximum possible throughput.

The transmission benchmark involves a target platform which publishes the
/benchmark/output topic, subscribed by a rostopic node on the host. The
rostopic subscriber on the host machine can receive up to ≈20000 msg/s.
This benchmark evaluates the marshaling performance of µROSnode on the
target platform, by measuring the CPU usage and the rate of packets being
actually streamed.

Instead, the reception benchmark involves a /benchmark/input topic published
by a rostopic process on the host, generating messages at the maximum possible
rate, and the target platform subscribed to that topic. The throughput limit
of a rostopic publisher on the host machine is of ≈10000 msg/s.
This benchmark evaluates the unmarshaling performance, again by CPU usage
and packet rate. The topic subscriber handler consumes the incoming message
stream on-the-fly.

Result plots show the impact of the message size on both the CPU usage and
the throughput. Log-lin plots can be useful to estimate the maximum number
of concurrent threads, because usage and throughput are shown in linear scale.
Log-log plots can suggest linear relationships between some series, as well as
deriving exponential relationships. Indeed, a log-log line in the form y = mx+b
represents a lin-lin power function in the form y = 10bxm. So, two parallel
lines in a log-log plot represent a linear relationship of two power functions of
the same degree; more generally, two functions with the same distance over
the same domain are tied by a linear relationship.

68

Figure 6.1: R2P_GW prototype board

6.1.2 R2P_GW module

The Rapid Robot Prototyping [2] Gateway module [29] (R2P_GW, prototype
board in Figure 6.1) interfaces the R2P CAN network to an Ethernet network;
a prototype can be seen in Figure 6.1. It mounts a STM32F407 MCU by
STMicroelectronics, with 192 KiB RAM (112 KiB shared globally), clocked
at 168 MHz, and featuring an ARM Cortex-M4 core. The platform exposes a
UART, a CAN, an USB-FS micro-B, and a 100 Mb/s Ethernet ports; the latter
controlled by a DP83848 PHY by Texas Instruments. The default operating
system is the ChibiOS/RT RTOS, combined with the LWIP network stack.

Although this board was not designed with ROS in mind, especially memory-
wise, it is possible to turn it into a native ROS node, by integrating µROSnode
into the firmware. Its RAM size limits the maximum number of communication
threads instantiated (for both XML-RPC and TCPROS). Anyway, even by
using only the 112 KiB of shared memory provided by the microcontroller, it
is still possible to handle a few tens of communication threads, each allocating
a 2 KiB stack; this is more than enough for a simple robotics device.

Program memory and stack footprints

A benchmark computed the size of the turtlesim firmware, supplied with the
turtlesim-chibios+lwip demo of the µROSnode package, which emulates the
turtlesim demo of ROS [7]. The code was compiled with GCC by applying
the -O0, -O2, and -O3 optimizations levels. A batch had all of the µROSnode
and ChibiOS/RT assertions and checks enabled, while another batch had all of
them disabled. LWIP checks and error messages were always disabled, while

69

Component With checks [B] Without checks [B]
O0 O2 O3 O0 O2 O3

turtlesim 52332 42020 45191 32895 23629 26582
µROSnode 123270 97691 103488 61285 36660 43285
LWIP 49898 33133 40820 49195 32414 40086
ChibiOS/RT 67219 45551 49613 63250 41473 44910
unused 731281 805605 784887 817375 889824 869137

Table 6.1: Footprint of the turtlesim demo in the R2P_GW program memory

both µROSnode and ChibiOS/RT had all of the remaining features enabled in
their configuration files.

This benchmark was made by compiling a plain firmware with ChibiOS/RT
and some related features (USB, shell emulator, self-tests, and initializations),
then incrementally including LWIP, µROSnode, and the turtlesim user appli-
cation. Experimental results are summarized by Table 6.1 and Figure 6.2.
µROSnode is only slightly bigger than the operating system; this is reason-
able, since some features like XML-RPC and multithreading stuff are not that
lightweight, but they are needed. Anyway, it is small enough to leave more
than 70% (≈730 kB) of the program memory unused in the worst case, and
more than 85% (≈890 kB) in the best case.

Since µROSnode heavily relies on multithreading, maximum stack usage for
each thread was estimated. Table 6.2 summarizes the maximum stack depth
reached by the principal threads of the turtlesim demo, identified by either
thread entry point or thread pool worker functions, all of which already take
into account the space needed to be instantiated. All of the threads involved by
XML-RPC and TCPROS thread pools do not show much diversity in memory
occupation, and they never exceed 1280 B (5 × 256 B). Indeed, if threads in
a thread pool have a rather homogeneous stack usage, then the associated
memory pool is exploited properly.

Transmission performance

The transmission benchmark was run so that the board could achieve the
maximum possible speed, by setting the /benchmark_rate parameter to 0 (no
delays between messages). Result plots are depicted in Figure 6.3. Message
contents are streamed directly from a single static message (i.e. no multiple
messages are allocated).
TcpRosServer is the µROSnode topic handler function, lwipthread the LWIP
event dispatcher thread, and lwip_process the LWIP packet processing thread.

When sending messages smaller than 100 B, the topic can reach a throughput

70

O0

O2

O3

O0

O2

O3

0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

turtlesim uROSnode LWIP ChibiOS unused

Flash memory usage [KiB]

C
o
m

p
il
a
ti

o
n

o
p
ti

o
n
s

W
it
h
ch
e
ck
s

W
it
h
o
u
t
ch
e
ck
s

Figure 6.2: Footprint of the turtlesim demo in the R2P_GW program memory

of ≈20000 msg/s. This limit is actually imposed by the performance of a
rostopic process on the host. The CPU is still idle for a small amount of time,
while most of the usage is due to the LWIP packet processor. The µROSnode
topic handler has an overhead of 30%, caused by the frequent execution of its
message transmission loop.
It must be noticed that the step in the handler impact between 8 B and 16 B
is caused by the allocation of the string contents; at 8 B the data string of the
message is empty, thus not calling the allocator.

Around 100 B per message, the CPU usage becomes saturated. By increasing
the message size, the LWIP processing thread increases its contribution to
the CPU saturation almost linearly with the logarithm of the message size,
reaching a peak of ≈90% at 2000 B. At this point, the topic handler impact is
as low as 6%. The board can never reach the 100 Mb/s limit of the Ethernet
connection, but it gets closer as the message size is increased.

Beyond 2000 B per message, the 100 Mb/s limit is reached. This is confirmed
by the small growth of CPU idle time.

The log-log plot suggests a linear relationship between the throughput and the
overhead caused by the message transmission loop of the topic handler.

Reception performance

The reception benchmarks were run by sending messages to the board at the
maximum rate the host can achieve. The limit of rostopic on such machine
was set to ≈10000 msg/s. Thanks to this limit it is possible to trace graceful
CPU utilization plots of the major threads involved.

71

Thread/pool entry point functions Maximum stack depth [B]
O0 +checks O3 -checks

lwip_thread 952 740
main 264 776
pub_srv__clear 716 456
pub_srv__kill 1100 784
pub_srv__spawn 1244 904
pub_srv__turtleX__set_pen 740 472
pub_srv__turtleX__teleport_absolute 764 512
pub_srv__turtleX__teleport_relative 764 504
pub_tpc__rosout 708 432
pub_tpc__turtleX__color_sensor 660 400
pub_tpc__turtleX__pose 660 408
sub_tpc__turtleX__command_velocity 724 464
urosNodeThread 1188 888
urosRpcSlaveListenerThread 660 476
urosRpcSlaveServerThread 1004 616
urosTcpRosListenerThread 652 476
urosThreadPoolWorkerThread 240 148

Table 6.2: Stack usages of the turtlesim demo entry points on the R2P_GW working
memory

TcpRosClient is the µROSnode topic handler function, lwipthread the LWIP
event dispatcher thread, and lwip_process the LWIP packet processing thread.

A first benchmark buffers the entire received message upon reception, which
is the default behavior of the generated topic handlers, and also the most
intuitive way to process messages. This benchmark is affected by the tight
memory limits of the target platform, which cannot handle a high number of
buffered messages.

As shown by Figure 6.4, the board cannot handle more than 1000 B per
message at 10000 msg/s. At 1000 B/s, the allocator was not able to buffer
messages anymore after ≈120 seconds, because of heap fragmentation. At
2000 B/s, the allocator was able to store only 5 messages before failing. This
suggests not to buffer large messages on a tightly constrained platform, but
rather to process them on-the-fly whenever possible.

The board can receive a 10000 msg/s stream up to 500 B per message, still
having some idle CPU time left. Because of buffered message allocations, the
topic handler requires an increasing amount of CPU time, from less than 10%
for small messages, to over 50% at 500 B per message.

A second benchmark was then developed so that it excludes any buffering or
user processing code, by skipping the entire message contents being streamed
by the host. This benchmark simulates the on-the-fly processing mentioned
above. Result plots are shown in Figure 6.5.

72

The board can receive messages at 10000 msg/s up to 500 B with an idle
time higher than 50%, and an handler load less than 20%. There is a linear
relationship between the LWIP processor and messaging threads, while the
handler thread has a slight quadratic behavior due to the fragmented reception
overhead.

Between 1000 B and 2000 B the LWIP threads require ≈70% of the CPU time,
while the topic handler stays below 30%. The CPU is at full load.

Beyond 2000 B/s the 100 Mb/s is reached, indeed the CPU idle time grows a
little.

73

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

idle lwipthread lwip_process
TcpRosServer msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

idle lwipthread lwip_process
TcpRosServer msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(b) log-log

Figure 6.3: Transmission performance on R2P_GW, on-the-fly

74

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

idle lwipthread lwip_process
TcpRosClient msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

idle lwipthread lwip_process
TcpRosClient msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(b) log-log

Figure 6.4: Reception performance on R2P_GW, buffered messages

75

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

idle lwipthread lwip_process
TcpRosClient msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

idle lwipthread lwip_process
TcpRosClient msg/s 100 Mb/s

Message size [B]

T
h
re

a
d

C
P

U
u
s
a
g
e

T
h
ro

u
g
h
p
u
t

[m
s
g
/s

]

(b) log-log

Figure 6.5: Reception performance on R2P_GW, on-the-fly

76

6.1.3 Raspberry Pi

The Raspberry Pi [8] (model B, shown in Figure 6.6, abbreviated RasPi)
is a low-cost computer designed for educational purposes, developed by the
Raspberry Pi Foundation charity. Its main component is a BCM2835 system-
on-chip by Broadcom, which features an ARM1176JZF-S processor running at
700 Mhz (1 GHz boosts), and a Videocore 4 GPU, capable of high-definition
video resolutions and support for OpenGL ES2.0. It also mounts a LAN9512
PHY by SMSC, with 100 Mb/s Ethernet capabilities.
The board provides the Ethernet RJ-45 socket, two USB-HS type A ports,
HDMI and composite video outputs, stereo Line headphone socket, and a
SD-HC card slot. Most of the BCM2835 signals (GPIO, UART, I2C, SPI,
PWM, display, camera, and so on), are exposed by a set of pin headers and
Camera Interface connectors. The model used for the benchmarks mounts
256 MiB of RAM.

The operating system chosen for our experiments is Raspbian, a Debian-based
Linux distribution with specific support for the Raspberry Pi. The platform is
controlled through a SSH connection, which makes negligible impact on the
performance. No other user software or services are running, except the SSH
connection and the benchmark executables.
Instead as single threads, like for the R2P_GW benchmarks, CPU usages were
collected as aggregate values from /proc/stat. The benchmark application and
µROSnode run at the user level, while the network stack runs at the system
and interrupt levels.

Transmission performance

Similarly to R2P_GW, the RasPi generates /benchmark/output messages at
the maximum speed achievable, by not introducing forced delays. Timeouts
are disabled, and a single message actually resides in memory, being streamed
by the message loop. The transmission results are similar to those of R2P_GW
too, as seen in Figure 6.7; as expected, the curves are biased to a higher
throughput.

The platform can saturate the host rostopic receiver at ≈20000 msg/s when
the message size is not greater than ≈200 B. The CPU is used less than 50%,
mainly by system processes (around 25%) and the topic handler (around 15%).
As the message size increases from 8 B to 200 B, the impact of (software)
interrupt requests grows, but stays below 10%.

Between 200 B and 500 B per message there is a sudden increase of the

77

Figure 6.6: Raspberry Pi model B

CPU usage, saturated by interrupts and system processes, which limits the
throughput to ≈13000 msg/s. The topic handler usage stays around 15%,
which means that the Linux network stack has a substantial effect in these
circumstances.

With messages larger than 500 B there are no considerable changes in the CPU
usage. At 10000 msg/s interrupts have a share of ≈40% and system calls of
≈55%, while the topic handler uses the CPU for less than 5%. The bandwidth
gets close to 100 Mb/s, but it is still not reached at 10000 msg/s; indeed, the
idle time stays around 1% without growing.

Reception performance

The reception performance was measured by streaming messages published by
rostopic at ≈14000 msg/s, the maximum achievable by the host computer. As
for R2P_GW, the reception was first evaluated by buffering each new incoming
message, and then by processing the incoming message stream by skipping its
contents.

The results with message buffering are depicted by Figure 6.8. Up to 100 B
per message, the platform can receive all of the messages with low effort. The
CPU is idle for more than 40% of the time, with the topic handler using less
than 20% of the CPU time, and the system calls less than 40%. There is a
strange decrease in the effect of system calls at a message size of 50 B, probably

78

caused by some kernel optimization. The throughput stays at the maximum.

Between 100 B and 500 B, the CPU usage of interrupts increases over 40%, and
the CPU becomes saturated. The topic handler and system calls do not show
significant changes in their impact. After 200 B per message, the throughput
starts decreasing, but is still above 13000 msg/s.

With a message size beyond 500 B, the bandwidth is completely used. Software
interrupts use the CPU at ≈10%, while the effect of system calls keeps around
35%, and that of the topic handler decreases as low as ≈10%. The idle time
goes back to almost 50%.

The performance results of on-the-fly reception are shown in Figure 6.9.
Below 100 B per message, the platform can receive all of the messages with
low effort. The CPU is idle for ≈60% of the time, primarily used by system
calls for less than 30%, and the topic handler for ≈10%, the rest by (software)
interrupts. Again, there is a strange decrease in usage by system calls at a size
of 50 B.

Between 100 B and 500 B per message, where the CPU usage of system calls
and interrupts increases up to ≈45% and ≈35% respectively, while the topic
handler stays slightly above 10%. Here the plot shows the minimum peak of
the idle time, around 10%.

With a message size greater than 500 B, the bandwidth reaches the 100 Mb/s
limit, and the CPU load decreases. Software interrupts are steadily below 10%
as well as the topic handler, which keeps decreasing. System calls go down to
≈30%, and the idle time almost reaches 60% again.

79

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(b) log-log

Figure 6.7: Transmission performance on RasPi, on-the-fly

80

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(b) log-log

Figure 6.8: Reception performance on RasPi, buffered messages

81

1 10 100 1000 10000
0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(a) log-lin

1 10 100 1000 10000
0,01%

0,10%

1,00%

10,00%

100,00%

1000

10000

100000

1000000

10000000

user system idle
sw_irq msg/s 100 Mb/s

Message size [B]

T
h
re
a
d
C
P
U
u
s
a
g
e

T
h
ro
u
g
h
p
u
t
[m

s
g
/s
]

(b) log-log

Figure 6.9: Reception performance on RasPi, on-the-fly

82

6.2 Case study – Triskar2

µROSnode was used to teleoperate a robot, the Triskar2 [21], by a remote ROS
application. A µROSnode-based board acted as a gateway from a realtime
R2P [2] CAN network, connecting sensors and actuators, to an Ethernet
network, which is then linked to the remote host via Wi-Fi.

The gateway translates specific messages gathered from the CAN bus to native
ROS messages, and vice versa. Thanks to the code generator tool supplied with
µROSnode, the development of topic handlers was straightforward, needing
only manual addition of few more lines in the handlers stubs, to republish
messages between CAN and ROS.

6.2.1 Triskar2

Triskar2 is a highly modular, omnidirectional robot base developed by AIRLab
PoliMi. Triskar2 is modular from the mechanical, the electronic, and the
software points of view. Its small dimensions are suitable for indoor or cluttered
environments. The robot base and the fully equipped robot are shown by
Figure 6.10.

Mechanics

Triskar2 is a three-wheeled robot, with wheels spread at 120◦ on a circle, having
their axes crossed at the center of the body frame. Its wheels, spun by motor
modules (motor, transmission, encoder), are of omni type, to achieve three
degrees of freedom.

Its kinematics diagram is depicted in Figure 6.11. The body frame, which
has origin in the middle of the robot, is aligned so that the y axis points
forwards, the x axis rightwards, and the z axis upwards. The angle between
the x axes of body and world frames, with respect to the z axis, is γ. Wheel
angular positions are θ1, θ2, and θ3. The only meaningful parameters, from
the kinematics point of view, are the wheel radius, R, and the distance of the
wheel origin from the body frame origin, L.

Direct kinematics:
ẋ = R cos

(
2
6π
)

θ̇1 +R cos
(

2
6π
)
θ̇2 −R θ̇3

ẏ = −R cos
(

1
6π
)
θ̇1 +R cos

(
1
6π
)
θ̇2

L γ̇ = −R θ̇1 −R θ̇2 −R θ̇3

(6.1)

83

(a) robot base (b) fully equipped

Figure 6.10: The Triskar2 robot

120°

120°

t1

t2

t3

θ1

θ2

θ3

y

x
z

γ
L

R

Figure 6.11: Kinematics diagram of Triskar2, top view

Inverse kinematics:
R θ̇1 = cos

(
2
6π
)
ẋ − cos

(
1
6π
)
ẏ −L γ̇

R θ̇2 = cos
(

2
6π
)
ẋ + cos

(
1
6π
)
ẏ −L γ̇

R θ̇3 = −1 ẋ −L γ̇

(6.2)

Electronics

Triskar2 hosts the Rapid Robot Prototyping Power [17], DC motor [15], IR [16],
and Gateway [29] modules. They are connected by a CAN bus, and can com-
municate with ROS through the µROSnode-based firmware running on the
Gateway module, which in turn is linked to the on-board computer via Ether-

84

Figure 6.12: Devices and connections for the teleoperator application

net.
Two webcams, plugged to the on-board computer, provide vision capabilities
in the forwards and upwards directions.
The robot optionally mounts a safety switch to shut down motors in case of
emergency, and an USB-CAN debugger.
Figure 6.12 displays the devices and connections for the teleoperator applica-
tion.

Computing

Triskar2 is fitted with a small-form-factor computer by Zotac, based on an Intel
Core i3 2330M (dual core, 2.2 GHz), equipped with 6 GB RAM and Wi-Fi
connectivity. The operating system is Ubuntu 12.04, hosting a full installation
of ROS Groovy.

6.2.2 Software architecture

Our goal was to develop a first-person teleoperator application, to drive the
robot from remote using ROS. We exploited the R2P Gateway module to act
as a bridge between the underlying CAN-based network, involving sensors and
actuators, and the IP-based network, managed by ROS.

85

Topics

Triskar2 spans two communication domains, R2P and ROS, both working in a
publish/subscribe fashion. Figure 6.13 summarizes the topics involved in the
teleoperator application, highlighting their nature (R2P or ROS) and physical
location (on the robot or on the remote host).

R2P Topics on the R2P side are exchanged among board modules through a
CAN bus, which resides on the robot.
The teleoperator application needs the speed setpoints to be sent from the
Gateway module to the motor boards via the /speed123 topic, which groups
the speed setpoints of the three motors.
The proximity sensor board sends the value of the four proximity sensors, one
for each cardinal direction with respect to the body frame, to the gateway, via
the /irraw topic.

ROS Topics on the ROS side are exchanged locally via 100 Mb/s Ethernet
or shared-memory nodelets, and remotely via Wi-Fi.
The camera, mounted on the robot, streams frames to the remote host via the
/image_raw topic, which uses the compressed format to save bandwidth. The
uncompressed frames, republished by a local ROS node, are gathered by the
teleoperator node via the /triskar/front_camera topic.
Velocity setpoints, changed by remote keyboard and mouse user interactions,
are sent to the Gateway module via the /triskar/velocity topic.
On the other hand, the proximity values are received by the remote host from
the Gateway module via the /triskar/proximity topic.

Gateway software

The R2P Gateway application translates R2P topic messages to ROS topic mes-
sages, and vice versa, performing the required mathematical transformations.
Detailed listings can be found in Appendix B.4.

Teleoperator software

We created a ROS package, triskar, which provides the teleop_node ROS
Node. It is written in Python, employing the pygame library [19] to draw the
user interface and to manage user inputs. The teleoperator node only requires
around 200 lines of code; its source code can be found in Listing B.7. This

86

ROS nodes R2P nodes

triskar
teleop_node

image_transport
republish raw

uvc_camera
camera_node

IR_module
ir

DCM_module
motor_1

DCM_module
motor_2

DCM_module
motor_3

GW_module
triskar_node

sensor_msgs/Image
/triskar/front_camera

sensor_msgs/CompressedImage
/image_raw/compressed

triskar/Velocity
/triskar/velocity

triskar/Proximity
/triskar/proximity

SpeedSetpoint3
/speed123

IRRaw
/irraw

remote side robot side

Figure 6.13: ROS and R2P topics of the Triskar2 teleoperator application

Key Binding
W Move forward
S Move back
A Strafe left
D Strafe right
Q Turn left
E Turn right

Shift Speed boost
Esc Ungrab mouse

Mouse Binding
Move forward Move forward
Move back Move back
Move left Turn left
Move right Turn right
Left button held Integrate mouse impulses
Right button held Strafe instead of turn

Table 6.3: User input bindings for the Triskar2 teleoperator application

node subscribes to the /triskar/front_camera topic, which streams frames
captured from the front camera of Triskar2.
User inputs work like in first person games, which expolit a keyboard and a
mouse to control the velocity of the alter ego; bindings are listed in Table 6.3.
A minimalistic user interface shows the current forward (vertical green line),
strafe (horizontal red line), and angular (blue arc) setpoints, as displayed in
Figure 6.14. Setpoints are sent to Triskar2 through the /triskar/velocity

topic.
Movements of Triskar2 are inhibited in those directions where proximity sen-
sors data, read from the /triskar/proximities topic, reveal the presence of
obstacles.

6.2.3 Observations

The development of the Triskar2 gateway firmware did not require much effort.
Since the target platform was already supported by µROSnode, we simply
included the related makefile scripts into the Makefile.

87

Figure 6.14: Screenshot of the Triskar2 teleoperator window

The codebase derived from the benchmark-chibios+lwip demo, supplied with
µROSnode, which was integrated with the R2P middleware to control the R2P
boards over a CAN bus.
The urosMsgTypes and urosHandlers software modules were regenerated by
urosgen, provided with an appropriate configuration file. This task was accom-
plished in a few minutes.
As seen in Section 6.2.2, the development of topic handler routines was straight-
forward, and only required to translate messages between R2P and µROSnode
(thus, ROS).
The whole firmware was completed in a few hours, including testing.

88

Chapter 7

Conclusions and future
research directions

We were looking for a robotics software framework to program hardware
modules for rapid prototyping of new robot designs. Since the state-of-the-art
frameworks cannot easily blend high-level software with hardware platforms,
we developed µROSnode, a software communication framework capable of
integrating embedded systems with a ROS network. This way a robotics
researcher, often accustomed to ROS for its simplicity and high availability
of pre-made software packages, can natively connect to hardware modules
running µROSnode.
Software development with µROSnode has proven to be easy, thanks to its
simple software architecture, the well documented API, and the easy-to-use
code generator.
Support for generic operating systems and IP network stacks, available through
a lightweight abstraction layer, permits the use of µROSnode on multiple
platforms, while sharing the same codebase and semantics.
The µROSnode codebase can be compiled for almost all of the embedded
system platforms, by exploiting mature ANSI C89 support for such platforms.
The small size of µROSnode in both program and working memories allows
the development of firmware for advanced modern microcontrollers. The
static stack analysis tool, supplied with µROSnode, assists the developer in
optimization and control of stack usage.
Experimental results showed good performance even for a very simple platform,
based on a recent microcontroller hosting an ARM-CM4 core. A platform of
this type may be enough for simple specific-purpose hardware modules, where
a few concurrent ROS topics are needed and message size is small. This allows
the development of inexpensive robotics hardware modules, with the non-trivial

advantage of being natively connected to a ROS computation graph by an IP
network.
Companies making robotics devices may take advantage of µROSnode to
design ROS-ready components. µROSnode may be used to create a bridge
to existing hardware, or directly inside the firmware of those devices already
exposing Ethernet or Wi-Fi interfaces. µROSnode may also run on devices for
educational or recreational applications working with ROS.

In order to provide a more flexible, higher-level codebase, µROSnode may
support the C++ language in the future, by the means of wrapper classes
around the C implementation, or even by a dedicated C++ version. Wrappers
can be done fast, as C++ was designed on top of C, but an entire C++ version
would provide a more idiomatic codebase. The C++ version may also provide
an API closer to that of roscpp, which is already known by most of the ROS
users.
While TCPROS is implemented by all of the ROS nodes (it is the fallback
protocol), µROSnode currently lacks UDPROS support, which better suits
low-latency communication and those applications where packet drops may
be tolerated. Furthermore, UDP has higher efficiency than TCP over wireless
communication.

90

Bibliography

[1] American National Standards Institute, 1430 Broadway, New York, NY
10018, USA. American National Standard Programming Language C,
ANSI X3.159-1989, December 1989.

[2] Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, and Davide
Rizzi. R2P: an Open Source Modular Architecture for Rapid Prototyping
of Robotics Applications. In Proceedings of 1st IFAC Conference on
Embedded Systems, Computational Intelligence and Telematics in Control
(CESCIT’12), pages 68–73. Elsevier, 2012.

[3] Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, Roberto San-
nino, and Daniele Caltabiano. Modular Low-Cost Robotics: What Com-
munication Infrastructure? In Proceedings of 18th World Congress of the
International Federation of Automatic Control (IFAC), pages 917–922.
Elsevier, 2011.

[4] H. Bruyninckx. Open robot control software: the orocos project. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE Interna-
tional Conference on, volume 3, pages 2523–2528 vol.3.

[5] CMake.org. CMake build system.
http://www.cmake.org/

[6] Giovanni Di Sirio. ChibiOS/RT Real-Time Operating System.
http://www.chibios.org/

[7] Josh Faust. The turtlesim ROS package.
http://www.ros.org/wiki/turtlesim

[8] Raspberry Pi Foundation. Raspberry Pi.
http://www.raspberrypi.org/

[9] GNU. GNU Compiler Collection.
http://gcc.gnu.org/

91

http://www.cmake.org/
http://www.chibios.org/
http://www.ros.org/wiki/turtlesim
http://www.raspberrypi.org/
http://gcc.gnu.org/

[10] GNU. Language Standards Supported by GCC.
http://gcc.gnu.org/onlinedocs/gcc/Standards.html

[11] Brian Hall. Beej’s Guide to Network Programming. Jorgensen Publishing,
October 2011.
http://beej.us/guide/bgnet/

[12] Albert S. Huang, Edwin Olson, and David Moore. LCM: Lightweight
Communications and Marshalling. In Int. Conf. on Intelligent Robots and
Systems (IROS), Taipei, Taiwan, Oct. 2010.

[13] iRobot Corporation. Create Programmable Robot.
http://www.irobot.com/en/us/robots/Educators/Create.aspx

[14] ISO/IEC JTC 1. 14977:1996 – Information technology – Syntactic
metalanguage – Extended BNF.
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_

ISO_IEC_14977_1996(E).zip

[15] Martino Migliavacca. Rapid Robot Prototyping – DC motor module.
http://github.com/openrobots-dev/R2P_DCM_module

[16] Martino Migliavacca. Rapid Robot Prototyping – IR module.
http://github.com/openrobots-dev/R2P_IR_module

[17] Martino Migliavacca. Rapid Robot Prototyping – Power supply module.
http://github.com/openrobots-dev/R2P_PS_module

[18] Martino Migliavacca. Rapid Robot Prototyping – Sonar module.
http://github.com/openrobots-dev/R2P_Sonar_module

[19] Pete Shinners. pygame.
http://www.pygame.org/

[20] Politecnico di Milano – AIRLab. TiltOne.
http://airwiki.elet.polimi.it/index.php/TiltOne

[21] Politecnico di Milano – AIRLab. Triskar2.
http://airwiki.elet.polimi.it/index.php/Triskar2

[22] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
Robot Operating System. In ICRA Workshop on Open Source Software,
2009.

[23] Radu Bogdan Rusu. ROS Introduction – Overview.
http://www.ros.org/wiki/Events/CoTeSys-ROS-School

92

http://gcc.gnu.org/onlinedocs/gcc/Standards.html
http://beej.us/guide/bgnet/
http://www.irobot.com/en/us/robots/Educators/Create.aspx
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s026153_ISO_IEC_14977_1996(E).zip
http://github.com/openrobots-dev/R2P_DCM_module
http://github.com/openrobots-dev/R2P_IR_module
http://github.com/openrobots-dev/R2P_PS_module
http://github.com/openrobots-dev/R2P_Sonar_module
http://www.pygame.org/
http://airwiki.elet.polimi.it/index.php/TiltOne
http://airwiki.elet.polimi.it/index.php/Triskar2
http://www.ros.org/wiki/Events/CoTeSys-ROS-School

[24] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top-down
grammars. In Proceedings of the first annual ACM symposium on Theory
of computing, STOC ’69, page 165, 1969.

[25] ROS.org. Documentation.
http://www.ros.org/wiki

[26] Herbert Schildt, American National Standards Institute, International
Organization for Standardization, International Electrotechnical Commis-
sion, and ISO/IEC JTC 1. The annotated ANSI C standard: American
National Standard for Programming Languages C: ANSI/ISO 9899-1990.
Osborne/McGraw-Hill, Berkeley, CA, USA, 1990.

[27] SICK Group. LMS100 Laser Measurement System.
http://www.sick.com/group/EN/home/products/product_news/laser_

measurement_systems/Pages/lms100.aspx

[28] UserLand Software. XML-RPC Specification.
http://www.xmlrpc.com/spec

[29] Andrea Zoppi and Martino Migliavacca. Rapid Robot Prototyping – CAN-
to-Ethernet gateway module.
http://github.com/openrobots-dev/R2P_GW_module

[30] Andrea Zoppi and Martino Migliavacca. µROSnode.
http://github.com/openrobots-dev/uROSnode

93

http://www.ros.org/wiki
http://www.sick.com/group/EN/home/products/product_news/laser_measurement_systems/Pages/lms100.aspx
http://www.sick.com/group/EN/home/products/product_news/laser_measurement_systems/Pages/lms100.aspx
http://www.xmlrpc.com/spec
http://github.com/openrobots-dev/R2P_GW_module
http://github.com/openrobots-dev/uROSnode

94

Appendix A

ROS-related API
documentation

This appendix describes the µROSnode API, close to that of ROS, used to
communicate with the Master Node, the Parameter Server, and the common
Slave Nodes, via XML-RPC.

Furthermore, the µROSnode Node singleton API manages (un)registration of
message types, topics, and services.

A.1 ROS Master API

A.1.1 registerService()

Registers the caller as a provider of the specified service.

uros_err_t urosRpcCallRegisterService(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *service,
const UrosString *service_api,
const UrosString *caller_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
service [in] Fully-qualified name of service. Non-empty string pointer.
service_api [in] ROSRPC Service URI. Non-empty string pointer.
caller_api [in] XML-RPC URI of caller node. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

96 Appendix A. ROS-related API documentation

A.1.2 unregisterService()

Unregisters the caller as a provider of the specified service.

uros_err_t urosRpcCallUnregisterService(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *service,
const UrosString *service_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
service [in] Fully-qualified name of service. Non-empty string pointer.
service_api [in] API URI of service to unregister. Unregistration will only occur if current regis-

tration matches. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,int numUnregistered]

Number of unregistrations (either 0 or 1). If this is zero it means that the caller was not
registered as a service provider. The call still succeeds as the intended final state is reached.

A.1.3 registerSubscriber()

Subscribes the caller to the specified topic. In addition to receiving a list
of current publishers, the subscriber will also receive notifications of new
publishers via the publisherUpdate() API.

uros_err_t urosRpcCallRegisterSubscriber(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosString *topic_type,
const UrosString *caller_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
topic [in] Fully-qualified name of topic. Non-empty string pointer.
topic_type [in] Datatype for topic. Must be a package-resource name, i.e. the .msg name. Non-

empty string pointer.
caller_api [in] API URI of subscriber to register. Will be used for new publisher notifications.

Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[str publisherN]]

A.1.4 unregisterSubscriber()

Unregisters the caller as a publisher of the topic.

A.1. ROS Master API 97

uros_err_t urosRpcCallUnregisterSubscriber(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosString *caller_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
topic [in] Fully-qualified name of topic. Non-empty string pointer.
caller_api [in] API URI of service to unregister. Unregistration will only occur if current registra-

tion matches. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,int numUnsubscribed]

If numUnsubscribed is zero it means that the caller was not registered as a subscriber. The call
still succeeds as the intended final state is reached.

A.1.5 registerPublisher()

Registers the caller as a publisher the topic.

uros_err_t urosRpcCallRegisterPublisher(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosString *topic_type,
const UrosString *caller_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
topic [in] Fully-qualified name of topic to register. Non-empty string pointer.
topic_type [in] Datatype for topic. Must be a package-resource name, i.e. the .msg name. Non-

empty string pointer.
caller_api [in] API URI of publisher to register. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[str subscriberApiN]]

A.1.6 unregisterPublisher()

Unregisters the caller as a publisher of the topic.

uros_err_t urosRpcCallUnregisterPublisher(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosString *caller_api,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
topic [in] Fully-qualified name of topic to unregister. Non-empty string pointer.

98 Appendix A. ROS-related API documentation

caller_api [in] API URI of publisher to unregister. Unregistration will only occur if current regis-
tration matches. Non-empty string pointer.

resp [out] Pointer to the response object. Format:
[int code,str statusMessage,int numUnregistered]

If numUnregistered is zero it means that the caller was not registered as a publisher. The call
still succeeds as the intended final state is reached.

A.1.7 lookupNode()

Gets the XML-RPC URI of the node with the associated name. This API is
for looking information about publishers and subscribers. Use lookupService()

instead to lookup ROS-RPC URIs.

uros_err_t urosRpcCallLookupNode(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *node,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
node [in] Name of node to lookup. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,str URI]

A.1.8 getPublishedTopics()

Gets the list of topics that can be subscribed to. This does not return topics
that have no publishers.

uros_err_t urosRpcCallGetPublishedTopics(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *subgraph,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
subgraph [in] Restrict topic names to match within the specified subgraph. Subgraph namespace

is resolved relative to the caller’s namespace. Use empty string to specify all names. Valid
string pointer.

resp [out] Pointer to the response object. Format:
[int code,str statusMessage,[[str topicN,str typeN]]]

A.1.9 getTopicTypes()

Retrieves list topic names and their types.

A.1. ROS Master API 99

uros_err_t urosRpcCallGetTopicTypes(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[[str topicN,str typeN]]]

A.1.10 getSystemState()

Retrieves list representation of system state.

uros_err_t urosRpcCallGetSystemState(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code, str statusMessage, [
[str topicN, [str topicN_publisherM]],
[str topicN, [str topicN_subscriberM]],
[str serviceN, [str serviceN_providerM]]

]]

A.1.11 getUri()

Gets the URI of the the Master.

uros_err_t urosRpcCallGetUri(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,str masterURI]

A.1.12 lookupService()

Looks up all the providers of a particular service.

100 Appendix A. ROS-related API documentation

uros_err_t urosRpcCallLookupService(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *service,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
service [in] Fully-qualified name of service. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,str serviceURI]

A.2 ROS Parameter Server API

A.2.1 deleteParam()

Deletes a parameter.

uros_err_t urosRpcCallDeleteParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

A.2.2 setParam()

Sets a parameter. If value is a dictionary it will be treated as a parameter tree,
where key is the parameter namespace.

uros_err_t urosRpcCallSetParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *key,
const UrosRpcParam *value,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. Non-empty string pointer.
value [in] Parameter value.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

A.2. ROS Parameter Server API 101

A.2.3 getParam()

Retrieve a parameter value from server.

uros_err_t urosRpcCallGetParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. If key is a namespace, it will return a parameter tree. Non-empty string

pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any parameterValue]

A.2.4 searchParam()

Searches for a parameter key on the server. Search starts in caller’s namespace
and proceeds upwards through parent namespaces until Parameter Server finds
a matching key.

Its behavior is to search for the first partial match. For example, imagine that
there are two robot_description parameters:
/robot_description

/arm
/base

/pr2
/robot_description

/base

If starting in the namespace /pr2/foo and search for robot_description, search-
Param() will match /pr2/robot_description.
If searching for robot_description/arm it will return /pr2/robot_description/arm,
even though that parameter does not exist (yet).

uros_err_t urosRpcCallSearchParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name to search for. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,str foundKey]

102 Appendix A. ROS-related API documentation

A.2.5 subscribeParam()

Retrieves a parameter value from the server, and subscribes to updates to that
parameter.

uros_err_t urosRpcCallSubscribeParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *caller_api,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any parameterValue]

If code is not 1, parameterValue should be ignored. parameterValue is an empty dictionary if
the parameter has not been set yet.

A.2.6 unsubscribeParam()

Retrieves a parameter value from server and subscribe to updates to that
parameter.

uros_err_t urosRpcCallUnsubscribeParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *caller_api,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,int numUnsubscribed]

If numUnsubscribed is zero, it means that the caller was not subscribed to the parameter.

A.2.7 hasParam()

Checks if a parameter is stored on the server.

uros_err_t urosRpcCallHasParam(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *key,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.

A.3. ROS Slave API 103

caller_id [in] ROS caller ID. Non-empty string pointer.
key [in] Parameter name. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,bool hasParam]

A.2.8 getParamNames()

Gets the list of all parameter names stored on the server.

uros_err_t urosRpcCallGetParamNames(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[str paramaterNameN]]

A.3 ROS Slave API

A.3.1 getBusStats()

Retrieves transport/topic statistics.

uros_err_t urosRpcCallGetBusStats(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code, str statusMessage, [publishStats, subscribeStats, serviceStats]]

publishStats: [[topicName, messageDataSent, pubConnectionData]...]
subscribeStats: [[topicName, subConnectionData]...]
serviceStats: [numRequests, bytesReceived, bytesSent] (proposed)

pubConnectionData: [connectionId, bytesSent, numSent, connected]*
subConnectionData: [connectionId, bytesReceived, dropEstimate, connected]*

dropEstimate is -1 for no estimate.

A.3.2 getBusInfo()

Retrieves transport/topic connection information.

104 Appendix A. ROS-related API documentation

uros_err_t urosRpcCallGetBusInfo(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code, str statusMessage, busInfo]

[[connectionIdN, destinationIdN, directionN, transportN, topicN, connectedN]]

connectionId is defined by the node and is opaque
destinationId is the XMLRPC URI of the destination
direction is one of ’i’, ’o’, or ’b’ (in, out, both)
transport is the transport type (e.g. ’TCPROS’)
topic is the topic name
connected indicates connection status

A.3.3 getMasterUri()

Gets the URI of the Master node.

uros_err_t urosRpcCallGetMasterUri(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,str masterURI]

A.3.4 shutdown()

Stops the Slave server.

uros_err_t urosRpcCallShutdown(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *msg,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
msg [in] A message describing why the node is being shutdown. Valid string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

A.3. ROS Slave API 105

A.3.5 getPid()

Get the PID of the Slave server.

uros_err_t urosRpcCallGetPid(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,int serverProcessPID]

A.3.6 getSubscriptions()

Retrieves a list of topics that this node subscribes to.

uros_err_t urosRpcCallGetSubscriptions(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[[str topicN,str topicTypeN]]]

A.3.7 getPublications()

Retrieves a list of topics that this node publishes.

uros_err_t urosRpcCallGetPublications(
const UrosAddr *addrp,
const UrosString *caller_id,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,[[str topicN,str topicTypeN]]]

A.3.8 paramUpdate()

Callback from Master with updated value of subscribed parameter.

106 Appendix A. ROS-related API documentation

uros_err_t urosRpcCallParamUpdate(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *parameter_key,
const UrosRpcParam *parameter_value,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
parameter_key [in] Parameter name, globally resolved. Non-empty string pointer.
parameter_value [in] New parameter value.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

A.3.9 publisherUpdate()

Callback from Master of current publisher list for the specified topic.

uros_err_t urosRpcCallPublisherUpdate(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosRpcParamList *publishers,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.
topic [in] Topic name. Non-empty string pointer.
publishers [in] List of current publishers for topic in the form of XMLRPC URIs.
resp [out] Pointer to the response object. Format:

[int code,str statusMessage,any ignore]

A.3.10 requestTopic()

Publisher node API method called by a subscriber node. This requests that
source allocate a channel for communication. Subscriber provides a list of
desired protocols for communication. Publisher returns the selected protocol
along with any additional params required for establishing connection. For
example, for a TCP/IP-based connection, the source node may return a port
number of TCP/IP server.

uros_err_t urosRpcCallRequestTopic(
const UrosAddr *addrp,
const UrosString *caller_id,
const UrosString *topic,
const UrosRpcParamList *protocols,
UrosRpcResponse *resp

);

addrp [in] Pointer to the Master API connection address.
caller_id [in] ROS caller ID. Non-empty string pointer.

A.4. Node API 107

topic [in] Topic name. Non-empty string pointer.
protocols [in] List of desired protocols for communication in order of preference. Each protocol is

a list of the form:
[protocolName,protocolParam1,protocolParam2,...]

resp [out] Pointer to the response object. Format:
[int code,str statusMessage,[str protocolParamN]]

A.4 Node API

The following API are used to manage the current state of the Node singleton,
by (un)registering topics, services, and parameters, as well as resolving the
address of a specific topic or service publisher.

A.4.1 urosNodePublishTopic()

Issues a publishTopic() call to the XML-RPC Master.
Warning: The access to the topic registry is thread-safe, but delays of the XML-RPC communication
will delay also any other threads trying to publish/unpublish any topics.

Preconditions:
• the topic is not published;
• the TPCORS service flag must be clear.

uros_err_t urosNodePublishTopic(
const UrosString *namep,
const UrosString *typep,
uros_proc_f procf,
uros_topicflags_t flags

);

namep [in] Pointer to the topic name string.
typep [in] Pointer to the topic message type name string.
procf [in] Topic handler function.
flags [in] Topic flags.

A.4.2 urosNodeUnpublishTopic()

Issues an unpublishTopic() call to the XML-RPC Master.
Warning: The access to the topic registry is thread-safe, but delays of the XML-RPC communication
will delay also any other threads trying to publish/unpublish any topics.

Preconditions:
• the topic is published.

Postconditions: If successful, the topic descriptor is dereferenced by the topic registry, and will be
freed:

• by this function, if there are no publishing TCPROS threads; or
• by the last publishing TCPROS thread which references the topic.

108 Appendix A. ROS-related API documentation

uros_err_t urosNodeUnpublishTopic(
const UrosString *namep

);

namep [in] Pointer to a string which names the topic.

A.4.3 urosNodeSubscribeTopic()

Issues a registerSubscriber() call to the XML-RPC Master, and connects to
known publishers.
Warning: The access to the topic registry is thread-safe, but delays of the XML-RPC communication
will delay also any other threads trying to subscribe/unsubscribe to any topics.

Preconditions:
• the topic is not subscribed;
• the TPCROS service flag must be clear.

Postconditions:
• connects to known publishers listed by a successful response.

uros_err_t urosNodeSubscribeTopic(
const UrosString *namep,
const UrosString *typep,
uros_proc_f procf,
uros_topicflags_t flags

);

namep [in] Pointer to the topic name string.
typep [in] Pointer to the topic message type name string.
procf [in] Topic handler function.
flags [in] Topic flags.

A.4.4 urosNodeUnsubscribeTopic()

Issues an unregisterSubscriber() call to the XML-RPC Master.
Warning: The access to the topic registry is thread-safe, but delays of the XML-RPC communication
will delay also any other threads trying to subscribe/unsubscribe to any topics.

Preconditions:
• the topic is published;
• the TCPROS service flag must be clear.

Postconditions: If successful, the topic descriptor is dereferenced by the topic registry, and will be
freed:

• by this function, if there are no publishing TCPROS threads; or
• by the last publishing TCPROS thread which references the topic.

uros_err_t urosNodeUnsubscribeTopic(
const UrosString *namep

);

namep [in] Pointer to a string which names the topic.

A.4. Node API 109

A.4.5 urosNodePublishService()

Issues a registerService() call to the XML-RPC Master.
Warning: The access to the service registry is thread-safe, but delays of the XML-RPC communi-
cation will delay also any other threads trying to subscribe/unsubscribe to any services.

Preconditions:
• the service is published;
• the TCPROS service flag must be clear.

Postconditions: If successful, the topic descriptor is dereferenced by the topic registry, and will be
freed:

• by this function, if there are no publishing TCPROS threads; or
• by the last publishing TCPROS thread which references the topic.

uros_err_t urosNodePublishService(
const UrosString *namep,
const UrosString *typep,
uros_proc_f procf,
uros_topicflags_t flags

);

namep [in] Pointer to the service name string.
typep [in] Pointer to the service type name string.
procf [in] Service handler function.
flags [in] Topic flags.

A.4.6 urosNodeUnpublishService()

Issues an unregisterService() call to the XML-RPC Master.
Warning: The access to the service registry is thread-safe, but delays of the XML-RPC communi-
cation will delay also any other threads trying to publish/unpublish any services.

Preconditions:
• the service is published.

Postconditions: If successful, the service descriptor is dereferenced by the topic registry, and will
be freed:

• by this function, if there are no publishing TCPROS threads; or
• by the last publishing TCPROS thread which references the service.

uros_err_t urosNodeUnpublishService(
const UrosString *namep

);

namep [in] Pointer to a string which names the service.

A.4.7 urosNodeCallService()

Gets the service URI from the Master node. If found, it executes the service
call once, and the result is returned.

110 Appendix A. ROS-related API documentation

Note: Only a single call will be executed. Persistent TCPROS service connections need custom
handlers.

Preconditions:
• the TCPROS service flag must be set, persistent clear.

uros_err_t urosNodeCallService(
const UrosString *namep,
const UrosString *typep,
uros_tcpsrvcall_t callf,
uros_topicflags_t flags,
void *resobjp

);

namep [in] Pointer to the service name string.
typep [in] Pointer to the service type name string.
callf [in] Service call handler.
flags [in] TCPROS flags.
resobjp [out] Pointer to the allocated response object. The service result will be written there only

if the call is successful.

A.4.8 urosNodeSubscribeParam()

Issues a subscribeParam() call to the XML-RPC Master, and connects to
known publishers.
Warning: The access to the parameter registry is thread-safe, but delays of the XML-RPC commu-
nication will delay also any other threads trying to subscribe/unsubscribe to any parameters.

Preconditions:
• the parameter has not been registered yet.

uros_err_t urosNodeSubscribeParam(
const UrosString *namep

);

namep [in] Pointer to the parameter name string.

A.4.9 urosNodeUnsubscribeParam()

Issues an unsubscribeParam() call to the XML-RPC Master, and connects to
known publishers.
Preconditions:

• the parameter has been registered.

Postconditions:
• if successful, the parameter descriptor is unreferenced and deleted by the parameter registry.

namep [in] Pointer to a string which names the parameter to be unregistered.

A.4. Node API 111

A.4.10 urosNodeResolveTopicPublisher()

Requests the TCPROS URI of a topic published by a node.

uros_err_t urosNodeResolveTopicPublisher(
const UrosAddr *apiaddrp,
const UrosString *namep,
UrosAddr *tcprosaddrp

);

apiaddrp [in] XML-RPC API address of the target node.
namep [in] Pointer to the topic name string.
tcprosaddrp [in] Pointer to an allocated UrosAddr descriptor, which will hold the TCPROS API

address of the requested topic provider.

A.4.11 urosNodeResolveServicePublisher()

Requests the TCPROS URI of a service published by a node.

uros_err_t urosNodeResolveServicePublisher(
const UrosString *namep,
UrosAddr *pubaddrp

);

namep [in] Pointer to the topic name string.
pubaddrp [in] Pointer to an allocated UrosAddr descriptor, which will hold the TCPROS API address

of the requested service provider.

112 Appendix A. ROS-related API documentation

Appendix B

Useful listings

This appendix contains miscellaneous listings, for a better understanding of
XML-RPC and TCPROS protocols, as well as the µROSnode license, and
some demonstration configuration files for the code generator and the static
stack analysis tool.

B.1 Disclaimer

The following is the µROSnode source code disclaimer, based on a 2-clause
BSD license.

1 Copyright (c) 2012-2013, Politecnico di Milano. All rights reserved.
2
3 Andrea Zoppi <texzk@email.it>
4 Martino Migliavacca <martino.migliavacca@gmail.com>
5
6 http://airlab.elet.polimi.it/
7 http://www.openrobots.com/
8
9 Redistribution and use in source and binary forms, with or without

10 modification, are permitted provided that the following conditions are met:
11
12 1. Redistributions of source code must retain the above copyright notice, this
13 list of conditions and the following disclaimer.
14 2. Redistributions in binary form must reproduce the above copyright notice,
15 this list of conditions and the following disclaimer in the documentation
16 and/or other materials provided with the distribution.
17
18 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
19 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
22 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Listing B.1: Source code disclaimer of µROSnode

114 Appendix B. Useful listings

B.2 XML-RPC grammar

No official grammar specification exists, but a Document Type Definition
(DTD) and an XML Schema (XSD) can be outlined, although none of them
can synthesize all of the XML-RPC grammar rules.

B.2.1 Document Type Definition

1 <!--
2 Copyright 2001-2002 Elliotte Rusty Harold
3 http://cafeconleche.org/books/xmljava/chapters/ch02s05.html
4 -->
5
6 <!ELEMENT methodCall (methodName, params)>
7 <!ELEMENT methodName (#PCDATA)>
8 <!ELEMENT params (param*)>
9 <!ELEMENT param (value)>

10 <!ELEMENT value (
11 i4 | int | string | double | dateTime.iso8601 | base64 | struct | array
12)>
13
14 <!ELEMENT i4 (#PCDATA)>
15 <!ELEMENT int (#PCDATA)>
16 <!ELEMENT string (#PCDATA)>
17 <!ELEMENT dateTime.iso8601 (#PCDATA)>
18 <!ELEMENT double (#PCDATA)>
19 <!ELEMENT base64 (#PCDATA)>
20
21 <!ELEMENT array (data)>
22 <!ELEMENT data (value*)>
23 <!ELEMENT struct (member+)>
24 <!ELEMENT member (name, value)>
25 <!ELEMENT name (#PCDATA)>
26
27 <!ELEMENT methodResponse (params | fault)>
28 <!ELEMENT fault (value)>

Listing B.2: Document Type Definition of XML-RPC (unofficial)

B.2.2 XML Schema

1 <?xml version="1.0"?>
2 <!--
3 Copyright 2001-2002 Elliotte Rusty Harold
4 http://cafeconleche.org/books/xmljava/chapters/ch02s05.html
5 -->
6
7 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
8 <!--
9 The only two possible root elements are methodResponse and methodCall, so

10 these are the only two I use a top-level declaration for.
11 -->
12
13 <xsd:element name="methodCall">
14 <xsd:complexType>
15 <xsd:all>
16 <xsd:element name="methodName">
17 <xsd:simpleType>
18 <xsd:restriction base="ASCIIString">
19 <xsd:pattern value="([A-Za-z0-9]|/|\.|:|_)*"/>
20 </xsd:restriction>
21 </xsd:simpleType>
22 </xsd:element>
23 <xsd:element name="params" minOccurs="0" maxOccurs="1">
24 <xsd:complexType>
25 <xsd:sequence>
26 <xsd:element name="param" type="ParamType"
27 minOccurs="0" maxOccurs="unbounded"/>
28 </xsd:sequence>
29 </xsd:complexType>
30 </xsd:element>
31 </xsd:all>
32 </xsd:complexType>
33 </xsd:element>
34
35 <xsd:element name="methodResponse">
36 <xsd:complexType>
37 <xsd:choice>
38 <xsd:element name="params">
39 <xsd:complexType>
40 <xsd:sequence>
41 <xsd:element name="param" type="ParamType"/>
42 </xsd:sequence>
43 </xsd:complexType>
44 </xsd:element>
45 <xsd:element name="fault">
46 <!-- What can appear inside a fault is very restricted -->
47 <xsd:complexType>
48 <xsd:sequence>

B.2. XML-RPC grammar 115

49 <xsd:element name="value">
50 <xsd:complexType>
51 <xsd:sequence>
52 <xsd:element name="struct">
53 <xsd:complexType>
54 <xsd:sequence>
55 <xsd:element name="member" type="MemberType">
56 </xsd:element>
57 <xsd:element name="member" type="MemberType">
58 </xsd:element>
59 </xsd:sequence>
60 </xsd:complexType>
61 </xsd:element>
62 </xsd:sequence>
63 </xsd:complexType>
64 </xsd:element>
65 </xsd:sequence>
66 </xsd:complexType>
67 </xsd:element>
68 </xsd:choice>
69 </xsd:complexType>
70 </xsd:element>
71
72 <xsd:complexType name="ParamType">
73 <xsd:sequence>
74 <xsd:element name="value" type="ValueType"/>
75 </xsd:sequence>
76 </xsd:complexType>
77
78 <xsd:complexType name="ValueType" mixed="true">
79 <!--
80 I need to figure out how to say that this is either a simple xsd:string
81 type or that it contains one of these elements; but that otherwise it
82 does not have mixed content.
83 -->
84 <xsd:choice>
85 <xsd:element name="i4" type="xsd:int"/>
86 <xsd:element name="int" type="xsd:int"/>
87 <xsd:element name="string" type="ASCIIString"/>
88 <xsd:element name="double" type="xsd:decimal"/>
89 <xsd:element name="Base64" type="xsd:base64Binary"/>
90 <xsd:element name="boolean" type="NumericBoolean"/>
91 <xsd:element name="dateTime.iso8601" type="xsd:dateTime"/>
92 <xsd:element name="array" type="ArrayType"/>
93 <xsd:element name="struct" type="StructType"/>
94 </xsd:choice>
95 </xsd:complexType>
96
97 <xsd:complexType name="StructType">
98 <xsd:sequence>
99 <xsd:element name="member" type="MemberType" maxOccurs="unbounded"/>

100 </xsd:sequence>
101 </xsd:complexType>
102
103 <xsd:complexType name="MemberType">
104 <xsd:sequence>
105 <xsd:element name="name" type="xsd:string"/>
106 <xsd:element name="value" type="ValueType"/>
107 </xsd:sequence>
108 </xsd:complexType>
109
110 <xsd:complexType name="ArrayType">
111 <xsd:sequence>
112 <xsd:element name="data">
113 <xsd:complexType>
114 <xsd:sequence>
115 <xsd:element name="value" type="ValueType"
116 minOccurs="0" maxOccurs="unbounded"/>
117 </xsd:sequence>
118 </xsd:complexType>
119 </xsd:element>
120 </xsd:sequence>
121 </xsd:complexType>
122
123 <xsd:simpleType name="ASCIIString">
124 <xsd:restriction base="xsd:string">
125 <xsd:pattern value="([-~]|\n|\r|\t)*"/>
126 </xsd:restriction>
127 </xsd:simpleType>
128
129 <xsd:simpleType name="NumericBoolean">
130 <xsd:restriction base="xsd:boolean">
131 <xsd:pattern value="0|1"/>
132 </xsd:restriction>
133 </xsd:simpleType>
134
135 </xsd:schema>
136
137 <!--
138 The three XML-RPC requirements that cannot be specified in the W3C XML Schema
139 Language are:
140
141 - one of the two members in a fault struct must have the name faultCode and
142 an int value and the other must have the name faultString and a string
143 value;
144
145 - a value element can contain either an ASCII string or a type element such
146 as int, but not a type element and an ASCII string;
147
148 - strings can contain binary data, except for ’&’ and ’<’, which are encoded
149 as "&" and "<", respectively.
150 -->

Listing B.3: XML Schema of XML-RPC (unofficial)

116 Appendix B. Useful listings

B.3 TCPROS syntax

The following is an unofficial EBNF syntax [14] of TCPROS streams.

1 (* Unofficial TCPROS EBNF syntax *)
2
3 length = ? little-endian uint32_t ?;
4 text = { ? printable characters ? };
5 string = length, text;
6
7 header = length, { eq_field };
8 eq_field = length, text, ’=’, text;
9

10 stream = tpc_stream | srv_stream; (* root symbol *)
11
12 (* Topic stream *)
13 tpc_stream = header, { message };
14 message = length, contents;
15 contents = ? defined by the message descriptor ?;
16
17 (* Service stream *)
18 srv_stream = header, { transaction };
19 transaction = request, ok_byte, response;
20 request = message;
21 ok_byte = ? uint8_t ?;
22 response = message | string;

Listing B.4: Unofficial EBNF syntax of TCPROS streams

B.4 Case study

This section contains some useful listings extracted from the Triskar2 teleoper-
ator application.

B.4.1 Triskar2 message types

The following are the types for velocity and proximity messages of Triskar2.

1 float32 strafe # Strafe speed (X axis, m/s)
2 float32 forward # Forward speed (Y axis, m/s)
3 float32 angular # Angular speed (Z axis, rad/s)

Listing B.5: Contents of triskar/msg/Velocity.msg

1 uint32 NUM_SENSORS = 4 # Number of proximity sensors
2
3 uint32 EAST = 0 # East index
4 uint32 NORTH = 1 # North index
5 uint32 WEST = 2 # West index
6 uint32 SOUTH = 3 # South index
7
8 float32[4] proximities # Normalized proximities (1.0 far, 0.0 near)

Listing B.6: Contents of triskar/msg/Proximity.msg

B.4. Case study 117

B.4.2 Triskar2 teleoperator node

The following is the complete source code of the teleoperator ROS Node, used
to control Triskar2 from remote the first person way.

1 #!/usr/bin/env python
2 """
3 Triskar2 teleoperator node
4 """
5
6 import math, sys, os, time
7
8 import pygame
9 from pygame.locals import *

10
11 import roslib; roslib.load_manifest("triskar")
12 import rospy
13 from sensor_msgs.msg import Image
14 from triskar.msg import Velocity, Proximity
15
16 from filters import ExpFilter, SmoothedVec3
17
18
19 # Global constants
20 SCREEN_SIZE = (640, 480)
21 MOUSE_SENS = (0.02, 0.02)
22 SP_IMPULSE_SPEED = ((0.25, 0.25, 0.5), (1.0, 1.0, 1.0)) # Normal, fast
23 ROS_TO_SURF_ENC = { "mono8":"P", "rgb8":"RGB", "bgr8":"BGR", "rgba8":"RGBA" }
24 EAST = 0; NORTH = 1; WEST = 2; SOUTH = 3
25 PROXIMITY_THRESHOLD = (0.1, 0.1, 0.1, 0.1) # Don’t move where lower
26
27 # Global variables
28 screen = None
29 camera_frame = None
30 mouse_grabbed = False
31 proximities = [1.0, 1.0, 1.0, 1.0]
32
33
34 def camera_frame_cb(msg):
35 """ Camera frame callback """
36 global camera_frame
37 size = (msg.width, msg.height)
38 encoding = ROS_TO_SURF_ENC[msg.encoding]
39 frame = pygame.image.frombuffer(msg.data, size, encoding)
40 frame = pygame.transform.smoothscale(frame, screen.get_size())
41 camera_frame = frame.convert()
42
43
44 def proximity_cb(msg):
45 """ Proximity sensors callback """
46 proximities = msg.proximities[:]
47
48
49 def center_mouse(screenSize):
50 """ Centers the mouse """
51 pygame.event.set_blocked(MOUSEMOTION)
52 pygame.mouse.set_pos((screenSize[0] / 2, screenSize[1] / 2))
53 pygame.event.set_allowed(MOUSEMOTION)
54
55
56 def grab_mouse(grabbed):
57 """ Grabs/ungrabs the mouse """
58 global mouse_grabbed
59 if grabbed and not mouse_grabbed:
60 mouse_grabbed = True
61 pygame.mouse.set_visible(False)
62 elif not grabbed and mouse_grabbed:
63 mouse_grabbed = False
64 pygame.mouse.set_visible(True)
65
66
67 def handle_inputs(sp_accum, sp_impulse):
68 """ Processes mouse inputs """
69
70 # Configure mouse movements (accumulated if left button held)
71 for i in range(3): sp_impulse[i] = 0.0
72 sp_temp = [0.0, 0.0, 0.0]
73 mouse_buttons = pygame.mouse.get_pressed()
74 if mouse_buttons[0]:
75 mouse_scale = (0.1 * MOUSE_SENS[0], 0.1 * MOUSE_SENS[1])
76 else:
77 mouse_scale = MOUSE_SENS
78 for i in range(3): sp_accum[i] = 0.0
79
80 # Process events since the last call
81 for e in pygame.event.get():
82 if e.type is QUIT:
83 rospy.signal_shutdown("User closed the teleoperator window")
84 elif e.type is KEYDOWN:
85 grab_mouse(not e.key is K_ESCAPE)
86 elif e.type is KEYUP:
87 if not e.key is K_ESCAPE: grab_mouse(True)
88 elif e.type is MOUSEBUTTONDOWN:
89 grab_mouse(True)
90 elif e.type is MOUSEBUTTONUP:
91 grab_mouse(True)
92 elif e.type is MOUSEMOTION and mouse_grabbed:
93 screenSize = screen.get_size()
94 center_mouse(screenSize)
95 sp_temp[1] -= float(e.rel[1]) * mouse_scale[1] # Fwd / Bwd
96 if mouse_buttons[2]: sp_temp[0] += float(e.rel[0]) * mouse_scale[0] # Strafe
97 else: sp_temp[2] -= float(e.rel[0]) * mouse_scale[0] # Turn
98
99 # Process keyboard impulses

100 keys = pygame.key.get_pressed()

118 Appendix B. Useful listings

101 mods = pygame.key.get_mods()
102 gear = int(bool(mods & KMOD_SHIFT))
103 if keys[K_d]: sp_impulse[0] += SP_IMPULSE_SPEED[gear][0]
104 if keys[K_a]: sp_impulse[0] -= SP_IMPULSE_SPEED[gear][0]
105 if keys[K_w]: sp_impulse[1] += SP_IMPULSE_SPEED[gear][1]
106 if keys[K_s]: sp_impulse[1] -= SP_IMPULSE_SPEED[gear][1]
107 if keys[K_q]: sp_impulse[2] += SP_IMPULSE_SPEED[gear][2]
108 if keys[K_e]: sp_impulse[2] -= SP_IMPULSE_SPEED[gear][2]
109
110 # Apply mouse movements (either accumulated motion or impulses)
111 if mouse_buttons[0]:
112 for i in range(3): sp_accum[i] += sp_temp[i]
113 else:
114 for i in range(3): sp_impulse[i] += sp_temp[i]
115
116 # Block movements towards constrained directions
117 if proximities[EAST] < PROXIMITY_THRESHOLD[EAST]:
118 sp_accum[0] = min(0.0, sp_accum[0])
119 sp_impulse[0] = min(0.0, sp_impulse[0])
120 if proximities[WEST] < PROXIMITY_THRESHOLD[WEST]:
121 sp_accum[0] = max(0.0, sp_accum[0])
122 sp_impulse[0] = max(0.0, sp_impulse[0])
123 if proximities[NORTH] < PROXIMITY_THRESHOLD[NORTH]:
124 sp_accum[1] = min(0.0, sp_accum[1])
125 sp_impulse[1] = min(0.0, sp_impulse[1])
126 if proximities[SOUTH] < PROXIMITY_THRESHOLD[SOUTH]:
127 sp_accum[1] = max(0.0, sp_accum[1])
128 sp_impulse[1] = max(0.0, sp_impulse[1])
129
130
131 def draw_circle_arc(surface, color, pos, radius, start, stop, width=0):
132 """ Draws a centered arc """
133 rect = ((pos[0] - radius, pos[1] - radius), (2 * radius, 2 * radius))
134 if start > stop: (start, stop) = (stop, start)
135 pygame.draw.arc(screen, 0x0000FF, rect, start, stop, width)
136
137
138 def render_scene(screen, setpoint):
139 """ Renders the current screen frame """
140 screen.fill(0x808080)
141 screen.blit(camera_frame, (0, 0))
142
143 c = screen.get_size()
144 c = (c[0] / 2, c[1] / 2)
145 r = min([64, c[0], c[1]])
146 pygame.draw.line(screen, 0xFF0000, c, (int(c[0] + r * setpoint[0]), c[1]), 2)
147 pygame.draw.line(screen, 0x00FF00, c, (c[0], int(c[1] - r * setpoint[1])), 2)
148 draw_circle_arc(screen, 0x0000FF, c, r, math.pi/2, math.pi/2 + setpoint[2], 2)
149 pygame.draw.circle(screen, 0xFFFFFF, c, 2)
150
151
152 def main():
153 # Initialize pygame stuff
154 global screen, camera_frame
155 pygame.init()
156 clock = pygame.time.Clock()
157 screen = pygame.display.set_mode(SCREEN_SIZE)
158 screen.fill(0x808080)
159 pygame.display.flip()
160 pygame.display.set_caption("Triskar2 teleoperator")
161 pygame.mouse.set_visible(True)
162 camera_frame = pygame.Surface((1, 1)).convert() # Fake camera frame placeholder
163
164 # Initialize ROS stuff
165 rospy.init_node("teleop_node")
166 pubVelocity = rospy.Publisher("triskar/velocity", Velocity)
167 pubVelocity.publish(Velocity(0.0, 0.0, 0.0))
168 rospy.Subscriber("triskar/front_camera", Image, camera_frame_cb)
169 rospy.Subscriber("triskar/proximity", Proximity, proximity_cb)
170
171 # Initialize setpoints
172 sp_impulse = [0.0, 0.0, 0.0]
173 sp_accum = [0.0, 0.0, 0.0]
174 sp_smooth = SmoothedVec3(ExpFilter(1.0 / 60, 1.0, 0.000001), sp_accum)
175
176 while not rospy.is_shutdown():
177 # Process inputs
178 handle_inputs(sp_accum, sp_impulse)
179 if rospy.is_shutdown(): break
180 sp = sp_smooth.process([sp_impulse[i] + sp_accum[i] for i in range(3)])
181 pubVelocity.publish(Velocity(sp[0], sp[1], sp[2]))
182
183 # Render the scene
184 render_scene(screen, sp)
185 pygame.display.flip()
186 clock.tick(60)
187
188 # Stop the robot
189 pubVelocity.publish(Velocity(0.0, 0.0, 0.0))
190
191
192 # Call the ’main’ function when this script is executed
193 if __name__ == "__main__":
194 try: main()
195 except rospy.ROSInterruptException: pass

Listing B.7: Source code of the Triskar2 teleoperator node (triskar/teleop_node)

B.4. Case study 119

B.4.3 Triskar2 urosgen configuration

The following is the urosgen configuration for the Triskar2 µROSnode-based
firmware.

1 # urosgen.py configuration file for Triskar2
2
3 [Options]
4 author = Andrea Zoppi <texzk@email.it>
5 licenseFile = ../../../COPYING
6 includeDir = ../include
7 sourceDir = ../src
8 nodeName = triskar_node
9 fieldComments = false

10
11 msgOnStack = true
12 inOnStack = true
13 outOnStack = true
14
15 [PubTopics]
16 /triskar/proximity = triskar/Proximity
17
18 [SubTopics]
19 /triskar/velocity = triskar/Velocity
20
21 [PubServices]
22
23 [CallServices]

Listing B.8: urosgen configuration file for the Triskar2 µROSnode-based firmware

B.4.4 Triskar2 gateway handler routines

The following are the topic handlers for the Triskar2 teleoperator application,
which translate R2P messages to ROS messages, and vice versa.

1 uros_err_t sub_tpc__triskar__velocity(UrosTcpRosStatus *tcpstp) {
2
3 /* Message allocation and initialization.*/
4 UROS_TPC_INIT_S(msg__triskar__Velocity);
5 SpeedSetpoint3 *r2p_msg;
6
7 /* Subscribed messages loop.*/
8 while (!urosTcpRosStatusCheckExit(tcpstp)) {
9 /* Receive the next message.*/

10 UROS_MSG_RECV_LENGTH();
11 UROS_MSG_RECV_BODY(&msg, msg__triskar__Velocity);
12
13 /* Republish the received ROS message to R2P DC motor modules.*/
14 r2p_msg = lpubSpeeds.alloc();
15 if (r2p_msg != NULL) {
16 velocity_to_setpoints(msg, *r2p_msg);
17 lpubSpeeds.broadcast(r2p_msg);
18 palTogglePad(GPIOC, GPIOC_LED2);
19 }
20
21 /* Dispose the contents of the message.*/
22 clean_msg__triskar__Velocity(&msg);
23 }
24 tcpstp->err = UROS_OK;
25
26 _finally:
27 /* Message deinitialization and deallocation.*/
28 UROS_TPC_UNINIT_S(msg__triskar__Velocity);
29 return tcpstp->err;
30 }

Listing B.9: Publication handler function for the /triskar/velocity ROS topic

120 Appendix B. Useful listings

1 uros_err_t pub_tpc__triskar__proximity(UrosTcpRosStatus *tcpstp) {
2
3 /* Message allocation and initialization.*/
4 UROS_TPC_INIT_S(msg__triskar__Proximity);
5 IRRaw *r2p_msg;
6 Subscriber<IRRaw, 8> lsubProximity("IRRaw");
7 Node mwNode("mwNode");
8 Middleware::instance().newNode(&mwNode);
9 mwNode.subscribe(&lsubProximity);

10
11 /* Published messages loop.*/
12 while (!urosTcpRosStatusCheckExit(tcpstp)) {
13 /* Republish the received R2P raw proximity message to ROS.*/
14 mwNode.spin(MS2ST(1000));
15 r2p_msg = lsubProximity.get();
16 if (r2p_msg != NULL) {
17 irraw_to_proximities(*r2p_msg, msg);
18 lsubProximity.release(r2p_msg);
19
20 /* Send the message.*/
21 UROS_MSG_SEND_LENGTH(&msg, msg__triskar__Proximity);
22 UROS_MSG_SEND_BODY(&msg, msg__triskar__Proximity);
23
24 /* Dispose the contents of the message.*/
25 clean_msg__triskar__Proximity(&msg);
26 }
27 }
28 tcpstp->err = UROS_OK;
29
30 _finally:
31 /* Message deinitialization and deallocation.*/
32 UROS_TPC_UNINIT_S(msg__triskar__Proximity);
33 return tcpstp->err;
34 }

Listing B.10: Subscription handler function for the /triskar/proximity ROS topic

B.5. Code generator configuration demo 121

B.5 Code generator configuration demo

The following is a demonstration configuration file for the code generator,
urosgen.py. All of the possible options are listed and commented. The chosen
data types involve all of the code generator features.

1 # urosgen.py configuration file, for demonstration purposes.
2
3 # This is the options section. All the options are assigned below. An undefined
4 # option is assigned its default value. Run urosgen.py without arguments to see
5 # their default values.
6 [Options]
7
8 # Author of the generated files
9 author = Your Name <your.email@example.com>

10
11 # Optional license text file to comment at the beginning of generated files
12 licenseFile = ../../../COPYING
13
14 # Name of the generated node
15 nodeName = uros_demo_node
16
17 # Paths of the generated files, relative to this configuration file
18 includeDir = . # Header files path (must exist!)
19 sourceDir = . # Source files path (must exist!)
20
21 # File names for "<filename>.h" and "<filename>.c" generation
22 msgTypesFilename = urosMsgTypes # Message types file name
23 handlersFilename = urosHandlers # Handlers file name
24
25 # Generation switches
26 genMsgTypesHeader = true
27 genMsgTypesSource = true
28 genHandlersHeader = true
29 genHandlersSource = true
30
31 # Allocates the message/service values on the stack instead of into the heap
32 msgOnStack = false # All the topic messages
33 inOnStack = false # All the service requests (in)
34 outOnStack = true # All the service responses (out)
35
36 # Base name of handler variables. Depending on the stack/heap options, they
37 # will be declared as: [*namep = NULL] if in heap, [name] if on stack.
38 msgVarBaseName = msg # Topic message variable name
39 inVarBaseName = inmsg # Service request variable name
40 outVarBaseName = outmsg # Service response variable name
41
42 # Generates comments above the declaration of each structure field
43 fieldComments = true
44
45 # Generated function names
46 regTypesFuncName = urosMsgTypesRegStaticTypes
47 regPubTopicsFuncName = urosHandlersPublishTopics
48 unregPubTopicsFuncName = urosHandlersUnpublishTopics
49 regSubTopicsFuncName = urosHandlersSubscribeTopics
50 unregSubTopicsFuncName = urosHandlersUnsubscribeTopics
51 regPubServicesFuncName = urosHandlersPublishServices
52 unregPubServicesFuncName = urosHandlersUnpublishServices
53
54
55 # List of published topics, in the form: <name> = <type>
56 [PubTopics]
57 output = stereo_msgs/DisparityImage # 3 levels deep type
58 rosout = rosgraph_msgs/Log # A common type
59
60
61 # List of subscribed topics, in the form: <name> = <type>
62 [SubTopics]
63 input = stereo_msgs/DisparityImage # Just to check
64 constants = bond/Constants # This type defines only constants
65 rosin = rosgraph_msgs/Log # Just to check
66
67
68 # List of published services, in the form: <name> = <type>
69 [PubServices]
70 reconfigure = dynamic_reconfigure/Reconfigure # 3 levels deep type
71
72
73 # List of services called by the node, in the form: <name> = <type>
74 [CallServices]
75 reconfigure = dynamic_reconfigure/Reconfigure # Just to check

Listing B.11: Documented demo configuration file for urosgen.py, with complex types

122 Appendix B. Useful listings

B.6 Stack usage analyzer configuration demo

The following is the configuration file for the static stack analysis tool, urosstan.py,
used to analyze the turtlesim [7] demonstration project for the R2P_GW [29]
project.

1 # urosstan.py demo configuration file for turtlesim
2
3 # List of options for urosstan.py
4 [Options]
5
6 # Output directory (must exist!), relative to this configuration file
7 outDir = ../build/obj
8
9 # Reference Makefile location, relative to this configuration file

10 makefileDir = ..
11
12 # Known graph leafs (terminators), in the form: <function> = <usage>
13 # where <function> is unmangled (see GKD/SU) and globally defined
14 [Terminators]
15 _port_switch = 36 # sizeof(intctx), no FPU, naked
16
17
18 # List of starting functions, in the form: <function> = <usage_bias>
19 [EntryPoints]
20 main = 36
21 lwip_thread = 36
22 urosThreadPoolWorkerThread = 36
23 urosNodeThread = 240
24 urosRpcSlaveServerThread = 240
25 urosRpcSlaveListenerThread = 240
26 urosTcpRosListenerThread = 240
27
28 pub_tpc__rosout = 240
29 pub_tpc__turtleX__pose = 240
30 pub_tpc__turtleX__color_sensor = 240
31
32 sub_tpc__turtleX__command_velocity = 240
33
34 pub_srv__clear = 240
35 pub_srv__kill = 240
36 pub_srv__spawn = 240
37 pub_srv__turtleX__set_pen = 240
38 pub_srv__turtleX__teleport_absolute = 240
39 pub_srv__turtleX__teleport_relative = 240
40
41
42 # List of source units to be analyzed, in the form:
43 # <*.c[pp]> = <*.gkd> | <*.su> | <*.nm>
44 # where paths are relative to the Makefile
45 [SourceUnits]
46 "../../../../os/ports/GCC/ARMCMx/crt0.c" = "./build/obj/crt0.o.gkd" |

"./build/obj/crt0.su" | "./build/obj/crt0.o.nm"
47 "../../../../os/ports/GCC/ARMCMx/STM32F4xx/vectors.c" = "./build/obj/vectors.o.gkd" |

"./build/obj/vectors.su" | "./build/obj/vectors.o.nm"
48 "../../../../os/ports/GCC/ARMCMx/chcore.c" = "./build/obj/chcore.o.gkd" |

"./build/obj/chcore.su" | "./build/obj/chcore.o.nm"
49 "../../../../os/ports/GCC/ARMCMx/chcore_v7m.c" = "./build/obj/chcore_v7m.o.gkd" |

"./build/obj/chcore_v7m.su" | "./build/obj/chcore_v7m.o.nm"
50 "../../../../os/ports/common/ARMCMx/nvic.c" = "./build/obj/nvic.o.gkd" |

"./build/obj/nvic.su" | "./build/obj/nvic.o.nm"
51 "../../../../os/kernel/src/chsys.c" = "./build/obj/chsys.o.gkd" |

"./build/obj/chsys.su" | "./build/obj/chsys.o.nm"
52 "../../../../os/kernel/src/chdebug.c" = "./build/obj/chdebug.o.gkd" |

"./build/obj/chdebug.su" | "./build/obj/chdebug.o.nm"
53 "../../../../os/kernel/src/chlists.c" = "./build/obj/chlists.o.gkd" |

"./build/obj/chlists.su" | "./build/obj/chlists.o.nm"
54 "../../../../os/kernel/src/chvt.c" = "./build/obj/chvt.o.gkd" |

"./build/obj/chvt.su" | "./build/obj/chvt.o.nm"
55 "../../../../os/kernel/src/chschd.c" = "./build/obj/chschd.o.gkd" |

"./build/obj/chschd.su" | "./build/obj/chschd.o.nm"
56 "../../../../os/kernel/src/chthreads.c" = "./build/obj/chthreads.o.gkd" |

"./build/obj/chthreads.su" | "./build/obj/chthreads.o.nm"
57 "../../../../os/kernel/src/chdynamic.c" = "./build/obj/chdynamic.o.gkd" |

"./build/obj/chdynamic.su" | "./build/obj/chdynamic.o.nm"
58 "../../../../os/kernel/src/chregistry.c" = "./build/obj/chregistry.o.gkd" |

"./build/obj/chregistry.su" | "./build/obj/chregistry.o.nm"
59 "../../../../os/kernel/src/chsem.c" = "./build/obj/chsem.o.gkd" |

"./build/obj/chsem.su" | "./build/obj/chsem.o.nm"
60 "../../../../os/kernel/src/chmtx.c" = "./build/obj/chmtx.o.gkd" |

"./build/obj/chmtx.su" | "./build/obj/chmtx.o.nm"
61 "../../../../os/kernel/src/chcond.c" = "./build/obj/chcond.o.gkd" |

"./build/obj/chcond.su" | "./build/obj/chcond.o.nm"
62 "../../../../os/kernel/src/chevents.c" = "./build/obj/chevents.o.gkd" |

"./build/obj/chevents.su" | "./build/obj/chevents.o.nm"
63 "../../../../os/kernel/src/chmsg.c" = "./build/obj/chmsg.o.gkd" |

"./build/obj/chmsg.su" | "./build/obj/chmsg.o.nm"
64 "../../../../os/kernel/src/chmboxes.c" = "./build/obj/chmboxes.o.gkd" |

"./build/obj/chmboxes.su" | "./build/obj/chmboxes.o.nm"
65 "../../../../os/kernel/src/chqueues.c" = "./build/obj/chqueues.o.gkd" |

"./build/obj/chqueues.su" | "./build/obj/chqueues.o.nm"
66 "../../../../os/kernel/src/chmemcore.c" = "./build/obj/chmemcore.o.gkd" |

"./build/obj/chmemcore.su" | "./build/obj/chmemcore.o.nm"
67 "../../../../os/kernel/src/chheap.c" = "./build/obj/chheap.o.gkd" |

"./build/obj/chheap.su" | "./build/obj/chheap.o.nm"
68 "../../../../os/kernel/src/chmempools.c" = "./build/obj/chmempools.o.gkd" |

"./build/obj/chmempools.su" | "./build/obj/chmempools.o.nm"
69 "../../../../test/test.c" = "./build/obj/test.o.gkd" |

"./build/obj/test.su" | "./build/obj/test.o.nm"
70 "../../../../test/testthd.c" = "./build/obj/testthd.o.gkd" |

"./build/obj/testthd.su" | "./build/obj/testthd.o.nm"
71 "../../../../test/testsem.c" = "./build/obj/testsem.o.gkd" |

"./build/obj/testsem.su" | "./build/obj/testsem.o.nm"
72 "../../../../test/testmtx.c" = "./build/obj/testmtx.o.gkd" |

"./build/obj/testmtx.su" | "./build/obj/testmtx.o.nm"

B.6. Stack usage analyzer configuration demo 123

73 "../../../../test/testmsg.c" = "./build/obj/testmsg.o.gkd" |
"./build/obj/testmsg.su" | "./build/obj/testmsg.o.nm"

74 "../../../../test/testmbox.c" = "./build/obj/testmbox.o.gkd" |
"./build/obj/testmbox.su" | "./build/obj/testmbox.o.nm"

75 "../../../../test/testevt.c" = "./build/obj/testevt.o.gkd" |
"./build/obj/testevt.su" | "./build/obj/testevt.o.nm"

76 "../../../../test/testheap.c" = "./build/obj/testheap.o.gkd" |
"./build/obj/testheap.su" | "./build/obj/testheap.o.nm"

77 "../../../../test/testpools.c" = "./build/obj/testpools.o.gkd" |
"./build/obj/testpools.su" | "./build/obj/testpools.o.nm"

78 "../../../../test/testdyn.c" = "./build/obj/testdyn.o.gkd" |
"./build/obj/testdyn.su" | "./build/obj/testdyn.o.nm"

79 "../../../../test/testqueues.c" = "./build/obj/testqueues.o.gkd" |
"./build/obj/testqueues.su" | "./build/obj/testqueues.o.nm"

80 "../../../../test/testbmk.c" = "./build/obj/testbmk.o.gkd" |
"./build/obj/testbmk.su" | "./build/obj/testbmk.o.nm"

81 "../../../../os/hal/src/hal.c" = "./build/obj/hal.o.gkd" |
"./build/obj/hal.su" | "./build/obj/hal.o.nm"

82 "../../../../os/hal/src/adc.c" = "./build/obj/adc.o.gkd" |
"./build/obj/adc.su" | "./build/obj/adc.o.nm"

83 "../../../../os/hal/src/can.c" = "./build/obj/can.o.gkd" |
"./build/obj/can.su" | "./build/obj/can.o.nm"

84 "../../../../os/hal/src/ext.c" = "./build/obj/ext.o.gkd" |
"./build/obj/ext.su" | "./build/obj/ext.o.nm"

85 "../../../../os/hal/src/gpt.c" = "./build/obj/gpt.o.gkd" |
"./build/obj/gpt.su" | "./build/obj/gpt.o.nm"

86 "../../../../os/hal/src/i2c.c" = "./build/obj/i2c.o.gkd" |
"./build/obj/i2c.su" | "./build/obj/i2c.o.nm"

87 "../../../../os/hal/src/icu.c" = "./build/obj/icu.o.gkd" |
"./build/obj/icu.su" | "./build/obj/icu.o.nm"

88 "../../../../os/hal/src/mac.c" = "./build/obj/mac.o.gkd" |
"./build/obj/mac.su" | "./build/obj/mac.o.nm"

89 "../../../../os/hal/src/mmc_spi.c" = "./build/obj/mmc_spi.o.gkd" |
"./build/obj/mmc_spi.su" | "./build/obj/mmc_spi.o.nm"

90 "../../../../os/hal/src/mmcsd.c" = "./build/obj/mmcsd.o.gkd" |
"./build/obj/mmcsd.su" | "./build/obj/mmcsd.o.nm"

91 "../../../../os/hal/src/pal.c" = "./build/obj/pal.o.gkd" |
"./build/obj/pal.su" | "./build/obj/pal.o.nm"

92 "../../../../os/hal/src/pwm.c" = "./build/obj/pwm.o.gkd" |
"./build/obj/pwm.su" | "./build/obj/pwm.o.nm"

93 "../../../../os/hal/src/rtc.c" = "./build/obj/rtc.o.gkd" |
"./build/obj/rtc.su" | "./build/obj/rtc.o.nm"

94 "../../../../os/hal/src/sdc.c" = "./build/obj/sdc.o.gkd" |
"./build/obj/sdc.su" | "./build/obj/sdc.o.nm"

95 "../../../../os/hal/src/serial.c" = "./build/obj/serial.o.gkd" |
"./build/obj/serial.su" | "./build/obj/serial.o.nm"

96 "../../../../os/hal/src/serial_usb.c" = "./build/obj/serial_usb.o.gkd" |
"./build/obj/serial_usb.su" | "./build/obj/serial_usb.o.nm"

97 "../../../../os/hal/src/spi.c" = "./build/obj/spi.o.gkd" |
"./build/obj/spi.su" | "./build/obj/spi.o.nm"

98 "../../../../os/hal/src/tm.c" = "./build/obj/tm.o.gkd" |
"./build/obj/tm.su" | "./build/obj/tm.o.nm"

99 "../../../../os/hal/src/uart.c" = "./build/obj/uart.o.gkd" |
"./build/obj/uart.su" | "./build/obj/uart.o.nm"

100 "../../../../os/hal/src/usb.c" = "./build/obj/usb.o.gkd" |
"./build/obj/usb.su" | "./build/obj/usb.o.nm"

101 "../../../../os/hal/platforms/STM32F4xx/stm32_dma.c" = "./build/obj/stm32_dma.o.gkd" |
"./build/obj/stm32_dma.su" | "./build/obj/stm32_dma.o.nm"

102 "../../../../os/hal/platforms/STM32F4xx/hal_lld.c" = "./build/obj/hal_lld.o.gkd" |
"./build/obj/hal_lld.su" | "./build/obj/hal_lld.o.nm"

103 "../../../../os/hal/platforms/STM32F4xx/adc_lld.c" = "./build/obj/adc_lld.o.gkd" |
"./build/obj/adc_lld.su" | "./build/obj/adc_lld.o.nm"

104 "../../../../os/hal/platforms/STM32F4xx/ext_lld_isr.c" = "./build/obj/ext_lld_isr.o.gkd" |
"./build/obj/ext_lld_isr.su" | "./build/obj/ext_lld_isr.o.nm"

105 "../../../../os/hal/platforms/STM32/can_lld.c" = "./build/obj/can_lld.o.gkd" |
"./build/obj/can_lld.su" | "./build/obj/can_lld.o.nm"

106 "../../../../os/hal/platforms/STM32/ext_lld.c" = "./build/obj/ext_lld.o.gkd" |
"./build/obj/ext_lld.su" | "./build/obj/ext_lld.o.nm"

107 "../../../../os/hal/platforms/STM32/gpt_lld.c" = "./build/obj/gpt_lld.o.gkd" |
"./build/obj/gpt_lld.su" | "./build/obj/gpt_lld.o.nm"

108 "../../../../os/hal/platforms/STM32/icu_lld.c" = "./build/obj/icu_lld.o.gkd" |
"./build/obj/icu_lld.su" | "./build/obj/icu_lld.o.nm"

109 "../../../../os/hal/platforms/STM32/mac_lld.c" = "./build/obj/mac_lld.o.gkd" |
"./build/obj/mac_lld.su" | "./build/obj/mac_lld.o.nm"

110 "../../../../os/hal/platforms/STM32/pwm_lld.c" = "./build/obj/pwm_lld.o.gkd" |
"./build/obj/pwm_lld.su" | "./build/obj/pwm_lld.o.nm"

111 "../../../../os/hal/platforms/STM32/sdc_lld.c" = "./build/obj/sdc_lld.o.gkd" |
"./build/obj/sdc_lld.su" | "./build/obj/sdc_lld.o.nm"

112 "../../../../os/hal/platforms/STM32/GPIOv2/pal_lld.c" = "./build/obj/pal_lld.o.gkd" |
"./build/obj/pal_lld.su" | "./build/obj/pal_lld.o.nm"

113 "../../../../os/hal/platforms/STM32/I2Cv1/i2c_lld.c" = "./build/obj/i2c_lld.o.gkd" |
"./build/obj/i2c_lld.su" | "./build/obj/i2c_lld.o.nm"

114 "../../../../os/hal/platforms/STM32/OTGv1/usb_lld.c" = "./build/obj/usb_lld.o.gkd" |
"./build/obj/usb_lld.su" | "./build/obj/usb_lld.o.nm"

115 "../../../../os/hal/platforms/STM32/RTCv2/rtc_lld.c" = "./build/obj/rtc_lld.o.gkd" |
"./build/obj/rtc_lld.su" | "./build/obj/rtc_lld.o.nm"

116 "../../../../os/hal/platforms/STM32/SPIv1/spi_lld.c" = "./build/obj/spi_lld.o.gkd" |
"./build/obj/spi_lld.su" | "./build/obj/spi_lld.o.nm"

117 "../../../../os/hal/platforms/STM32/USARTv1/serial_lld.c" = "./build/obj/serial_lld.o.gkd" |
"./build/obj/serial_lld.su" | "./build/obj/serial_lld.o.nm"

118 "../../../../os/hal/platforms/STM32/USARTv1/uart_lld.c" = "./build/obj/uart_lld.o.gkd" |
"./build/obj/uart_lld.su" | "./build/obj/uart_lld.o.nm"

119 "../../../../os/various/lwip_bindings/lwipthread.c" = "./build/obj/lwipthread.o.gkd" |
"./build/obj/lwipthread.su" | "./build/obj/lwipthread.o.nm"

120 "../../../../os/various/lwip_bindings/arch/sys_arch.c" = "./build/obj/sys_arch.o.gkd" |
"./build/obj/sys_arch.su" | "./build/obj/sys_arch.o.nm"

121 "../../../../ext/lwip/src/netif/etharp.c" = "./build/obj/etharp.o.gkd" |
"./build/obj/etharp.su" | "./build/obj/etharp.o.nm"

122 "../../../../ext/lwip/src/core/dhcp.c" = "./build/obj/dhcp.o.gkd" |
"./build/obj/dhcp.su" | "./build/obj/dhcp.o.nm"

123 "../../../../ext/lwip/src/core/dns.c" = "./build/obj/dns.o.gkd" |
"./build/obj/dns.su" | "./build/obj/dns.o.nm"

124 "../../../../ext/lwip/src/core/init.c" = "./build/obj/init.o.gkd" |
"./build/obj/init.su" | "./build/obj/init.o.nm"

125 "../../../../ext/lwip/src/core/mem.c" = "./build/obj/mem.o.gkd" |
"./build/obj/mem.su" | "./build/obj/mem.o.nm"

126 "../../../../ext/lwip/src/core/memp.c" = "./build/obj/memp.o.gkd" |
"./build/obj/memp.su" | "./build/obj/memp.o.nm"

127 "../../../../ext/lwip/src/core/netif.c" = "./build/obj/netif.o.gkd" |
"./build/obj/netif.su" | "./build/obj/netif.o.nm"

128 "../../../../ext/lwip/src/core/pbuf.c" = "./build/obj/pbuf.o.gkd" |
"./build/obj/pbuf.su" | "./build/obj/pbuf.o.nm"

129 "../../../../ext/lwip/src/core/raw.c" = "./build/obj/raw.o.gkd" |
"./build/obj/raw.su" | "./build/obj/raw.o.nm"

130 "../../../../ext/lwip/src/core/stats.c" = "./build/obj/stats.o.gkd" |
"./build/obj/stats.su" | "./build/obj/stats.o.nm"

131 "../../../../ext/lwip/src/core/sys.c" = "./build/obj/sys.o.gkd" |
"./build/obj/sys.su" | "./build/obj/sys.o.nm"

132 "../../../../ext/lwip/src/core/tcp.c" = "./build/obj/tcp.o.gkd" |

124 Appendix B. Useful listings

"./build/obj/tcp.su" | "./build/obj/tcp.o.nm"
133 "../../../../ext/lwip/src/core/tcp_in.c" = "./build/obj/tcp_in.o.gkd" |

"./build/obj/tcp_in.su" | "./build/obj/tcp_in.o.nm"
134 "../../../../ext/lwip/src/core/tcp_out.c" = "./build/obj/tcp_out.o.gkd" |

"./build/obj/tcp_out.su" | "./build/obj/tcp_out.o.nm"
135 "../../../../ext/lwip/src/core/udp.c" = "./build/obj/udp.o.gkd" |

"./build/obj/udp.su" | "./build/obj/udp.o.nm"
136 "../../../../ext/lwip/src/core/ipv4/autoip.c" = "./build/obj/autoip.o.gkd" |

"./build/obj/autoip.su" | "./build/obj/autoip.o.nm"
137 "../../../../ext/lwip/src/core/ipv4/icmp.c" = "./build/obj/icmp.o.gkd" |

"./build/obj/icmp.su" | "./build/obj/icmp.o.nm"
138 "../../../../ext/lwip/src/core/ipv4/igmp.c" = "./build/obj/igmp.o.gkd" |

"./build/obj/igmp.su" | "./build/obj/igmp.o.nm"
139 "../../../../ext/lwip/src/core/ipv4/inet.c" = "./build/obj/inet.o.gkd" |

"./build/obj/inet.su" | "./build/obj/inet.o.nm"
140 "../../../../ext/lwip/src/core/ipv4/inet_chksum.c" = "./build/obj/inet_chksum.o.gkd" |

"./build/obj/inet_chksum.su" | "./build/obj/inet_chksum.o.nm"
141 "../../../../ext/lwip/src/core/ipv4/ip.c" = "./build/obj/ip.o.gkd" |

"./build/obj/ip.su" | "./build/obj/ip.o.nm"
142 "../../../../ext/lwip/src/core/ipv4/ip_addr.c" = "./build/obj/ip_addr.o.gkd" |

"./build/obj/ip_addr.su" | "./build/obj/ip_addr.o.nm"
143 "../../../../ext/lwip/src/core/ipv4/ip_frag.c" = "./build/obj/ip_frag.o.gkd" |

"./build/obj/ip_frag.su" | "./build/obj/ip_frag.o.nm"
144 "../../../../ext/lwip/src/core/def.c" = "./build/obj/def.o.gkd" |

"./build/obj/def.su" | "./build/obj/def.o.nm"
145 "../../../../ext/lwip/src/core/timers.c" = "./build/obj/timers.o.gkd" |

"./build/obj/timers.su" | "./build/obj/timers.o.nm"
146 "../../../../ext/lwip/src/api/api_lib.c" = "./build/obj/api_lib.o.gkd" |

"./build/obj/api_lib.su" | "./build/obj/api_lib.o.nm"
147 "../../../../ext/lwip/src/api/api_msg.c" = "./build/obj/api_msg.o.gkd" |

"./build/obj/api_msg.su" | "./build/obj/api_msg.o.nm"
148 "../../../../ext/lwip/src/api/err.c" = "./build/obj/err.o.gkd" |

"./build/obj/err.su" | "./build/obj/err.o.nm"
149 "../../../../ext/lwip/src/api/netbuf.c" = "./build/obj/netbuf.o.gkd" |

"./build/obj/netbuf.su" | "./build/obj/netbuf.o.nm"
150 "../../../../ext/lwip/src/api/netdb.c" = "./build/obj/netdb.o.gkd" |

"./build/obj/netdb.su" | "./build/obj/netdb.o.nm"
151 "../../../../ext/lwip/src/api/netifapi.c" = "./build/obj/netifapi.o.gkd" |

"./build/obj/netifapi.su" | "./build/obj/netifapi.o.nm"
152 "../../../../ext/lwip/src/api/sockets.c" = "./build/obj/sockets.o.gkd" |

"./build/obj/sockets.su" | "./build/obj/sockets.o.nm"
153 "../../../../ext/lwip/src/api/tcpip.c" = "./build/obj/tcpip.o.gkd" |

"./build/obj/tcpip.su" | "./build/obj/tcpip.o.nm"
154 "../../../../os/various/evtimer.c" = "./build/obj/evtimer.o.gkd" |

"./build/obj/evtimer.su" | "./build/obj/evtimer.o.nm"
155 "../../../../os/various/chprintf.c" = "./build/obj/chprintf.o.gkd" |

"./build/obj/chprintf.su" | "./build/obj/chprintf.o.nm"
156 "../../../../os/various/shell.c" = "./build/obj/shell.o.gkd" |

"./build/obj/shell.su" | "./build/obj/shell.o.nm"
157 "../../src/urosBase.c" = "./build/obj/urosBase.o.gkd" |

"./build/obj/urosBase.su" | "./build/obj/urosBase.o.nm"
158 "../../src/urosConn.c" = "./build/obj/urosConn.o.gkd" |

"./build/obj/urosConn.su" | "./build/obj/urosConn.o.nm"
159 "../../src/urosNode.c" = "./build/obj/urosNode.o.gkd" |

"./build/obj/urosNode.su" | "./build/obj/urosNode.o.nm"
160 "../../src/urosRpcCall.c" = "./build/obj/urosRpcCall.o.gkd" |

"./build/obj/urosRpcCall.su" | "./build/obj/urosRpcCall.o.nm"
161 "../../src/urosRpcParser.c" = "./build/obj/urosRpcParser.o.gkd" |

"./build/obj/urosRpcParser.su" | "./build/obj/urosRpcParser.o.nm"
162 "../../src/urosRpcSlave.c" = "./build/obj/urosRpcSlave.o.gkd" |

"./build/obj/urosRpcSlave.su" | "./build/obj/urosRpcSlave.o.nm"
163 "../../src/urosRpcStreamer.c" = "./build/obj/urosRpcStreamer.o.gkd" |

"./build/obj/urosRpcStreamer.su" | "./build/obj/urosRpcStreamer.o.nm"
164 "../../src/urosTcpRos.c" = "./build/obj/urosTcpRos.o.gkd" |

"./build/obj/urosTcpRos.su" | "./build/obj/urosTcpRos.o.nm"
165 "../../src/urosThreading.c" = "./build/obj/urosThreading.o.gkd" |

"./build/obj/urosThreading.su" | "./build/obj/urosThreading.o.nm"
166 "../../src/lld/chibios/uros_lld_base.c" = "./build/obj/uros_lld_base.o.gkd" |

"./build/obj/uros_lld_base.su" | "./build/obj/uros_lld_base.o.nm"
167 "../../src/lld/chibios/uros_lld_threading.c" = "./build/obj/uros_lld_threading.o.gkd" |

"./build/obj/uros_lld_threading.su" | "./build/obj/uros_lld_threading.o.nm"
168 "../../src/lld/lwip/uros_lld_conn.c" = "./build/obj/uros_lld_conn.o.gkd" |

"./build/obj/uros_lld_conn.su" | "./build/obj/uros_lld_conn.o.nm"
169 "./src/board.c" = "./build/obj/board.o.gkd" |

"./build/obj/board.su" | "./build/obj/board.o.nm"
170 "./src/main.c" = "./build/obj/main.o.gkd" |

"./build/obj/main.su" | "./build/obj/main.o.nm"
171 "./src/usbcfg.c" = "./build/obj/usbcfg.o.gkd" |

"./build/obj/usbcfg.su" | "./build/obj/usbcfg.o.nm"
172 "./src/urosUser.c" = "./build/obj/urosUser.o.gkd" |

"./build/obj/urosUser.su" | "./build/obj/urosUser.o.nm"
173 "./src/urosMsgTypes.c" = "./build/obj/urosMsgTypes.o.gkd" |

"./build/obj/urosMsgTypes.su" | "./build/obj/urosMsgTypes.o.nm"
174 "./src/urosHandlers.c" = "./build/obj/urosHandlers.o.gkd" |

"./build/obj/urosHandlers.su" | "./build/obj/urosHandlers.o.nm"
175 "./src/app.c" = "./build/obj/app.o.gkd" |

"./build/obj/app.su" | "./build/obj/app.o.nm"

Listing B.12: Documented demo configuration file for urosstan.py, turtlesim running on
ChibiOS/RT

	Abstract
	Sommario
	Ringraziamenti
	1 Introduction
	2 State of the art
	2.1 The need for rapid-prototyping frameworks
	2.2 Robot Operating System
	2.2.1 Architecture
	2.2.2 Development process

	2.3 Open Robot Control Software
	2.3.1 Architecture
	2.3.2 Development process

	2.4 Lightweight Communications and Marshaling
	2.4.1 Architecture
	2.4.2 Development process

	2.5 Rapid Robot Prototyping
	2.5.1 Architecture
	2.5.2 Development process

	2.6 Framework comparison and observations

	3 Research strategy
	3.1 Objectives
	3.2 Strategy

	4 The ROS communications model
	4.1 Definitions
	4.2 Overview
	4.3 Remote procedure calls
	4.3.1 Roles
	4.3.2 Value types
	4.3.3 Request and response

	4.4 Connection patterns
	4.5 Data streams
	4.5.1 Type descriptors
	4.5.2 Message structure
	4.5.3 Connection header

	5 The proposed framework – µROSnode
	5.1 Implementation choices
	5.1.1 Language observations
	5.1.2 Footprint optimizations

	5.2 Framework description
	5.2.1 Base module
	5.2.2 Connectivity module
	5.2.3 XML-RPC module
	5.2.4 TCPROS module
	5.2.5 Node module
	5.2.6 Threading module
	5.2.7 User module
	5.2.8 Message types module
	5.2.9 Handlers module

	5.3 Development tools
	5.3.1 Code generator
	5.3.2 Static stack analysis
	5.3.3 Demonstration projects

	5.4 Integration with user applications

	6 Experimental results and evaluation
	6.1 Benchmarks
	6.1.1 Communication setup
	6.1.2 R2P_GW module
	6.1.3 Raspberry Pi

	6.2 Case study – Triskar2
	6.2.1 Triskar2
	6.2.2 Software architecture
	6.2.3 Observations

	7 Conclusions and future research directions
	Bibliography
	A ROS-related API documentation
	A.1 ROS Master API
	A.1.1 registerService()
	A.1.2 unregisterService()
	A.1.3 registerSubscriber()
	A.1.4 unregisterSubscriber()
	A.1.5 registerPublisher()
	A.1.6 unregisterPublisher()
	A.1.7 lookupNode()
	A.1.8 getPublishedTopics()
	A.1.9 getTopicTypes()
	A.1.10 getSystemState()
	A.1.11 getUri()
	A.1.12 lookupService()

	A.2 ROS Parameter Server API
	A.2.1 deleteParam()
	A.2.2 setParam()
	A.2.3 getParam()
	A.2.4 searchParam()
	A.2.5 subscribeParam()
	A.2.6 unsubscribeParam()
	A.2.7 hasParam()
	A.2.8 getParamNames()

	A.3 ROS Slave API
	A.3.1 getBusStats()
	A.3.2 getBusInfo()
	A.3.3 getMasterUri()
	A.3.4 shutdown()
	A.3.5 getPid()
	A.3.6 getSubscriptions()
	A.3.7 getPublications()
	A.3.8 paramUpdate()
	A.3.9 publisherUpdate()
	A.3.10 requestTopic()

	A.4 Node API
	A.4.1 urosNodePublishTopic()
	A.4.2 urosNodeUnpublishTopic()
	A.4.3 urosNodeSubscribeTopic()
	A.4.4 urosNodeUnsubscribeTopic()
	A.4.5 urosNodePublishService()
	A.4.6 urosNodeUnpublishService()
	A.4.7 urosNodeCallService()
	A.4.8 urosNodeSubscribeParam()
	A.4.9 urosNodeUnsubscribeParam()
	A.4.10 urosNodeResolveTopicPublisher()
	A.4.11 urosNodeResolveServicePublisher()

	B Useful listings
	B.1 Disclaimer
	B.2 XML-RPC grammar
	B.2.1 Document Type Definition
	B.2.2 XML Schema

	B.3 TCPROS syntax
	B.4 Case study
	B.4.1 Triskar2 message types
	B.4.2 Triskar2 teleoperator node
	B.4.3 Triskar2 urosgen configuration
	B.4.4 Triskar2 gateway handler routines

	B.5 Code generator configuration demo
	B.6 Stack usage analyzer configuration demo

