

Robotics - Homogeneous coordinates and transformations

Simone Ceriani

ceriani@elet.polimi.it

Dipartimento di Elettronica e Informazione Politecnico di Milano

15 March 2012

- Introduction
- 2D space
- 3D space
- 4 Rototranslation 2D
- S Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- Projective Transformations

Calendar

1st part

WED 14/03 Homogeneous coordinate

THU 29/03 Computer Vision (1)

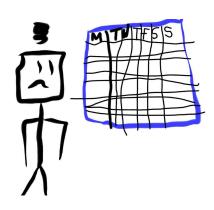
THU 12/04 Computer Vision (2)

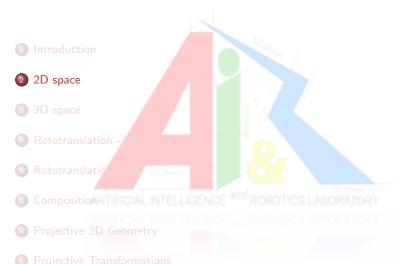
2nd part

THU 10/05 Localization (1)

THU 07/06 Localization (2)

Тни 14/06 Slam





Homogeneous coordinates

Introduction

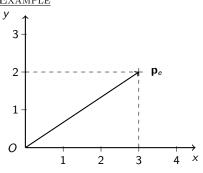
- Introduced in 1827 (Möbius)
- Used in *projective geometry*
- Suitable for points at the infinity
- Easily code
 - points (2D-3D)
 - lines (2D)
 - conics (2D)
 - planes (3D)
 - quadrics (3D)
 - <u>. . . .</u>
- Transformation simpler than Cartesian

A. F. Mobius.

Homogeneous 2D space

- Given a point $\mathbf{p}_e = \begin{bmatrix} X \\ Y \end{bmatrix} \in \mathbb{R}^2$ in Cartesian coordinates
- ullet we can define $\mathbf{p}_h = egin{bmatrix} x \\ y \\ w \end{bmatrix} \in \mathbb{R}^3$ in homogeneous coordinates
- under the relation $\begin{cases} X &=& x/w \\ Y &=& y/w \\ w &\neq& 0 \end{cases}$
- i.e., there is an arbitrary scale factor (w)

Points in Homogeneous coordinates - 2D space - Example



•
$$\mathbf{p_e} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 (euclidean)

$$\bullet \ \mathbf{p_{h_1}} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \equiv \mathbf{p_e}$$

$$\bullet \ \mathbf{p_{h_2}} = \begin{bmatrix} \mathbf{6} \\ \mathbf{4} \\ \mathbf{2} \end{bmatrix} \equiv \mathbf{p_e}$$

$$\bullet \ \mathbf{p_{h_3}} = \begin{bmatrix} 1.5 \\ 1 \\ 0.5 \end{bmatrix} \equiv \mathbf{p_e}$$

$$\bullet \ \mathbf{p_{h_1}} \equiv \mathbf{p_{h_2}} \equiv \mathbf{p_{h_3}}$$

Note

A Cartesian point can be represented by infinitely many homogeneous coordinates

Points in Homogeneous coordinates - 2D space - Properties

Note

A Cartesian point can be represented by infinitely many homogeneous coordinates

Property

• given
$$\mathbf{p_h} = \begin{bmatrix} x \\ y \\ w \end{bmatrix}, w \neq 0$$

• for
$$\forall \lambda \neq 0$$
 $\hat{\mathbf{p}}_{\mathbf{h}} = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda w \end{bmatrix} \equiv \mathbf{p}_{\mathbf{h}}$

Proof

• for
$$\forall \lambda \neq 0$$

• for
$$\forall \lambda \neq 0$$
 $\hat{\mathbf{p}}_{\mathbf{e}} = \begin{bmatrix} \frac{\lambda x}{\lambda w} \\ \frac{\lambda y}{\lambda w} \end{bmatrix} = \begin{bmatrix} x/w \\ y/w \end{bmatrix}$

Notes

- w = 1: normalized homogeneous coordinates
- normalization : $[x \ y \ w]^T \rightarrow [x/w, y/w, 1]^T, w \neq 0$
- hom \rightarrow cart : $\begin{bmatrix} x \ y \ w \end{bmatrix}^T \rightarrow \begin{bmatrix} x/w, \ y/w \end{bmatrix}^T, \ w \neq 0$
- cart \rightarrow hom : $\begin{bmatrix} x \ y \end{bmatrix}^T \rightarrow \begin{bmatrix} x, \ y, \ 1 \end{bmatrix}^T$

Points in Homogeneous coordinates - 2D space - Improper points

WHAT'S MORE THAN CARTESIAN?

- ullet All Cartesian points can be expressed in homogeneous coordinates: $oldsymbol{p}_e
 ightarrow ig[oldsymbol{p}_e,\,1ig]^{ au}$
- ullet Are homogeneous coordinates more powerful than Cartesian ones? ightarrow YES

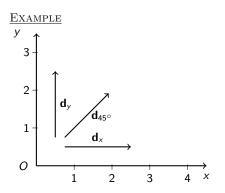
Improper points

- With w = 0 we can express points at the infinity $\rightarrow [x/0, y/0]^T$
- $\mathbf{p}_h = \begin{bmatrix} x, y, 0 \end{bmatrix}^T$ codes a *direction* not directly expressed in Cartesian coordinates

Property

•
$$\mathbf{p}_h = \begin{bmatrix} x, y, 0 \end{bmatrix}^T \equiv \begin{bmatrix} \lambda x, \lambda y, 0 \end{bmatrix}^T \forall \lambda \neq 0$$

Points in Homogeneous coordinates - 2D space - Directions Example



$$\begin{array}{l} \bullet \ \mathbf{d_x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \colon x\text{-axis} \\ \bullet \ \mathbf{d_y} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \colon y\text{-axis} \\ \bullet \ \mathbf{d_{45^\circ}} = \begin{bmatrix} \sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \colon 45^\circ \text{ axis} \end{array}$$

Note

- A direction can be represented by infinitely many homogeneous directions
- A *unit vector* is the direction with $\|\mathbf{d}\| = 1$ (i.e., $\sqrt{x^2 + y^2} = 1$)

Points in Homogeneous coordinates - 2D space - Final Remarks

Points

$$\mathbf{p}_h = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda w \end{bmatrix} \to \mathbf{p}_e = \begin{bmatrix} x/w \\ y/w \end{bmatrix}$$

with $w \neq 0, \lambda \neq 0$

Improper Points - Directions

$$\mathbf{d}_h = \begin{bmatrix} \lambda x \\ \lambda y \\ 0 \end{bmatrix}$$

with $(x \neq 0 \mid\mid y \neq 0)$ && $\lambda \neq 0$

Origin

$$\mathbf{p}_h = \begin{bmatrix} 0 \\ 0 \\ w \end{bmatrix} \to \mathbf{p}_e = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

with $w \neq 0$

Invalid homogeneous point

$$\mathbf{p}_h = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

→ homogeneous 2D space is defined on $\mathbb{R}^3 - [0, 0, 0]^T$

- Introduction
- 2 2D space
- 3D space
- Rototranslation 2D
- Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- Projective Transformations

Points in Homogeneous coordinates - 3D space - Definition

Homogeneous 3D space

- Given a point $\mathbf{p}_{e} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \in \mathbb{R}^{3}$ in Cartesian coordinates
- ullet we can define $\mathbf{p}_h = egin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4$ in homogeneous coordinates
- under the relation $\begin{cases} X &= x/w \\ Y &= y/w \\ Z &= z/w \\ w &\neq 0 \end{cases}$
- i.e., there is an arbitrary scale factor (w)

Points

$$\mathbf{p}_h = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda z \\ \lambda w \end{bmatrix} \to \mathbf{p}_e = \begin{bmatrix} x/w \\ y/w \\ z/w \end{bmatrix}$$

with $w \neq 0, \lambda \neq 0$

Improper Points - Directions

$$\mathbf{d}_h = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda z \\ 0 \end{bmatrix} \text{ with }$$

$$(x \neq 0 || y \neq 0 || z \neq 0) \&\& \lambda \neq 0$$

Origin

$$\mathbf{p}_h = \begin{bmatrix} 0 \\ 0 \\ 0 \\ w \end{bmatrix} \rightarrow \mathbf{p}_e = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

with $w \neq 0$

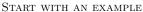
Invalid homogeneous point

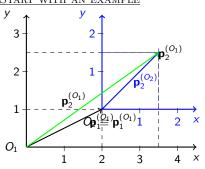
$$\mathbf{p}_h = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

 \rightarrow homogeneous 3D space is defined on $\mathbb{R}^4 - [0, 0, 0, 0]^T$

- Introduction
- 2D space
- 3D space
- A Rototranslation 2D
- Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- Projective Transformations

Translation - Cartesian 2D

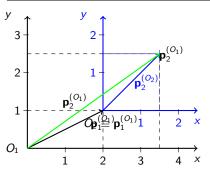




$$\begin{aligned} \bullet & \mathbf{p}_{1}^{(O_{1})} &= \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ \bullet & O_{2} &= \begin{bmatrix} 2 \\ 1 \end{bmatrix} \equiv \mathbf{p}_{1}^{(O_{1})} \\ \bullet & \mathbf{p}_{2}^{(O_{2})} &= \begin{bmatrix} 1.5 \\ 1.5 \end{bmatrix} \\ \bullet & \mathbf{p}_{2}^{(O_{1})} &= \mathbf{p}_{1}^{(O_{1})} &+ \mathbf{p}_{2}^{(O_{2})} \\ &= \begin{bmatrix} 3.5 \\ 2.5 \end{bmatrix} \end{aligned}$$

Translation - Homogeneous 2D - 1

SAME EXAMPLE BUT WITH HOMOGENEOUS COORDINATE



$$\bullet \ p_1^{(O_1)} \ = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} \equiv \cdots \equiv \begin{bmatrix} \lambda_1 \ 2 \\ \lambda_1 \ 1 \\ \lambda_1 \ 1 \end{bmatrix}$$

$$O_2 \equiv \mathbf{p_1^{(O_1)}}$$

$$\bullet \ \mathbf{p_2^{(O_2)}} \ = \begin{bmatrix} 1.5 \\ 1.5 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 6 \\ 6 \\ 4 \end{bmatrix} \equiv \cdots \equiv \begin{bmatrix} \lambda_2 \, 1.5 \\ \lambda_2 \, 1.5 \\ \lambda_2 \, 1 \end{bmatrix}$$

$$\bullet \ \frac{p_2^{(O_1)} - p_1^{(O_1)} + p_2^{(O_2)}}{p_2^{(O_1)} + p_2^{(O_2)}} \rightarrow NO$$

• valid only if
$$\mathbf{p_1^{(O_1)}}_w = \mathbf{p_2^{(O_2)}}_w$$

• e.g., $\begin{bmatrix} 4\\2\\2\\2 \end{bmatrix} + \begin{bmatrix} 6\\6\\4\\4 \end{bmatrix} = \begin{bmatrix} 1.\overline{6}\\1.\overline{3}\\1 \end{bmatrix} \not\equiv \begin{bmatrix} 3.5\\2.5\\1 \end{bmatrix}$

$$ullet$$
 $ightarrow$ we can *normalize* points ($w=1$)

• e.g.,
$$\begin{bmatrix} 2\\1\\1 \end{bmatrix} + \begin{bmatrix} 1.5\\1.5\\1 \end{bmatrix} \equiv \begin{bmatrix} 3.5\\2.5\\1 \end{bmatrix}$$

Translation - Homogeneous 2D - 2

Translation: the right way with homogeneous coordinates

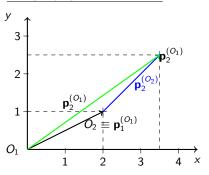
• **O** =
$$\begin{bmatrix} x_0 \\ y_0 \\ 1 \end{bmatrix}$$
: position of the second reference frame (*normalized*)

•
$$\mathbf{p}^{(O)} = \begin{bmatrix} x_p \\ y_p \\ w_p \end{bmatrix}$$
: point w.r.t. the second reference frame (homogeneous)

$$\mathbf{p} = \begin{bmatrix} 1 & 0 & x_O \\ 0 & 1 & y_O \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_p \\ y_p \\ w_p \end{bmatrix} = \begin{bmatrix} x_p + x_O w_p \\ y_p + y_O w_p \\ w_p \end{bmatrix}$$

Translation - Homogeneous 2D - 3

LET'S TRY ON THE EXAMPLE



$$\bullet \ p_1^{(O_1)} \ = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} \equiv \cdots \equiv \begin{bmatrix} \lambda_1 \ 2 \\ \lambda_1 \ 1 \\ \lambda_1 \ 1 \end{bmatrix}$$

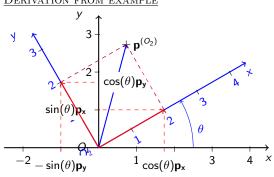
$$\bullet$$
 O_2 $\equiv \mathbf{p}_1^{(\mathbf{O}_1)}$ normalized

$$\bullet \ \mathbf{p_2^{(O_2)}} \ = \begin{bmatrix} 1.5 \\ 1.5 \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 6 \\ 6 \\ 4 \end{bmatrix} \equiv \cdots \equiv \begin{bmatrix} \lambda_2 \, 1.5 \\ \lambda_2 \, 1.5 \\ \lambda_2 \, 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_2 & 1.5 \\ \lambda_2 & 1.5 \\ \lambda_2 & 1 \end{bmatrix} = \begin{bmatrix} \lambda_2 & 1.5 + \lambda_2 & 2 \\ \lambda_2 & 1.5 + \lambda_2 & 1 \\ \lambda_2 \end{bmatrix} \equiv \begin{bmatrix} 3.5 \\ 2.5 \\ 1 \end{bmatrix}$$

Rotation - Cartesian 2D

Derivation from example



$$O_1 \equiv O_2$$

• rotated of
$$\theta = 30^{\circ}$$

$$\bullet \ \sin(\theta + 90^\circ) = \cos(\theta)$$

$$\mathbf{p}^{(O_1)} = \begin{bmatrix} \cos(\theta)\mathbf{p}_x - \sin(\theta)\mathbf{p}_y \\ \sin(\theta)\mathbf{p}_x + \cos(\theta)\mathbf{p}_y \end{bmatrix} = \begin{bmatrix} \cos(30^\circ)2 - \sin(30^\circ)2 \\ \sin(20^\circ)2 + \cos(30^\circ)2 \end{bmatrix} = \begin{bmatrix} 0.73 \\ 2.73 \end{bmatrix}$$

• From
$$\mathbf{p}^{(O_1)} = \begin{bmatrix} \cos(\theta)\mathbf{p}_x - \sin(\theta)\mathbf{p}_y \\ \sin(\theta)\mathbf{p}_x + \cos(\theta)\mathbf{p}_y \end{bmatrix}$$

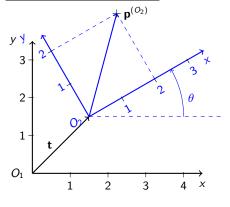
• Rewrite with matrices
$$\mathbf{p}^{(O_1)} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \mathbf{p}^{(O_2)}$$

$$\bullet \text{ Pass to homogeneous } \mathbf{p}_h^{(O_1)} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_h^{(O_2)}$$

where
$$\mathbf{p}_h^{(O_2)} = \begin{bmatrix} \lambda \mathbf{p}_x \\ \lambda \mathbf{p}_y \\ \lambda \end{bmatrix}$$

Rototranslation - Homogeneous 2D

PUTTING THINGS TOGETHER



- O_2 translated of **t** w.r.t. O_1
- O_2 rotated of θ w.r.t. O_1

TWO STEPS:

$$\mathbf{p}_h^{(O_2')} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_h^{(O_2)}$$

$$\mathbf{p}_{h}^{(O_{1})} = \begin{bmatrix} 1 & 0 & \mathbf{t}_{x} \\ 0 & 1 & \mathbf{t}_{y} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{h}^{(O_{2}')}$$

$$\underline{\text{ONE STEP:}} \qquad \mathbf{p}_h^{(O^1)} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & \mathbf{t}_x \\ \sin(\theta) & \cos(\theta) & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_h^{(O_2)}$$

$$\text{Consider} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & \mathbf{t}_x \\ \sin(\theta) & \cos(\theta) & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{n}_x & \mathbf{m}_x & \mathbf{t}_x \\ \mathbf{n}_y & \mathbf{m}_y & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \mathbf{T}$$

- $\mathbf{n} = \begin{bmatrix} \mathbf{n}_x \\ \mathbf{n}_y \\ 0 \end{bmatrix}$ is the *direction vector* (improper point) of the x axis
- $\mathbf{m} = \begin{bmatrix} \mathbf{m}_x \\ \mathbf{m}_y \\ 0 \end{bmatrix}$ is the *direction vector* (improper point) of the x axis
- $\|\mathbf{n}\| = \|\mathbf{m}\| = 1$ they are unit vectors
- $\|[\mathbf{n}_x, \mathbf{m}_x]\| = \|[\mathbf{n}_y, \mathbf{m}_y]\| = 1$ are unit vectors too
- **R** is an orthogonal matrix \rightarrow $\mathbf{R}^{-1} = \mathbf{R}^{T}$
- **T** is homogeneous too! i.e., $\mathbf{T} \equiv \lambda \mathbf{T}$ $\mathbf{T} \mathbf{p}_2 \equiv \lambda \mathbf{T} \mathbf{p}_2$

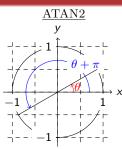
Rototranslation - Homogeneous 2D - Get parameters

Consider
$$\mathbf{T} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

• remember
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) & \mathbf{t}_x \\ \sin(\theta) & \cos(\theta) & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix}$$

• $\mathbf{t} = \begin{bmatrix} T_{13} \\ T_{23} \end{bmatrix}$

•
$$\theta = atan2(T_{21}, T_{11})$$



•
$$arctan(y/x) = \rightarrow [0, \pi]$$

•
$$\operatorname{atan2}(y,x) \to [-\pi,\,\pi]$$

$$\label{eq:atan2} \text{atan2}(y,x) = \left\{ \begin{array}{ll} \arctan(y/x) & x>0 \\ \arctan(y/x) + \pi & y \geq 0, x < 0 \\ \arctan(y/x) - \pi & y < 0, x < 0 \\ + \frac{\pi}{2} & y > 0, x = 0 \\ - \frac{\pi}{2} & y < 0, x = 0 \\ \text{undefined} & x = 0, y = 0 \end{array} \right.$$

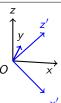
- Introduction
- 2D space
- 3D space
- Rototranslation 2D
- Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- 8 Projective Transformations

Rotations in 3D - 1

Rotate around x

 ρ , roll ("rollio") around x-axis

Rotate around y



 θ , pitch ("beccheggio") around v-axis

Rotate around z

 ϕ , yaw ("imbardata") around z-axis

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\rho) & -\sin(\rho) \\ 0 & \sin(\rho) & \cos(\rho) \end{bmatrix}$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\rho) & -\sin(\rho) \\ 0 & \sin(\rho) & \cos(\rho) \end{bmatrix} \quad \mathbf{R}_{y} = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix} \quad \mathbf{R}_{z} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotations in 3D - 2

TO CREATE A 3D ROTATION

- Compose 3 planar rotation
- 24 possible conventions non-commutative matrix products

Common convention

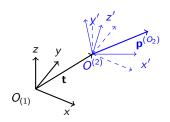
- Rotate around x (roll)
- Rotate around y (pitch)
- Rotate around z (yaw)

Derive a complete rotation matrix

- Let $\mathbf{p}^{O^{\mathbf{R}_{xyz}}}$ in the rotated system
- $\bullet \ \mathbf{p}^{O^{\mathbf{R}_{yz}}} = \mathbf{R}_{x} \mathbf{p}^{O^{\mathbf{R}_{xyz}}}$
- $\bullet \ \mathbf{p}^{O^{\mathbf{R}_z}} = \mathbf{R}_y \mathbf{p}^{O^{\mathbf{R}_{yz}}}$
- $\mathbf{p}^O = \mathbf{R}_z \mathbf{p}^{O^{\mathbf{R}_z}}$ in the original system
- $\bullet \ \mathsf{R}_{xyz} = \mathsf{R}_z \ \mathsf{R}_y \ \mathsf{R}_x$

$$\mathbf{R}_{xyz} = \begin{bmatrix} \cos(\phi)\cos(\theta) & \cos(\phi)\sin(\theta)\sin(\rho)-\sin(\phi)\cos(\rho) & \cos(\phi)\sin(\theta)\cos(\rho)+\sin(\phi)\sin(\rho) \\ \sin(\phi)\cos(\theta) & \sin(\phi)\sin(\theta)\sin(\rho)+\cos(\phi)\cos(\rho) & \sin(\phi)\sin(\theta)\cos(\rho)-\cos(\phi)\sin(\rho) \\ -\sin(\theta) & \cos(\theta)\sin(\rho) & \cos(\theta)\cos(\rho) \end{bmatrix}$$

Rototranslations - Homogeneous 3D



Complete Transformation

- $\mathbf{p}^{(O_2)}$ w.r.t. O_2 reference
- Let consider $O_2^{'}$ rotated as O_1 , but translated by ${f t}$
- **R** rotation of O_2 wrt O_2'
- $\mathbf{p}^{(O_2')} = \mathbf{R} \, \mathbf{p}^{(O_2)}$
- $\mathbf{p}^{(O_1)} = \mathbf{t} + \mathbf{p}^{(O_2')}$

IN HOMOGENEOUS COORDINATES

$$\mathbf{p}_{h}^{(O_{1})} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \ \mathbf{p}_{h}^{(O_{2})} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \ \mathbf{p}_{h}^{(O_{2})}$$

where $\mathbf{p}_h^{(O_2)}$ is $\mathbf{p}^{(O_2)}$ in homogeneous coordinates

and $\mathbf{p}_h^{(O_1)}$ is $\mathbf{p}^{(O_1)}$ in homogeneous coordinates

$$\text{Consider} \begin{bmatrix} \textbf{n}_x & \textbf{m}_x & \textbf{a}_x & \textbf{t}_x \\ \textbf{n}_y & \textbf{m}_y & \textbf{a}_y & \textbf{t}_y \\ \textbf{n}_z & \textbf{m}_z & \textbf{a}_z & \textbf{t}_z \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \textbf{R} & \textbf{t} \\ \textbf{0} & 1 \end{bmatrix} = \textbf{T}$$

•
$$\mathbf{n} = \begin{bmatrix} \mathbf{n}_x \\ \mathbf{n}_y \\ \mathbf{n}_z \\ 0 \end{bmatrix}$$
, $\mathbf{m} = \begin{bmatrix} \mathbf{m}_x \\ \mathbf{m}_y \\ \mathbf{m}_z \\ 0 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \\ 0 \end{bmatrix}$ are the *direction vectors* of the x,y,z, axes

- $\|\mathbf{n}\| = \|\mathbf{m}\| = \|\mathbf{a}\| = 1$ unit vectors
- $\| [\mathbf{n}_{x}, \mathbf{m}_{x}, \mathbf{a}_{x}] \| = \| [\mathbf{n}_{y}, \mathbf{m}_{y}, \mathbf{a}_{y}] \| = \| [\mathbf{n}_{z}, \mathbf{m}_{z}, \mathbf{a}_{z}] \| = 1$ are unit vectors too
- **R** is an orthogonal matrix \rightarrow $\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}}$
- T is homogeneous too! i.e., $T \equiv \lambda T$ $T \mathbf{p}_2 \equiv \lambda T \mathbf{p}_2$

Rototranslation - Homogeneous 3D - Get parameters

$$\text{Consider } \textbf{T} = \begin{bmatrix} T_{11} & T_{12} & T_{13} & T_{14} \\ T_{21} & T_{22} & T_{23} & T_{24} \\ T_{31} & T_{32} & T_{33} & T_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\bullet \ \ \mathsf{remember} \begin{bmatrix} \cos(\phi)\cos(\theta) & \cos(\phi)\sin(\theta)\sin(\rho)-\sin(\phi)\cos(\rho) & \cos(\phi)\sin(\theta)\cos(\rho)+\sin(\phi)\sin(\rho) \\ \sin(\phi)\cos(\theta) & \sin(\phi)\sin(\theta)\sin(\rho)+\cos(\phi)\cos(\rho) & \sin(\phi)\sin(\theta)\cos(\rho)-\cos(\phi)\sin(\rho) \\ -\sin(\theta) & \cos(\theta)\sin(\rho) & \cos(\theta)\cos(\rho) \end{bmatrix} \end{bmatrix}$$

$$\bullet \ \mathbf{t} = \begin{bmatrix} \tau_{14} \\ \tau_{24} \\ \tau_{34} \end{bmatrix}$$

•
$$\phi = \operatorname{atan2}(\tau_{21}, \tau_{11})$$

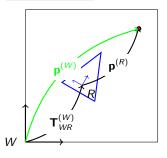
•
$$\theta = \text{atan2}\left(-\tau_{31}, \sqrt{\tau_{32}^2 + \tau_{33}^2}\right)$$

•
$$\rho = \text{atan2}(\tau_{32}, \tau_{33})$$

- Introduction
- 2D space
- 3D space
- Rototranslation 2D
- 6 Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- 8 Projective Transformations

Transformations - Why?

Think about...



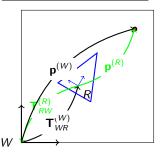
- W is the world reference frame.
- *R* is the *robot* reference frame.
- $\mathbf{T}_{WR}^{(W)}$ is the transformation that codes position and orientation of the robot w.r.t. W.
- The robot perceives the *red point*, it knows the point $\mathbf{p}^{(R)}$ in robot reference frame.
- $\mathbf{p}^{(W)} = \mathbf{T}_{WR}^{(W)} \mathbf{p}^{(R)}$ is the point in world coordinates.

$$\mathbf{T}_{WR}^{(W)} = \begin{bmatrix} \mathbf{R}_{WR}^{(W)} & \mathbf{t}_{WR}^{(W)} \\ \mathbf{0} & 1 \end{bmatrix} \text{ is the transformation matrix}$$

- map points in R reference frame in W frame
- $\mathbf{t}_{WR}^{(W)}$ is the position of R w.r.t. W
- ullet ${f R}_{WR}^{(W)}$ is the rotation applied to a reference frame rotated as W with origin on O

Transformations - Inversion

INVERSE TRANSFORMATION



- W is the world reference frame.
- R is the *robot* reference frame.
- T_{WR}^(W) is the transformation that codes position and orientation of the robot w.r.t. W.
- You know the $red\ point\ \left(\mathbf{p}^{(W)}\right)$ in world coordinates,

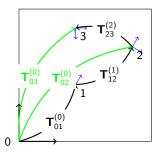
Position of the world w.r.t. the robot

$$\mathbf{T}_{RW}^{(R)} = \left(\mathbf{T}_{WR}^{(W)}\right)^{-1} = \begin{bmatrix} \mathbf{R}_{WR}^{(W)^T} & -\mathbf{R}_{WR}^{(W)^T} \mathbf{t}_{WR}^{(W)} \\ \mathbf{0} & 1 \end{bmatrix} \text{ is the transformation matrix}$$

 $\mathbf{p}^{(R)} = \mathbf{T}_{RW}^{(R)} \, \mathbf{p}^{(W)}$ is the point in robot coordinates.

Transformations - Composition

Composition of transformations



- $T_{01}^{(0)}$: pose of 1 w.r.t. 0
- $\mathbf{T}_{12}^{(1)}$: pose of 2 w.r.t. 1
- $\mathbf{T}_{02}^{(0)} = \mathbf{T}_{01}^{(0)} \mathbf{T}_{12}^{(1)}$: pose of 2 w.r.t. 0
- $T_{23}^{(2)}$: pose of 3 w.r.t. 2
- $\mathbf{T}_{03}^{(0)} = \mathbf{T}_{01}^{(0)} \mathbf{T}_{12}^{(1)} \mathbf{T}_{23}^{(2)} = \mathbf{T}_{02}^{(0)} \mathbf{T}_{23}^{(2)}$: pose of 3 w.r.t. 0

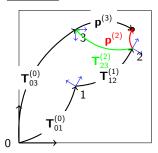
GRAPHICAL METHOD

- Post-multiplication following arrows verse
- Pre-multiplication coming back in arrows verse

NOTE: Not unique convention about arrow direction!!

Transformations - Composition Example

EXAMPLE



- $T_{01}^{(0)}$: pose of 1 w.r.t. 0
- $T_{12}^{(1)}$: pose of 2 w.r.t. 1
- $T_{03}^{(0)}$: pose of 3 w.r.t. 0
- **p**⁽³⁾: position of **p** w.r.t 3
- **p**⁽²⁾: position of **p** w.r.t 2?

SOLUTION

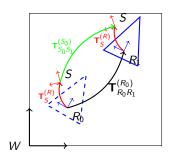
$$\bullet \ \, \textbf{T}_{23}^{(2)} = \left(\textbf{T}_{12}^{(1)}\right)^{-1} \, \left(\textbf{T}_{01}^{(0)}\right)^{-1} \, \textbf{T}_{03}^{(0)} = \textbf{T}_{21}^{(2)} \, \textbf{T}_{10}^{(1)} \, \textbf{T}_{03}^{(0)}$$

$$\bullet \ \, \mathsf{Note:} \ \, \left(\mathbf{T}_{12}^{(1)} \right)^{-1} \, \left(\mathbf{T}_{01}^{(0)} \right)^{-1} = \left(\mathbf{T}_{01}^{(0)} \, \mathbf{T}_{12}^{(1)} \right)^{-1} = \left(\mathbf{T}_{02}^{(0)} \right)^{-1}$$

$$\mathbf{p}^{(2)} = \mathbf{T}_{23}^{(2)} \mathbf{p}^{(3)}$$

Transformations - Composition - Practical Case

Change reference system of motion



- $\mathbf{T}_{R_0R_1}^{(R0)}$: pose of robot R at time t=1 w.r.t. robot at time t=0 i.e., the relative motion of the robot
- $T_S^{(R)}$: pose of a sensor S w.r.t. the robot RNote: fixed in time
- $\mathbf{T}_{S_0S_1}^{(S_0)}$: pose of sensor S at time t=1 w.r.t. sensor at time t=0?

SOLUTION

$$\bullet \ \mathbf{T}_{S_0S_1}^{(S_0)} = \left(\mathbf{T}_{RS}^{(R)}\right)^{-1} \mathbf{T}_{R_0R_1}^{(R_0)} \mathbf{T}_{RS}^{(R)}$$

Outline

- Introduction
- 2D space
- 3D space
- 4 Rototranslation 2D
- Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- Projective Transformations

Lines in homogeneous coordinates

LINES DEFINITION

- Slope-intercept form: y = mx + qvertical lines $m = \infty$
- Linear equation: ax + by + c = 0, $(a, b) \in \mathbb{R}^2 \{0, 0\}$

Homogeneous coordinates

• Line:
$$I = \begin{bmatrix} a, b, c \end{bmatrix}^T$$

• Point:
$$\mathbf{p} = \begin{bmatrix} x, y, 1 \end{bmatrix}^T$$

• **p** lies on
$$\mathbf{I} \Leftrightarrow \mathbf{I}^T \mathbf{p} = \mathbf{p}^T \mathbf{I} = 0$$

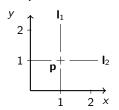
Homogeneous property:

•
$$\mathbf{I} \equiv \lambda_1 \mathbf{I}$$

•
$$\mathbf{p} \equiv \lambda_2 \mathbf{p}$$

Point from Lines & Lines from Points

Intersection of lines • $\mathbf{p} = \mathbf{l}_1 \cap \mathbf{l}_2 = \mathbf{l}_1 \times \mathbf{l}_2$



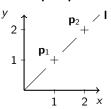
•
$$\mathbf{I}_1 = \begin{bmatrix} 1, 0, -1 \end{bmatrix}^T \to \mathbf{x} = 1$$

•
$$\mathbf{I}_2 = \begin{bmatrix} 0, 1, -1 \end{bmatrix}^T \to \mathbf{y} = 1$$

$$\bullet \ \mathbf{p} = \begin{bmatrix} 1, \ 1, \ 1 \end{bmatrix}^{\mathsf{T}}$$

Line joining two points

•
$$\mathbf{I} = \mathbf{p}_1 \times \mathbf{p}_2$$



•
$$\mathbf{p}_1 = \begin{bmatrix} 1, \ 1, \ 1 \end{bmatrix}^T$$

•
$$\mathbf{p}_2 = \begin{bmatrix} 2, 2, 1 \end{bmatrix}^T$$

•
$$I = [-1, 1, 0]^T \rightarrow y = x$$

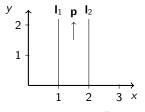
Cross product reminder

$$\mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} \quad \mathbf{a} \times \mathbf{b} = \det \begin{bmatrix} \overrightarrow{\mathbf{u}}_x & \overrightarrow{\mathbf{u}}_y & \overrightarrow{\mathbf{u}}_z \\ \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ \mathbf{b}_x & \mathbf{b}_y & \mathbf{b}_z \end{bmatrix} = \begin{bmatrix} \mathbf{a}_y \mathbf{b}_z - \mathbf{a}_z \mathbf{b}_y \\ \mathbf{a}_z \mathbf{b}_x - \mathbf{a}_x \mathbf{b}_z \\ \mathbf{a}_x \mathbf{b}_y - \mathbf{a}_y \mathbf{b}_x \end{bmatrix}$$

Ideal points and \textbf{I}_{∞}

Intersection of parallel lines

•
$$p = l_1 \cap l_2 = l_1 \times l_2$$



•
$$\mathbf{I}_1 = \begin{bmatrix} 1, \ 0, \ -1 \end{bmatrix}^T \to \mathbf{x} = 1$$

•
$$\mathbf{I}_2 = [1, 0, -2]^T \rightarrow \mathbf{x} = 2$$

•
$$\mathbf{p} = \begin{bmatrix} 0, 1, 0 \end{bmatrix}^T \rightarrow improper point$$

direction of y axis

Line that join improper points (I_{∞})

•
$$\mathbf{p}_1 = [x_1, y_1, 0]^T$$

•
$$\mathbf{p}_2 = [x_2, y_2, 0]^T$$

$$\bullet \ \mathbf{p}_1 \times \mathbf{p}_1 \equiv \begin{bmatrix} 0, \, 0, \, 1 \end{bmatrix}^{\mathsf{T}}$$

•
$$I_{\infty} = [0, 0, 1]^T$$
:

join \forall pair of improper points,

i.e.,
$$\mathbf{I}_{\infty}^{\mathsf{T}}\left[x,\,y,\,0\right]^{\mathsf{T}}=0$$

Duality principle

$$\begin{array}{cccc} & \mathsf{Duality} \\ & \mathsf{p} & \longleftrightarrow & \mathsf{I} \\ & \mathsf{p}^\mathsf{T} \mathsf{I} = \mathsf{0} & \longleftrightarrow & \mathsf{I}^\mathsf{T} \mathsf{p} = \mathsf{0} \\ & \mathsf{p} = \mathsf{I}_1 \times \mathsf{I}_2 & \longleftrightarrow & \mathsf{I} = \mathsf{p}_1 \times \mathsf{p}_2 \end{array}$$

To any theorem in 2D projective geometry there correspond a dual theorem,

derived by interchanging the role of points and lines

Conics

DEFINITION

- 2ⁿd degree equations
- planar curve
- Equation: $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- Homogeneous: $ax^2 + bxy + cy^2 + dxw + eyw + fw^2 = 0$
- Matrix form:

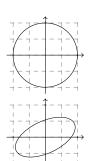
•
$$\mathbf{x} = \begin{bmatrix} x, y, w \end{bmatrix}^T$$

• $\mathbf{C} = \begin{bmatrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & e/2 & f \end{bmatrix}$
• $\mathbf{x}^T \mathbf{C} \mathbf{x} = 0$

 \rightarrow **C** is homogeneous too, i.e., 6 parameters, 5 D.O.F.

Conics - Summary

$$rank(\mathbf{C}) = 3$$



Circle

Hyperbola

Ellipse

Parabola

DEGENERATE CONICS:

$$rank(\mathbf{C}) < 3$$

$$\mathbf{C} = \mathbf{II}^{\mathsf{T}}$$
 repeated line, rank $(\mathbf{C}) = 1$

Conics Parameters Estimation

PARAMETERS ESTIMATION

• Given a point x_i, y_i , it satisfies

$$ax_i^2 + bx_iy_i + cy_i^2 + dx_i + ey_i + f = 0$$

- Rewrite: $\left[x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right] \left[a, b, c, d, e, f\right]^T = 0$
- Stacking constraints on \geq 5 points:

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Solve the linear system

Details

"Multiple View Geometry in computer vision" - Hartley, Zisserman, Chapter 2.

Outline

- Introduction
- 2D space
- 3D space
- Rototranslation 2D
- Rototranslation 3D
- 6 Composition
- Projective 2D Geometry
- Projective Transformations

Projective Transformations - Definition

Definition

A *projectivity* is an invertible mapping $h(\cdot): \mathbb{R}^2 \to \mathbb{R}^2$ such that x_1, x_2, x_3 lie on the same line $\iff h(x_1), h(x_2), h(x_3)$ do i.e., a projectivity maintains collinearity

Theorem

A mapping $h(\cdot):\mathbb{R}^2 o \mathbb{R}^2$ is a projectivity

$$\iff$$

 \exists a non-singular 3×3 matrix \boldsymbol{H} such that

 $\forall \mathbf{p} \in \mathbb{R}^2$ expressed with its homogeneous vector \mathbf{p}_h

$$h(\mathbf{p}_h) = \mathbf{H} \, \mathbf{p}_h$$

Projective Transformations - Practice

PROJECTIVE TRANSFORMATION

$$\mathbf{x}' = \mathbf{H} \mathbf{x}$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Note

- **H** has 9 elements
- **H** is homogeneous too: λ **H** \equiv **H**normalized if $h_{33} = 1$
- \bullet \rightarrow only 8 D.O.F.

SYNONYMOUS

- Projectivity
- Projective transformation
- Collineation
- Homography

Projective Transformations - Mapping between planes

ESTIMATION

- Take four point on first image x_i
- Map on four known destination points x_i

$$\bullet \ \mathsf{Solve} \ \left\{ \begin{array}{lll} \mathbf{x}_1' & = & \mathbf{H} \, \mathbf{x}_1 \\ \mathbf{x}_2' & = & \mathbf{H} \, \mathbf{x}_2 \\ \mathbf{x}_3' & = & \mathbf{H} \, \mathbf{x}_3 \\ \mathbf{x}_4' & = & \mathbf{H} \, \mathbf{x}_4 \end{array} \right. \ \mathsf{on} \ \mathit{h}_{ij}.$$

RECTIFIED IMAGE

Note

- **H** has 8 D.O.F. $(\lambda H = H)$
- each point impose 2 constraint

Details

"Multiple View Geometry in computer vision" Hartley Zisserman Chapter 4.