

Robotics - Projective Geometry and Camera model

Simone Ceriani

ceriani@elet.polimi.it

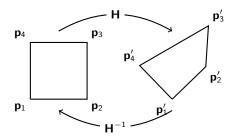
Dipartimento di Elettronica e Informazione Politecnico di Milano

29 March 2012

Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	0000000000	0000000000	00000000	0000000	000000	00000
Outline							

Projective		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
Outline							

Projective Transformations - Recall


PROJECTIVE TRANSFORMATION

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$

$$\begin{array}{c} x'\\ y'\\ w' \end{array} = \begin{bmatrix} h_{11} & h_{12} & h_{13}\\ h_{21} & h_{22} & h_{23}\\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x\\ y\\ w \end{bmatrix}$$

Notes

- Map plane to plane
- It's a linear transformation in homogeneous coordinates
- It's homogeneous too $\lambda \mathbf{H} \equiv \mathbf{H}$

B 1 11					-		
00000	0000000	0000000000	0000000000	00000000	000000	000000	00000
Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras

Projective Transformations - Image Rectification - 1

Homography Estimation

- Take four point on first image $\mathbf{x}_i = \begin{bmatrix} x_i, y_i, w_i \end{bmatrix}^T$
- Map on four known destination points $\mathbf{x}'_i = \begin{bmatrix} x'_i, \ y'_i \end{bmatrix}^{\tau}$

• Rewrite:
$$\begin{cases} x_i'' = h_{11}x_i + h_{12}y_i + h_{13}w_i \\ y_i'' = h_{21}x_i + h_{22}y_i + h_{23}w_i \\ w_i'' = h_{31}x_i + h_{32}y_i + h_{33}w_i \end{cases}$$

• In cartesian:
$$\begin{cases} x_i' = \frac{h_{11}x_i + h_{12}y_i + h_{13}w_i}{h_{31}x_i + h_{32}y_i + h_{33}w_i} \\ y_i' = \frac{h_{21}x_i + h_{22}y_i + h_{23}w_i}{h_{31}x_i + h_{32}y_i + h_{33}w_i} \end{cases}$$

• Fix $h_{33} = 1$ and rewrite
$$\begin{cases} x_i'(h_{31}x_i + h_{32}y_i + w_i) = h_{11}x_i + h_{12}y_i + h_{13}w_i \\ y_i'(h_{31}x_i + h_{32}y_i + w_i) = h_{21}x_i + h_{22}y_i + h_{23}w_i \end{cases}$$

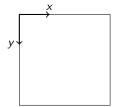
Projective Hierarchy Cross Ratio Geometry 3D Nice stuff Camera Geometry Pin Hole Model Extras 00000 00000000 00000000 00000000 0000000 0000000 000000

Projective Transformations - Image Rectification - 2

- Expand and separate $\begin{cases} x_i h_{11} + y_i h_{12} + w_i h_{13} x'_i x_i h_{31} x'_i y_i h_{32} = x'_i w_i \\ x_i h_{21} + y_i h_{22} + w_i h_{23} y'_i x_i h_{31} y'_i y_i h_{32} = y'_i w_i \end{cases}$
- Matrix form (2-lines for each point)

$$\begin{bmatrix} x_1 & y_1 & w_1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 \\ 0 & 0 & 0 & x_1 & y_1 & w_1 & -x_1'x_1 & -x_1'y_1 \\ x_2 & y_2 & w_2 & 0 & 0 & 0 & -x_2'x_2 & -x_2'y_2 \\ 0 & 0 & 0 & x_2 & y_2 & w_2 & -x_2'x_2 & -x_2'y_2 \\ x_3 & y_3 & w_3 & 0 & 0 & 0 & -x_3'x_3 & -x_3'y_3 \\ 0 & 0 & 0 & x_3 & y_3 & w_3 & -x_3'x_3 & -x_3'y_3 \\ x_4 & y_4 & w_4 & 0 & 0 & 0 & -x_4'x_4 & -x_4'y_4 \\ 0 & 0 & 0 & x_4 & y_4 & w_4 & -x_4'x_4 & -x_4'y_4 \end{bmatrix} \begin{bmatrix} h_{11} \\ h_{12} \\ h_{13} \\ h_{21} \\ h_{22} \\ h_{23} \\ h_{31} \\ h_{32} \end{bmatrix} = \begin{bmatrix} x_1'w_1 \\ y_1'w_1 \\ x_2'w_2 \\ x_3'w_3 \\ x_4'w_4 \\ y_4'w_4 \end{bmatrix}$$

• System Ax = b e.g. in Matlab solved with $x = A \setminus b$


Projective Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
000000 0000000	000000000000	0000000000	00000000	0000000	000000	00000

Projective Transformations - Image Rectification - Example

ORIGINAL IMAGE

IMAGE REFERENCE SYSTEM

- X: {179,525}, {187,73}, {690,307}, {698,467}
- **X**[']: {0,180}, {0,0}, {822,0}, {822,180}

			-87.7293
• H =	-0.1573	0.3382	4.7322
	-0.0011	0.0001	1.0000

Projective Pin Hole Model 00000 Projective Transformations - Lines and Conics Points CONICS

$$\mathbf{p}' = \mathbf{H}\mathbf{p} \qquad \qquad \mathbf{C}' = \mathbf{H}^{-T}\mathbf{C}\mathbf{H}^{-T}$$

LINES

$$\mathbf{I}' = \mathbf{H}^{-T}\mathbf{I}$$

Proof

•
$$\mathbf{I}^{\mathsf{T}}\mathbf{p} = \mathbf{0}$$

•
$$\mathbf{I}'^{\, T} \mathbf{p}' = \mathbf{0}$$

- $\mathbf{I}'^{T}\mathbf{H}\mathbf{p} = 0$
- $(\mathbf{H}^{-T}\mathbf{I})^{T}\mathbf{H}\mathbf{p} = 0$

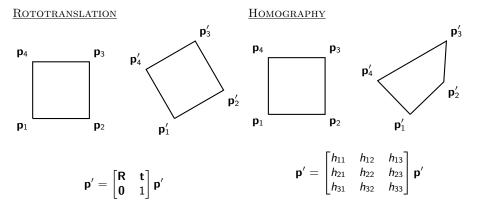
•
$$\mathbf{I}^{\mathsf{T}}\mathbf{H}^{-1}\mathbf{H}\mathbf{p} = \mathbf{0}$$

$$\mathbf{C}' = \mathbf{H}^{-T} \mathbf{C} \mathbf{H}^{-1}$$

Proof

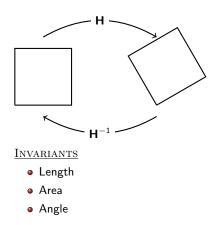
•
$$\mathbf{p}^T \mathbf{C} \mathbf{p} = 0$$

•
$$\mathbf{p}'^{T}\mathbf{C}'\mathbf{p}' = 0$$


•
$$(\mathbf{H}\mathbf{p})^{\mathsf{T}}\mathbf{H}^{-\mathsf{T}}\mathbf{C}\mathbf{H}^{-1}\mathbf{H}\mathbf{p} = 0$$

	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0000000000	00000000	000000	000000	00000
Outline							

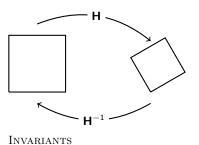
Projective	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	000000	0000000000	0 0000000000	00000000	0000000	000000	00000
Transfor	rmations -	- Recall					



Projective	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0000000000	00000000	0000000	000000	00000

Class I - Isometries - i.e., Rototranslations

$$\mathbf{p}' = \begin{bmatrix} \xi \cos(\theta) & -\sin(\theta) & \mathbf{t}_x \\ \xi \sin(\theta) & \cos(\theta) & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}'$$


- iso: same, metric: measure
- $\xi = +1$ orientation preserving
- $\xi = -1$ orientation reversing
- 3 DoF (2 translation, 1 rotation)
- Special cases:
 - Pure rotation
 - Pure translation

Projective	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
Class II	- Similar	ities					

$$\mathbf{p}' = \begin{bmatrix} s\cos(\theta) & -s\sin(\theta) & \mathbf{t}_x \\ s\sin(\theta) & s\cos(\theta) & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}'$$

- Isometry + scale factor
- 4 DoF (2 translation, 1 rotation, 1 scale)
- $det(s\mathbf{R}) = s$

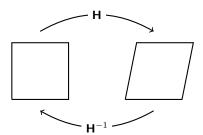
- Shape
- Ratios of length
- Ratios of areas
- Angle
- Parallel lines

Projective	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
~		<u>_</u>					

Class III - Affine transformations

$$\mathbf{p}' = \begin{bmatrix} a_{11} & a_{11} & \mathbf{t}_x \\ a_{21} & a_{22} & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}'$$

Non-isotropic scaling


6 DoF

(2 translation, 2 rotation, 2 scale) • $\mathbf{A} = \begin{bmatrix} a_{11} & a_{11} \\ a_{21} & a_{22} \end{bmatrix} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ • $\mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}} = (\mathbf{U}\mathbf{V}^{\mathsf{T}}) (\mathbf{V}\mathbf{D}\mathbf{V}^{\mathsf{T}})$

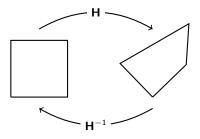
 $\boldsymbol{\mathsf{U}},\,\boldsymbol{\mathsf{V}}$ orthogonal, $\boldsymbol{\mathsf{D}}$ diagonal

• $\mathbf{R}(\theta) (\mathbf{R}(-\phi)\mathbf{D}\mathbf{R}(\phi))$

rotation on scaled axis

INVARIANTS

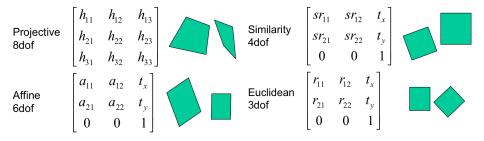
- Parallel lines
- Ratios of parallel segment lengths
- Ratios of areas


Projective 00000	Hierarchy 0000●00		Geometry 3D 0 0000000000		Pin Hole Model 000000	Extras 00000
Class IV	√ - Homo	graphies				

$$\mathbf{p}' = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \mathbf{p}'$$

- Mapping plane to plane linear in homogeneous coordinates
- 8 DoF

2 translation, 2 rotation,

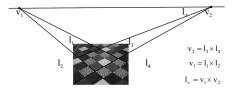

2 scale, 2 for I $\!\infty$

INVARIANTS

- Collinearities
- Cross-ratio of four points on a line

	Hierarchy	Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	000000000	000000000000000	00000000	0000000	000000	00000
2D Tra	neformati	one ovorvi	0147				

	Euclidean	similarity	affine	projective		Euclidean	similarity	affine	projective
Transformations					Invariants				
rotation	Х	х	х	Х	length	X			
translation	Х	х	Х	Х	angle	Х	Х		
uniform scaling		Х	Х	Х	ratio of lengths	Х	х		
nonuniform scaling			Х	Х	parallelism	Х	Х	Х	
shear			Х	Х	incidence	Х	X	Х	Х
perspective projection				Х	cross ratio	Х	Х	Х	Х
composition of projections				x					

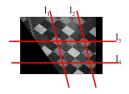

Projective Hierarchy Cross Ratio Geometry 3D Nice stuff Camera Geometry Pin Hole Model Extras

Homography

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{v}^{\mathsf{T}} & w \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix} \\ v_1 x + v_2 y \end{bmatrix}$$

• Improper points mapped on finite

•
$$\mathbf{I}'_{\infty} = \mathbf{H}^{-T} \mathbf{I}_{\infty} \neq \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$


• Vanishing point: where world parallel lines converge in image

Affine

$$\begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0} & w \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix} \\ 0 \end{bmatrix}$$

• Improper points remain at infinity but they change!

•
$$\mathbf{I}'_{\infty} = \mathbf{H}^{-T} \mathbf{I}_{\infty} = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}^{T} \mathbf{I}_{\infty}$$

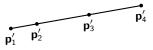
 $\mathbf{I}'_{\infty} = \mathbf{I}_{\infty} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$

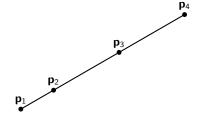
Outline							
00000	0000000	0000000000	0 000000000000000		0000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	000000000000	00000000	000000	000000	00000
Cross R	atio						

GIVEN

• 4 collinear points **p**_i


• Distances
$$d_{ij} = \sqrt{(\mathbf{p}_{i_x} - \mathbf{p}_{j_x})^2 + (\mathbf{p}_{i_y} - \mathbf{p}_{j_y})^2}$$


$$CR(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \mathbf{p}_4) = rac{\frac{d_{12}}{d_{13}}}{\frac{d_{24}}{d_{34}}} = rac{d_{12}}{d_{13}} \frac{d_{34}}{d_{24}}$$

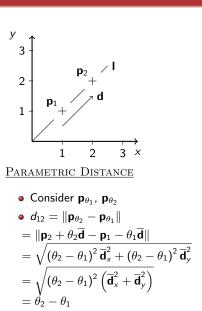
PROPERTY

Invariant under any projective transformation

$$CR(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3,\mathbf{p}_4) = CR(\mathbf{p}_1',\mathbf{p}_2',\mathbf{p}_3',\mathbf{p}_4')$$

Parame	tric Lines						
00000	0000000	00000000	000000000000000000000000000000000000000	00000000	000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

LINE


• $\mathbf{I} = \mathbf{p}_1 \times \mathbf{p}_2$

DIRECTION

- d₁₂ = p₂ p₁
 p_i normalized
- $\mathbf{d}_w = 0$: improper point or direction • $\overline{\mathbf{d}} = \frac{\mathbf{d}}{\|\mathbf{d}\|}$

PARAMETRIC LINE

- $\mathbf{p}_{\theta} = \mathbf{p}_1 + \theta \overline{\mathbf{d}}$
- e.g., $\theta = \|\mathbf{d}\| \to \mathbf{p}_2$
- e.g., $\theta = \mathbf{0}
 ightarrow \mathbf{p}_1$

Projective	Hierarchy				Camera Geometry	Pin Hole Model	Extras
00000	0000000		o 00000000000	00000000	000000	000000	00000
Cross F	Ratio Exar	npie – 1					

IMAGE SOURCE

QUESTIONS

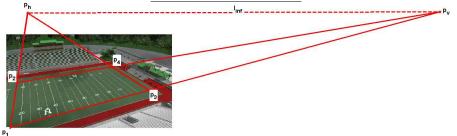
- Identify the vanishing points
- $\bullet\,$ Calculate the ${\rm I}'_\infty$
- Identify the vertical middle line
- Identify the field bottom line
- Calculate relative player position
- Identify vanishing point of the diagonal

Projective		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	00000000000000	0000000000		0000000	000000	00000
Cross F	Ratio Exar	nple - 2					

VANISHING POINTS - STEP 1

IDENTIFY

• 4 points on a rectangle in the world plane

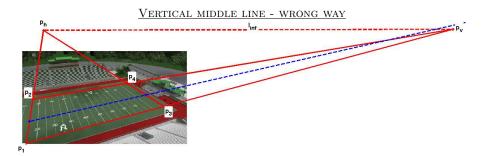

CALCULATE

- $\mathbf{I}_1 = \mathbf{p}_1 \times \mathbf{p}_2$
- $\bullet \ \boldsymbol{I}_2 = \boldsymbol{p}_3 \times \boldsymbol{p}_4$
- $I_3 = p_1 \times p_3$
- $\mathbf{I}_4 = \mathbf{p}_2 \times \mathbf{p}_4$

C	ante Eller						
00000	0000000	0000000000	000000000000000000000000000000000000000	00000000	0000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

Cross Ratio Example - 3

VANISHING POINTS - STEP 2


GIVEN

 $\bullet \ \ I_1, \ I_2, \ I_3, \ I_4$

CALCULATE

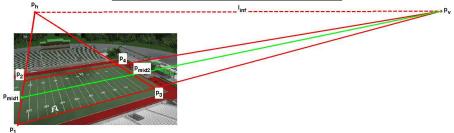
- $\mathbf{p}_h = \mathbf{I}_1 \times \mathbf{I}_2$
- $\mathbf{p}_v = \mathbf{I}_3 \times \mathbf{I}_4$
- $\mathbf{I}'_{\infty} = \mathbf{p}_h \times \mathbf{p}_v$

Projective 00000	Hierarchy 0000000	Geometry 3D	Camera Geometry	Pin Hole Model	Extras
	Ratio Exar				

MIDDLE POINT OF LINES

- $\mathbf{p}_{m1} = \frac{1}{2} (\mathbf{p}_1 + \mathbf{p}_2)$
- $\mathbf{p}_{m2} = \frac{1}{2} (\mathbf{p}_3 + \mathbf{p}_4)$

• $\mathbf{I}_m = \mathbf{p}_{m1} \times \mathbf{p}_{m2}$


Wrong

- \mathbf{I}_m has to pass for \mathbf{p}_v
 - \rightarrow is not the middle line
- Homography doesn't preserve ratios, length, ...

Cross Ratio Example - 5

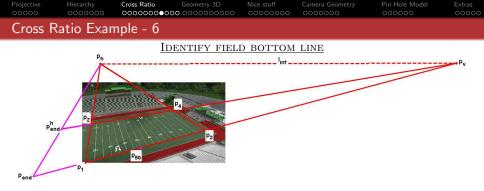
VERTICAL MIDDLE LINE - THE RIGHT WAY!

IN THE IMAGE

• $CR(\mathbf{p}_1, \mathbf{p}_{m1}, \mathbf{p}_2, \mathbf{p}_h)$ using parametric line = $CR(0, \theta_m, \theta_2, \theta_h) = \frac{\theta_m(\theta_h - \theta_2)}{\theta_2(\theta_h - \theta_m)}$

Equation

$$CR(\mathbf{p}_1, \mathbf{p}_{m1}, \mathbf{p}_2, \mathbf{p}_h) = CR(0, a, 2a, \infty)$$
$$\frac{\theta_m(\theta_h - \theta_2)}{\theta_2(\theta_h - \theta_m)} = 1/2$$


IN THE WORLD

- $CR(0, a, 2a, \infty) = \frac{a \infty}{2a \infty} = \frac{1}{2}$
- *a* is the (unknow) half-length

SOLUTION

•
$$\theta_m = \frac{\theta_2 \theta_h}{2\theta_h - \theta_2}$$

• $\mathbf{p}_{m1} = \mathbf{p}_1 + \theta_m \, \overline{\mathbf{d}}_{12}$

• do the same for \mathbf{p}_{m2}

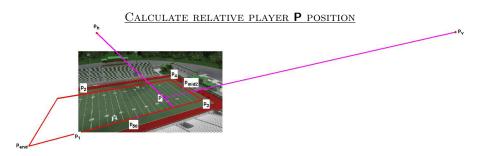
In the image

- Get the p₅₀ point (field middle)
- $CR(\mathbf{p}_v, \mathbf{p}_3, \mathbf{p}_{50}, \mathbf{p}_{end}) = CR(0, \theta_3, \theta_m, \theta_{end})$

$$= \frac{\theta_3(\theta_{end} - \theta_m)}{\theta_m(\theta_{end} - \theta_3)}$$

EQUATION

$$\begin{array}{lcl} CR(\mathbf{p}_{v},\mathbf{p}_{3},\mathbf{p}_{50},\mathbf{p}_{end}) &=& CR(-\infty,0,a,2a)\\ \\ \frac{\theta_{3}(\theta_{end}-\theta_{m})}{\theta_{m}(\theta_{end}-\theta_{3})} &=& 1/2 \end{array}$$


In the world

- $CR(-\infty,0,a,2a) = \frac{\infty}{\infty} \frac{a}{2a} = \frac{1}{2}$
- a is the (unknow) half-length

Solution • $\theta_{end} = \frac{\theta_m \theta_3}{2\theta_3 - \theta_m}$ • $\mathbf{p}_{end} = \mathbf{p}_v + \theta_{end} \overline{\mathbf{d}}_{v3}$ • $\mathbf{l}_{end} = \mathbf{p}_{end} \times \mathbf{p}_h$

Cross Ratio Example - 7

Origin

- In p₃
- x towards p₄
- y towards p₁

CALCULATE

•
$$\mathbf{P}_{x} = (\mathbf{P} \times \mathbf{p}_{v}) \times (\mathbf{p}_{3} \times \mathbf{p}_{4})$$

• $\mathbf{P}_{y} = (\mathbf{P} \times \mathbf{p}_{h}) \times (\mathbf{p}_{1} \times \mathbf{p}_{3})$

CROSS RATIO


• $CR(\mathbf{p}_3, \mathbf{P}_x, \mathbf{p}_{mid2}, \mathbf{p}_4) = CR(0, x, \frac{1}{2}, 1)$

•
$$\frac{\theta_x(\theta_4 - \theta_{mid2})}{\theta_{mid2}(\theta_4 - \theta_x)} = \frac{x}{1-x}$$

• $CR(\mathbf{p}_3, \mathbf{P}_y, \mathbf{p}_{50}, \mathbf{p}_{end}) = CR(0, x, \frac{1}{2}, 1)$

•
$$\frac{\theta_y(\theta_{end} - \theta_{50})}{\theta_{50}(\theta_{end} - \theta_y)} = \frac{x}{1-x}$$

Cross F	Ratio Exar	nnle - 8					
00000	0000000	00000000	•• • • • • • • • • • • • • • • • • • • •	00000000	000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

CALCULATE

•
$$\mathbf{I}_d = \mathbf{p}_{end} \times \mathbf{p}_4$$

• $\mathbf{p}_d = \mathbf{I}_d \times \mathbf{I}'_{end}$

$$\mathbf{p}_d = \mathbf{I}_d \times \mathbf{I'}_\infty$$

00000	0000000	0000000000	0000000000	00000000	0000000	000000	00000
Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras

Last step - Affine reconstruction

Affine transformation

- $I_{\infty} = \begin{bmatrix} 0, 0, 1 \end{bmatrix}^{\tau}$ invariant but not point-wise!
- Consider $\mathbf{I}'_{\infty} = \begin{bmatrix} I'_x, I'_y, I'_z \end{bmatrix}^{\tau}$ image of \mathbf{I}_{∞}
- Consider $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ l'_x & l'_y & l'_z \end{bmatrix}$
- \bullet Could be verified that $\textbf{I}_{\infty}=\textbf{H}^{-\intercal}\textbf{I}_{\infty}'$
- i.e., $\mathbf{p}_{aff} = \mathbf{H} \, \mathbf{p}_{img}$,

H map points of the image to a affine transformation of the world

Source image

Affine reconstruction

Projective Hierarchy Cross Ratio Geometry 3D Nice stuff Camera Geometry Pin Hole Model Extras

Points

• Points
$$\mathbf{p}_e = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \in \mathbb{R}^3$$

in Cartesian coordinates

_

•
$$\mathbf{p}_h = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4$$

in homogeneous coordinates

$$\bullet \begin{cases} X = x/w \\ Y = y/w \\ Z = z/w \\ w \neq 0 \end{cases}$$

• i.e., there is an arbitrary scale factor

PLANES

• Planes
$$\pi = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4$$

•
$$\mathbf{n} = \frac{\begin{bmatrix} a, b, c \end{bmatrix}^T}{\left\| \begin{bmatrix} a, b, c \end{bmatrix}^T \right\|}$$

unitary normal to the plane

•
$$\mathbf{p}_h \in \pi \iff \mathbf{p}_h^T \pi = \pi^T \mathbf{p}_h = 0$$

• $\pi_{\infty} = \begin{bmatrix} 0, \, 0, \, 0, \, 1 \end{bmatrix}^{ au}$: plane at infinity

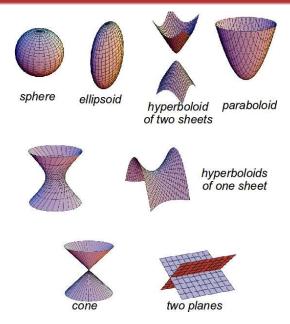
contains all improper points

Quadric	cs						
00000	0000000	000000000	000000000000000000000000000000000000000		0000000	000000	00000
		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras

DEFINITION

- Quadratic polynomial equation
- Quadric surface
- Matrix form equation
 - $\mathbf{x}^{\mathsf{T}}\mathbf{Q}\mathbf{x} = \mathbf{0}$
- **Q** is 4×4 symmetric

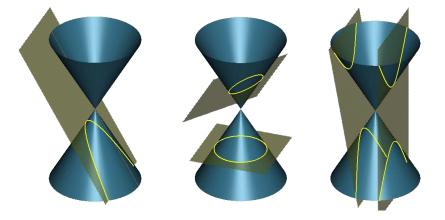
 \rightarrow Q is homogeneous too, i.e., 10 parameters, 9 D.O.F.


Projective 00000 hy Cross Ra 000 00000

Cross Ratio Geometry 3D

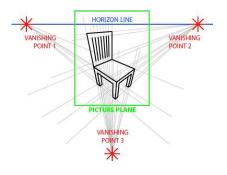
lice stuff Cam

Camera Geometry 0000000 Pin Hole Model Extra: 000000 000


Quadrics - Summary

Projective		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	000000000000	00000000	0000000	000000	00000
Quadric	s & conic	CS					

INTERSECTION

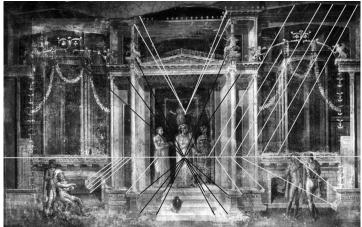

- $\bullet \ \mathbf{Q} \cap \pi \to \mathrm{conic}$
- Conics are planar sections of quadrics

Hierarchy of transformations									
00000	0000000	000000000	00 00000000000	00000000	000000	000000	00000		
		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model			

					Camera Geometry	Pin Hole Model	Extras	
00000	0000000	00000000000	0 0000000000	00000000	0000000	000000	00000	
Vanishing points								

VANISHING POINTS

- π_{∞} contains all the *directions*
- All the lines with the same direction intersect on π_∞ at the same point
- The vanishing point is the *image* of this intersection


VANISHING LINES

- Parallel planes intersect π_{∞} in a common line
- The vanishing line is the *image* of this intersection
- e.g., the *horizon line* is the *image* of the intersection of the set of horizontal planes $\{\pi_H\}$ with π_∞

Projective		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	00000000000	00000000000	00000000	0000000	000000	000

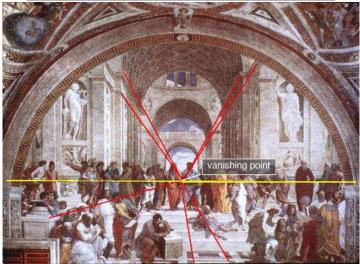
Art & Perspective - 1

FRESCO IN POMPEII - I B.C.

Partially correct perspective

The skill was lost during the middle ages,

it did not reappear in paintings until the Renaissance


ras 000

Geometry 3D

Pin Hole Model

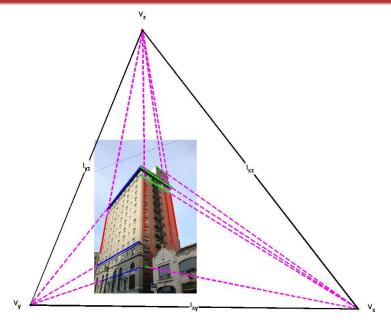
Art & Perspective - 2

The school of Athens - Raffaello Sanzio - ~ 1510

Correct perspective

		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	000000000000000	0000000000	00000000	0000000	000000	00000

Vanishing points example - 1

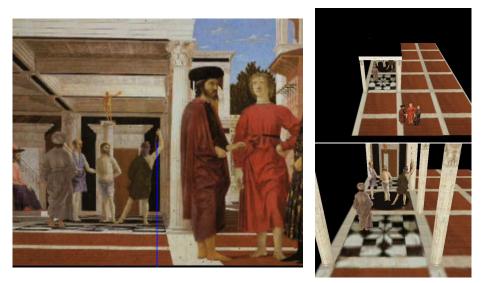



QUESTION

- Find the three vanishing point in the image
- Compute the horizon line in the image
- Compute others vanishing lines · · ·

Vanishi	na nointe	evample -	2				
00000	0000000	0000000000	000000000	00000000	0000000	000000	00000
		Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	

Vanishing points example - 2



 Projective
 Hierarchy
 Cross Ratio
 Geometry 3D
 Nice stuff
 Camera Geometry
 Pin Hole Model
 Extras

 000000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 00000000
 0000000
 00000000
 00000000
 0000000
 0000000

Reconstruction example - 1

Flagellazione di Cristo - Piero della Francesca - ~ 1450

D	and the second second		h				
00000	0000000	0000000000	000000000000000000000000000000000000000	0000000	0000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

Reconstruction example - 2

Trinity - Masaccio - ~ 1426

Projective Hierarchy Cross Ratio Geometry 3D Nice stuff Camera Geometry Pin Hole Model Extras

A SIMPLE PHOTO

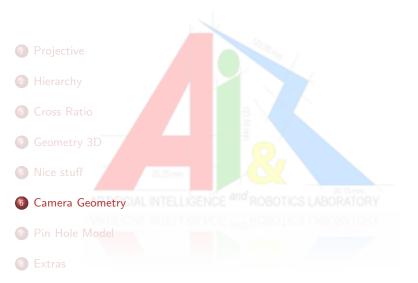
Projective Hierarc	hy Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000 0000	000 00000000	00 0000000000	00000000	0000000	000000	00000

		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	00000000000	0000000000	00000000	0000000	000000	00000

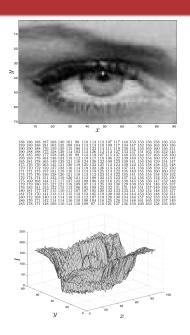
Felice Varini - http://www.varini.org/

Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	00000000000	0000000000	00000000	000000	000000	00000

Pr	ojective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
0	0000	0000000	00000000000	0000000000	00000000	000000	000000	00000



Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	00000000	00 0000000000	0000000	0000000	000000	00000
Nice st	uff with P	rojective	geometry -	5			



Projective		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0000000000	00000000	000000	000000	00000

What is an image

IMAGE

- Two-dimensional brightness array: I
- $3 \times$ two-dimensional array: I_R, I_G, I_B
 - RGB: Red, Green, Blue
 - others: YUV, HSV, HSL, ···
- Ideal: $I : \Omega \subset \mathbb{R}^2 \to \mathbb{R}_+$
- Discrete: $I : \Omega \subset \mathbb{N}^2 \to \mathbb{R}^*_+$
 - e.g., $\Omega = [0, 639] \times [0, 479] \subset \mathbb{N}^2$ • e.g., $\Omega = [1, 1024] \times [1, 768] \subset \mathbb{N}^2$ • e.g., $\mathbb{R}^*_+ = [0, 255] \subset \mathbb{N}$ • e.g., $\mathbb{R}^*_+ = [0, 1] \subset \mathbb{R}$
- I(x, y) is the intensity
- I result of $3D \rightarrow 2D$ projection: *flat*

Camera				
Projective			Pin Hole Model	Extras

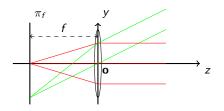
OPTICAL SYSTEM

• Set of lenses to direct light

change in the direction of propagation

CCD sensor

integrate energy both


- in time (exposure time)
- in space (pixel size)

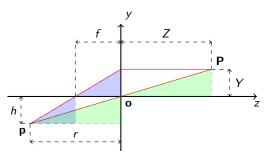
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	000000000	00000000000000	00000000	000000	000000	00000
Thin le	nses mode	el					

Thin lenses

- Mathematical model
 - Optical axis (z)
 - Focal plane $\pi_f \ (\perp z)$
 - Optical center o
- Parameters
 - f distance **o**, π_f
- Property
 - Parallel rays converge π_f
 - Rays through **o** undeflected

Projective 00000	Hierarchy 0000000	Cross Ratio	Geometry 3D	Nice stuff	Pin Hole Model 000000	Extras 00000
	om scene					

IMAGE FROM A SCENE POINT **P**


- $\mathbf{P} = (Z, Y)$
- Ray through **o** undeflected
- Ray parallel to z cross in (-f, 0)

SIMILARITIES

- Blue triangles: $\frac{h}{Y} = \frac{r-f}{f}$
- Green triangles: $\frac{h}{Y} = \frac{r}{Z}$

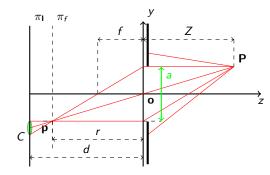
FRESNEL LAW

- $\frac{1}{Z} + \frac{1}{r} = \frac{1}{f}$
- Note: $Z \to \infty \Rightarrow r \to f$

		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
The ima	age plane						

Image plane π_{I}

• Plane $\perp z$ at distance d


BLUR CIRCLE

• If $d \neq r$

image of \mathbf{P} is a circle C

Diameter of C:

 $\phi(C) = \frac{a(d-r)}{r}$ a is the aperture

Focused image

- $\phi(C) < pixel size$
- Depth of field : range $[Z_1, Z_2]$: $\phi(C) < pixel size$

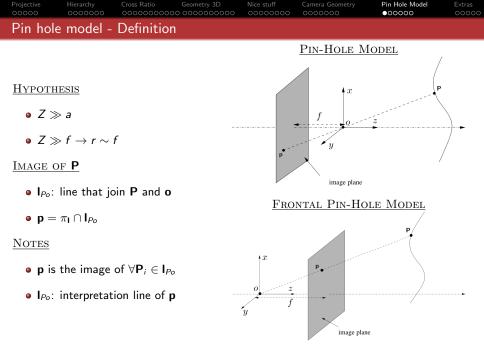
 Projective
 Hierarchy
 Cross Ratio
 Geometry 3D
 Nice stuff
 Camera Geometry
 Pin Hole Model
 Extras

 00000
 00000000
 00000000
 00000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0

Depth of field - Example 1

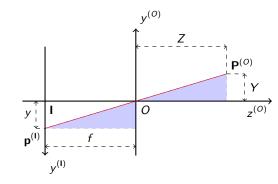
perfocal distance opposit are using. If you the the depth of field will ce to infinity.⊲ For mera has a

	of field - I			00000000	000000	000000	00000
00000	0000000	000000000	00 000000000	0000000	000000	000000	00000
Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras


The same scene - different aperture

Pin hol	e model -	Geometr	V				
00000	0000000	000000000	00 0000000000	00000000	000000	00000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

GIVEN


•
$$\mathbf{P}^{(O)} = [X, Y, Z, 1]^{T}$$

• $\mathbf{p}^{(1)} = [x, y, 1]^{T}$

PROJECTION

Note

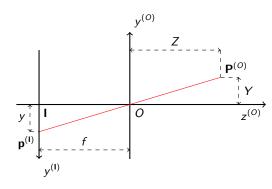
• $\lambda \mathbf{P}^{(O)}$ projects on $\mathbf{p}^{(\mathbf{I})}$

•
$$\left[sX, sY, sZ, 1 \right]^{\tau}$$
 projects on $\mathbf{p}^{(\mathbf{I})}$,
 $\forall s \neq 0$

Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	00000000	00 0000000000	00000000	0000000	00000	00000
Pin hol	e model -	Matrix					
Projec	TION EQUA	TIONS					

•
$$y = f \frac{Y}{Z}$$

• $x = f \frac{X}{Z}$


IN MATRIX FORM

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0\\0 & f & 0 & 0\\0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X\\Y\\Z\\W \end{bmatrix}$$
$$\mathbf{p}^{(1)} = \pi \ \mathbf{P}^{(O)}$$

Define

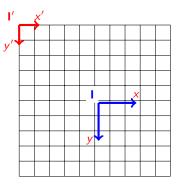
•
$$\mathbf{K} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
:
intrinsic parameters

•
$$\boldsymbol{\pi} = \begin{bmatrix} \mathsf{K} & \mathsf{0} \end{bmatrix}$$
: projection matrix

Pin hole	e model -	Image co	ordinates -	1			
00000	0000000	0000000000	0000000000000000	00000000	000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	

Reference system on image

- I: origin centered on $z^{(O)} \cap \pi_{I}$
- \mathbf{I}' : origin centered top-left image


•
$$\mathbf{c}^{(\mathbf{I}')} = \left[\mathbf{c}_x, \, \mathbf{c}_y\right]^{\mathsf{T}}$$
: position of I in I'

Metric

- I metric
- $\bullet~\mathbf{I}'$ in pixel
- $\bullet \ c^{(I')}$ in pixel

DEFINITION

- $\begin{bmatrix} 0, 0 \end{bmatrix}^{T(I)} \equiv \begin{bmatrix} \mathbf{c}_x, \, \mathbf{c}_y \end{bmatrix}^{T(I')}$: principal point
- Image of the optical center (o) or $z^{(O)} \cap \pi_{\mathbf{I}}$

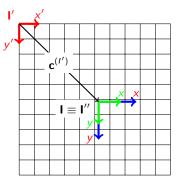
Meters to pixels

- Consider I": origin on I, in pixel
- Scale meters to pixels

•
$$\mathbf{p}_{x}^{(\mathbf{l}^{\prime\prime})} = \mathbf{s}_{x}\mathbf{p}_{x}^{(\mathbf{l})}$$

• $\mathbf{p}_{y}^{(\mathbf{l}^{\prime\prime})} = \mathbf{s}_{y}\mathbf{p}_{y}^{(\mathbf{l})}$

•
$$\mathbf{s}_x = \frac{1}{d_x}$$
, d_x : width of a pixel $[m]$


•
$$\mathbf{s}_y = \frac{1}{d_y}$$
, d_y : height of a pixel $[m]$

•
$$\mathbf{s}_x = \mathbf{s}_y$$
: square pixel

•
$$\mathbf{p}^{(\mathbf{I}'')} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}^{(\mathbf{I})}$$

TRANSLATION

•
$$\mathbf{p}^{(\mathbf{l}')} = \begin{bmatrix} 1 & 0 & \mathbf{c}_x \\ 0 & 1 & \mathbf{c}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}^{(\mathbf{l}'')}$$

 Projective
 Hierarchy
 Cross Ratio
 Geometry 3D
 Nice stuff
 Camera Geometry
 Pin Hole Model
 Extras

 00000
 00000000
 00000000
 00000000
 00000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 <

Consider

•
$$\mathbf{p}^{(1)} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{P}^{(O)}$$

• $\mathbf{p}^{(I'')} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}^{(1)}$
• $\mathbf{p}^{(I')} = \begin{bmatrix} 1 & 0 & \mathbf{c}_x \\ 0 & 1 & \mathbf{c}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}^{(I'')}$

In one step

•
$$\mathbf{p}^{(\mathbf{I}')} = \begin{bmatrix} \mathbf{s}_x f & 0 & \mathbf{c}_x & 0 \\ 0 & \mathbf{s}_y f & \mathbf{c}_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{P}^{(O)}$$

The intrinsic camera matrix

or calibration matrix

$$\mathbf{K} = egin{bmatrix} f_x & s & \mathbf{c}_x \ 0 & f_y & \mathbf{c}_y \ 0 & 0 & 1 \end{bmatrix}$$

- f_x , f_y : focal lenght (in pixels) $f_x/f_y = s_x/s_y = a$: aspect ratio
- s: skew factor pixel not orthogonal usually 0 in modern cameras
- c_x, c_y: principal point (in pixel) usually ≠ half image size due to misalignment of CCD

Projective	Hierarchy	Cross Ratio	Geometry 3D		Camera Geometry	Pin Hole Model	Extras
00000	0000000	000000000000000000000000000000000000000	00000000000	00000000	0000000	000000	00000
Outline	2						

Projective	Hierarchy	Cross Ratio	Geometry 3D	Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
Exercis	e 1 - Tile	5					

IMAGE SOURCE



QUESTIONS

- Identify the vanishing points
- using cross ratio
- i.e., without use parallel lines

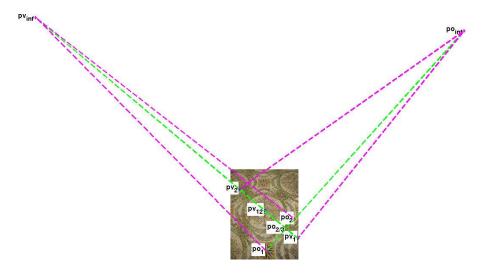
Evereice	1 Tiloc	Colutio	n				
00000	0000000	0000000000	0 0000000000	00000000	0000000	000000	00000
		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	Extras

Exercise 1 - Tiles - Solution

HORIZONTAL

- $CR(\mathbf{p}_{o1}, \mathbf{p}_{o23}, \mathbf{p}_{o2}, \mathbf{p}_{o\infty}) = CR(0, a2/3, a, \infty)$
- $CR(0, \theta_{23}, \theta_3, \theta_o) = 2/3$
- $\theta_o = \frac{-\theta_{23}\theta_3}{2\theta_3 3\theta_2 3}$
- $\mathbf{p}_{o\infty} = \mathbf{p}_{o1} + \theta_o \overline{\mathbf{d}}_o$

VERTICAL


- $CR(\mathbf{p}_{v1},\mathbf{p}_{v12},\mathbf{p}_{v2},\mathbf{p}_{v\infty}) = CR(0,a,2a,\infty)$
- $CR(0, \theta_{12}, \theta_{12}, \theta_{\nu}) = 1/2$

•
$$\theta_{v} = \frac{\theta_{12}(\theta_{v} - \theta_{2})}{\theta_{2}(\theta_{v} - \theta_{12})}$$

•
$$\mathbf{p}_{v\infty} = \mathbf{p}_{v1} + \theta_v \overline{\mathbf{d}}_v$$

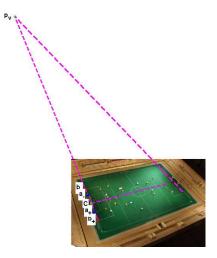
Projective		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	00000000000	0000000000	00000000	0000000	000000	00000

Exercise 1 - Tiles - Check

Magenta lines only for check correctness

		Cross Ratio		Nice stuff	Camera Geometry	Pin Hole Model	Extras
00000	0000000	000000000	0 0000000000	00000000	0000000	000000	00000
Exercise	e 2 - Soco	cer field					

Find


- Center of the goal-line
- Vanishing point of the goal-line

SOLUTION

- 4 symmetric points
- a_- , a_+ and b_- , b_+
 - $\begin{cases} CR(0, -a, a, \infty) = CR(\theta_c, \theta_{a_-}, \theta_{a_+}, \theta_v) \\ CR(0, -b, b, \infty) = CR(\theta_c, \theta_{b_-}, \theta_{b_+}, \theta_v) \end{cases}$
- 2 equations, 2 unknown
- 4 solutions, only 2 are are valid

			0000000000	00000000	0000000	000000	00000
Evereice	~ ~	C 1 1					

Exercise 2 - Soccer field

Magenta lines only for check correctness