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Abstract

This thesis presents a work in the brain-computer interface (BCI) field
that makes use of machine learning and statistics techniques. A BCI is
a device that bypasses any muscle or nerve mediation, and it interfaces
directly with the brain by measuring signals generated by its activity.
Potentially, it could be helpful for people that cannot use “standard”
interfaces, such as people affected by a disease that impairs limb
movements, or people engaged in physical activities. Machine learning
is a broad field of artificial intelligence that deals with techniques used
to endow a machine (a computer) with the ability to adapt its behavior
to different and possibly changing conditions.

The work focuses mainly on BCIs based on potentials discernible
in EEG (electroencephalography) recordings, such as P300 and error
potentials. A P300 occurs when a subject detects an occasional target
(oddball) stimulus in a regular train of standard stimuli. An error
potential can be seen when a subject makes a mistake, and, more
relevant to BCI applications, when the machine the subject is interacting
with does not behave as the user expects. In a P300-based BCI the user
is presented with some possible choices, and they are highlighted one
at a time. A user directs his attention to one choice, and thus every
highlighting of that choice elicits a P300 potential. Error potentials can
be exploited as a way to automatically detect (and possibly correct) BCI
errors.

After an overview of some methods and protocols already used for
BCIs, a couple of novel algorithms to recognize relevant potentials
in the brain are presented. In particular, a genetic algorithm — an
optimization method that mimics the way natural evolution works —
is developed to extract features from EEG data. A mathematical
interpretation of the features found by the genetic algorithm is derived,
which can be used to identify the most important time intervals in EEG
recordings.

The algorithms are tested on real EEG data, coming in part from
experiments done specifically for the purpose and in part from other
sources. The experimental settings are described in details, with some
emphasis on aspects developed in this work. The results are compared
with a few methods from other researchers which have been replicated.
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For error potentials, experiments are made first in settings different
from a BCI, in which subjects perform tasks where the knowledge about
error potentials seems more firm in the literature; experiments are then
performed in a BCI task. For P300 detection, only data recorded while
subjects are operating a BCI are used. Data from persons affected
by amyotrophic lateral sclerosis are also tested, and for some subjects
classification accuracy is well above 80% in single-sweep mode.

The main testbed for the new algorithms consists in two classical
applications: a P300 speller and a P300-driven robotic wheelchair. A
P300 speller is a program to write text by selecting one letter at a time,
where each selection is made with the recognition of a P300 potential.
The robotic wheelchair has been developed for another project and is
autonomous: It can receive high-level commands from the user, like “go
to the room X”. An interface driven by a P300-based BCI is set up to give
such commands to the wheelchair. In both applications, error potentials
are used to identify mistakes made by the P300 BCI in recognizing the
choice of the user; the detection of mistakes made by a BCI should
permit to lower the global error rate and, hopefully, the frustration of
the user.

Results on offline experiments show that the genetic algorithm
performs well and can be effective for a real BCI, and that error
potentials are present and detectable in a P300 BCI. Online experiments
are done both on the P300 speller and the wheelchair, and they confirm
the offline results: The proposed algorithms are robust and fast enough
to be used in real-word applications.

An analysis of the performance gain achievable by using error
potentials is also presented, based on the novel concept of utility. After
a critique of the methods used in the literature, where in particular
some limits of the “information transfer rate” are showed, utility is
presented as a formalization of the benefit that the user receives from
the behavior of the BCI. A formula for the performance of a speller is
derived, and a discussion of when error-potential detection can be helpful
is given. Under some simplifying assumptions, a precise characterization
of the performance gain (or loss) is computed as a function of the speller
accuracy. Utility can be also extended to different kinds of BCIs and
used to choose many project parameters. As a proof of the versatility
of utility, a more complex interface is analyzed. Utility predictions are
validated through Monte Carlo simulations.
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Riassunto

Questa tesi riporta un lavoro svolto nel campo delle interfacce cervello-
computer (BCI, dall’inglese Brain-Computer Interface) che fa uso di
tecniche di apprendimento automatico e statistica. Una BCI ¢ un
dispositivo che aggira qualsiasi mediazione di muscoli e nervi, e si
interfaccia direttamente con il cervello misurando segnali generati dalla
sua attivita. Potenzialmente essa potrebbe essere utile per persone
che non riescono ad usare interfacce “standard”, come per esempio
persone affette da malattie che compromettono il movimento degli arti,
o persone impegnate in attivita fisiche. L’apprendimento automatico
¢ un ampio campo dell’intelligenza artificiale che riguarda tecniche
per dotare macchine (computer) della capacita di adattare il proprio
comportamento a condizioni diverse e anche variabili.

Il lavoro ¢ incentrato sulle BCI basate su potenziali riconoscibili
in registrazioni EEG (elettroencefalografia), come i potenziali P300 e
d’errore. Una P300 si ha quando il soggetto riconosce uno stimolo
bersaglio raro (oddball) in una sequenza di stimoli standard. Un
potenziale d’errore ¢ visibile quando un soggetto commette un errore, e,
cosa piu rilevante per applicazioni BCI, quando la macchina con cui il
soggetto sta interagendo non si comporta come egli si aspetta. In una
BCI basata su P300 vengono mostrate all’utente delle possibili scelte che
vengono evidenziate una alla volta. L’utente fissa la sua attenzione su
una delle scelte, e percio ogni evidenziamento di quella scelta genera un
potenziale P300. Potenziali d’errore possono essere sfruttati per rilevare
(ed eventualmente correggere) automaticamente errori di una BCI.

Dopo una panoramica di alcuni dei metodi e protocolli usati
nelle BCI, vengono presentati un paio di algoritmi innovativi per
riconoscere potenziali rilevanti nel cervello. In particolare, viene
sviluppato un algoritmo genetico — un metodo di ottimizzazione
che imita ’evoluzione naturale — per estrarre caratteristiche da dati
EEG. Viene derivata un’interpretazione matematica delle caratteristiche
individuate dall’algoritmo genetico che permette di identificare gli
intervalli temporali pit importanti nelle registrazioni EEG.

Gli algoritmi vengono provati su dati EEG reali, provenienti parte
da esperimenti fatti allo scopo e parte da altre fonti. Le condizioni
sperimentali sono descritte in dettaglio, soprattutto gli aspetti sviluppati
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in questo lavoro. I risultati vengono confrontati con alcuni metodi di
altri ricercatori che abbiamo replicato. Per i potenziali d’errore vengono
fatti prima esperimenti in cui i soggetti eseguono un compito dove
la letteratura sui potenziali d’errore sembra meglio stabilita; quindi
vengono eseguiti esperimenti con BCI. Per il riconoscimento di P300
vengono usati solo dati da test in cui i soggetti usano una BCI. Vengono
provati anche dati da persone affette da sclerosi laterale amiotrofica,
e per alcuni di questi soggetti l'accuratezza ¢ molto sopra 1’80% in
modalita a una passata.

Il principale banco di prova per i nuovi algoritmi consiste in due
applicazioni classiche: uno speller a P300 e una carrozzina robotica
guidata tramite P300. Uno speller a P300 € un programma per scrivere
testo selezionando una lettera alla volta e dove ogni selezione e fatta
attraverso il riconoscimento di un potenziale P300. La carrozzina
robotica ¢ stata sviluppata per un altro progetto ed ¢ autonoma: puo
ricevere comandi di alto livello dall’'utente, come “vai nella stanza X”.
Viene sviluppata un’interfaccia operata con una BCI basata su P300
per inviare questi comandi alla carrozzina. In entrambe le applicazioni
i potenziali d’errore vengono usati per identificare gli errori commessi
dalla BCI a P300 nel riconoscere la scelta dell’utente; la rilevazione degli
errori commessi da una BCI dovrebbe permettere di abbassare il tasso
globale di errori e, si spera, la frustrazione dell’utente.

Esperimenti offiine indicano che ’algoritmo genetico si comporta bene
e puo essere efficace per una vera BCI, e che i potenziali d’errore sono
presenti e rilevabili in BCI basata su P300. Esperimenti online sono
effettuati sia sullo speller a P300 e la carrozzina, e confermano i risultati
offtine: gli algoritmi proposti sono sufficientemente robusti e veloci da
essere usati in applicazioni reali.

Viene presentata anche un’analisi del guadagno ottenibile con 1'uso
di potenziali d’errore, basata sul nuovo concetto di utilita. Dopo una
critica dei metodi usati in letteratura in cui si mostrano in particolare
alcuni limiti della “velocita di trasferimento dell’informazione”, viene
presentata 1'utilita come formalizzazione del beneficio che I'utente trae
dal comportamento di una BCI. Viene derivata una formula per le
prestazioni di uno speller a cui segue una valutazione di quando
la rilevazione dei potenziali d’errore puo essere utile. Sotto alcune
assunzioni semplificanti, viene calcolata una caratterizzazione precisa
del guadagno (o perdita) di prestazione in funzione dell’accuratezza dello
speller. L’utilita puo anche essere estesa ad altri tipi di BCI e usata per
scegliere molti parametri di progetto. Come prova della sua versatilita
viene analizzata un’interfaccia piu complessa. Le previsioni dell’utilita
sono verificate con simulazioni Monte Carlo.
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1 Introduction

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if T can,
Pursuing it with weary feet,
Until it joins some larger way,
Where many paths and errands meet.
And whither then? I cannot say.
J.R.R. TOLKIEN — The Lord Of The Rings

Men have been using tools and machines of all kinds for quite a long time.
Mechanical machines need a human operator that controls them, and for
centuries, operators used interfaces like levers, buttons, wheels, pedals. . .
With the progress of electronics, new devices became available, like
the pointing devices that are commonplace in today personal computer
systems. More recently, speech-based interfaces have been developed,
which are certainly more friendly, although they are reliable only in some
specific and well-defined environments. Whatever the advancements,
all the interfaces used in today devices require the use of some body
muscles by an operator. This works fine in general, but there are two
situations where the involvement of muscle activity can be a problem:
users affected by disabilities, who can lose many opportunities if they
cannot use the majority of devices; and users engaged in other activities,
like driving.

A brain-computer interface (BCI) is an interface that does not entail
muscle movements, but it bypasses any muscle or nerve mediation and
connects directly with the brain by picking up signals generated by
its activity. The word “computer” in the name BCI means that some
numerical processing is needed to interpret the brain activity read by
the interfaces, but a BCI can be coupled to any machine through the
appropriate effectors, of course.

Electrical phenomena in the brain are known since the 19th century,
but it was in the beginning of the 20th century that scientists began to
study the activity of the brain with the help of electroencephalography
(EEG), the recording of brain potentials through electrodes applied
on the scalp. Neurologists used EEG mainly to evaluate neurological
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1 Introduction

disorders in clinics and to investigate brain functions in laboratories,
but the relatively recent availability of powerful digital hardware and
analysis algorithms opened the door to the use of EEG as a mean of
communication, i.e., to BCls.

There are different kinds of brain activity that can be used in a BCI.
Different internal and external events cause different patterns in the
brain waves, and many of these patterns have been studied for use in
a BCI, as for example, visual evoked potentials (VEP), slow cortical
potentials (SCP), mu and beta rhythms [1]. In this study, we focus on
two particular potentials: P300 and error potential (ErrP). The P300
is an event-related potential (ERP) that is visible in an EEG recording
as a positive peak at approximately 300 ms from the eliciting event. It
follows unexpected, rare, or particularly informative stimuli, and it is
stronger in the parietal area. An error potential can be seen when a
subject makes a mistake, and, more relevant to BCI applications, when
the machine the subject is interacting with does not behave as the user
expects.

A BCI is a complex system, which requires an interdisciplinary
approach. Yet, different people with different skills and background
concentrate on different aspects of the system. Given the engineering
background of the laboratory where this research has been developed,
Airlab (Artificial Intelligence & Robotics Laboratory) [2] at the
Department of Electronics and Information of Politecnico di Milano
(Italy), the focus of this thesis is on the algorithms for processing the
signals from the brain and the architecture of a BCI system viable in
the real world.

In the next chapter, after a brief overview of brain physiology, the
field of BCI is introduced. Chapter 3 presents the experimental setting
used to record EEG data used for the work of this thesis, and Chapter 4
contains a description of the methods used in the following chapter.

In Chapter 5, various approaches to the classification of P300
potentials are presented: from a method derived by the literature to
a blind algorithm for feature extraction based on a genetic algorithm.
The experimental results are presented, and also an explanation of the
inner working of the blind approach is given.

Chapter 6 presents the work on ErrPs: the experiments, the
classification method, and the results obtained. Chapter 7 is devoted
to assessing the impact of ErrP detection on the performance of a BCIL.
In particular, after a critique of information transfer rate, a different
task-oriented approach is introduced and a precise characterization of
when ErrP detection is helpful is given.

Chapter 8 closes the work with some final remarks.



2 The Human Brain And
Brain-Computer Interfaces

It has not been hard for me to read your mind and

memory. Do not worry!
J.R.R. TOLKIEN — The Lord Of The Rings

Some notions of brain physiology are needed in order to understand
how BCIs work. Detailed information on the matter is better found in
medical texts (see for example [3]); here, only the most basic information
is given, which should be enough to understand the rest of the thesis.
After a brief overview of brain physiology, a sketch of the status of the
BCIT field is presented.

2.1 Brain Physiology

The human brain is probably the most complex object in the known
universe. It is respomsible for many important functions: body
movement, memory, thought, emotions, sensing, and more. The study
of the brain is very fascinating and has a long history, but most of
what we know today has been discovered in recent years, as technology
advancements permitted to study the brain functioning in vivo.

2.1.1 Brain And Neurons

Figure 2.1 shows the structure of the human brain. The biggest part of
the brain is the forebrain. It is responsible for the highest intellectual
functions, as thinking, planning, memory (in the hippocampus), etc.
The cerebral cortex, the external layer of the forebrain, is involved in
the most complex functions. It has many fissures (called sulci when
small) so that it appears to be folded. A longitudinal fissure divides
the cortex into two hemispheres; smaller fissures delimit four lobes in
each hemisphere: frontal, parietal, temporal and occipital. The two
hemisphere are connected at the base by the pons. The cerebellum,
the lower back part of the brain, is responsible for coordinating motor
activity and sensory perception.
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Forebrain

Pons

Figure 2.1: The human brain. Only a few structures are named here.

Motor cortex Somatosensory cortex

Figure 2.2: The human cerebral cortex. Its lobes and some functional
regions are highlighted.
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Figure 2.3: A neuron and its parts



2.1 Brain Physiology

The cerebral cortex is the part of the human brain that differs more
from the brains of the other mammals, and it is the place where the
functions that set humans apart from the other animals are performed.
On the cortex (see Figure 2.2) it is possible to identify several regions,
each characterized by a specific function. For example, the motor cortex
(in the back of the frontal lobe) is responsible for voluntary movements,
the somatosensory cortex (in the front of the parietal lobe) receives
sensory information from the body, and the visual cortex (in the occipital
lobe) receives input from the eyes. In general, each hemisphere controls
and receives its input from the opposite side of the body.

The basic elements of the neural tissue are the neurons. There are
many neurons in the human brain, some 100 billion of them. A typical
neuron is depicted in Figure 2.3. Neurons are connected among them by
long fibers that protrude from their body, azons and dendrites. Electric
signals travel on these fibers from the extremes of dendrites toward the
neuron body, and from the body toward the extremes of axons. The
axon of a cell is connected to the dendrites of other cells, in junction
points called synapses. Actually, a synapse is a gap between two neurons;
the signal travels across this gap by means of chemical substances called
neurotransmitters. When a signal travels along an axon of a neuron
and reaches a synapse, neurotransmitters are released in the synaptic
gap, and they bind themselves to receptors on the surface of the other
neuron connected by the synapse. The binding of neurotransmitters
to receptors modifies the electric potential of the neuron membrane.
When the membrane potential reaches a threshold, an impulse begins
(action potential), which travels along the axon to the synapses at its
end. The action potential is a double change of the electric potential
across the neuron membrane, caused by the exchange of ions through
the membrane. The presence of an insulating sheath, myelin, around an
axon speeds up the conduction of impulses. The nonlinear behavior of
neurons (due to the threshold that controls the firing) together with the
fact that each neuron is connected with thousands of others is the cause
of the complex behavior shown by animals and in particular humans.

There is another type of cells other than neurons in the brain: glial
cells. They perform support function for the functioning of neurons; for
example, myelin is provided by glial cells. Although they do not have
action potentials, their activity can influence the information processing
performed by neurons. A clear example is given by the multiple sclerosis,
which is a degenerative disease that causes the destruction of the glial
cells responsible for the myelin sheath; its impact on the functioning
of the neurons is dramatic, and patients may loose muscle control
and suffer of cognitive impairments. Glial cells are also sensitive to
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neurotransmitters and it seems that they may play a role in learning
and plasticity [4].

2.1.2 Watching The Brain

There are several methods to observe the brain activity. They can be
divided in two classes: methods that sense the neuron activity directly,
and methods that measure blood flow, which is highly correlated with
local activity. In the first class, electroencephalography (EEG) makes
use of electrodes on the scalp to sense the electrical fields caused by
neurons. EEG is the oldest technique of recording the brain activity, it
is simple to use and relatively cheap; it has very good time resolution
and not-so-bad spatial resolution. Magnetoencephalography (MEG) is
sensitive to the tiny magnetic fields induced by the electric currents
in the brain. MEG equipment is bulky and very expensive, and it is
sensitive to electromagnetic interference, yet it has good spatial and
temporal resolution; it has been used for BCIs [5], but its use is very
limited. The limit to EEG resolution is given by the tissues present
between the electrodes and the brain surface; electrocorticography
(ECoG) is an EEG recorded from electrodes placed directly on the brain
surface. For evident reasons, it is an unlikely candidate for everyday
BClIs, although research involving this technique is being carried on
with good results [0, 7, 8]. Some studies have been done with implanted
electrodes, focused on small regions in the brain, with the hope that
future technological advances would make the implantation of electrodes
safer and more stable in time [9, 10, 11]; more experiments of this
kind have been done on animals [12, 13]. While this technology is still
evolving, and there are interesting developments [14, 15], such practice
requires complex surgery, and hence it has several drawbacks, which
have to be carefully considered before use.

Neuron activity needs energy to be sustained, so blood flow increases
in more active regions. Techniques for brain imaging have been
developed that exploit this phenomenon. Changes in blood flow happens
over seconds, so imaging methods that detect such changes are slow when
compared to direct approaches like EEG. Positron emission tomography
(PET) [16] is a way to measure neuron metabolism through the
injection of a radioactive substance in the subject; it is used in clinical
practice, but not for BCIs. Functional magnetic resonance imaging
(fMRI) measures the metabolism by comparing the concentration of
the oxygenated hemoglobin and the deoxygenated hemoglobin, which
respond differently to a magnetic field. It needs an expensive and
bulky equipment, but it gives access to the whole brain and not just
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its surface. The reconstruction of the 3D map of the brain requires
heavy processing of the data, and this is not done in real-time, normally.
Yet, experiments with a fMRI-based BCI have been done [17]. Near-
infrared spectroscopy (NIRS) measures the reflection of infrared light
by the brain cortex through the skull. It is a way to measure changes of
oxygenated hemoglobin and deoxygenated hemoglobin, which is due to
changes in the activity of the brain cortex and, consequently, of blood
flow. It is a relatively young technique of brain imaging, and it has been
tried in BCIs with good results [18], but time will tell how its potentials
will be developed.

The different techniques to record the brain activity have different
merits and different shortcomings. Invasive techniques (electrodes inside
the skull) have the highest signal-to-noise ratio, but they are invasive,
indeed. MEG has very good resolution, both in time and space, but
MEG equipment is very bulky and expensive, and it must be used in a
room shielded against magnetic interferences. Similarly, fMRI has good
spatial resolution, but its equipment is bulky and expensive; moreover,
fMRI has relatively long response times. NIRS suffers from the same
problem of low time resolution as it measures blood flow, and its space
resolution is not good either; yet, from the viewpoint of the user, it
is the simplest system among those mentioned. EEG has very good
time resolution, and a spatial resolution that demonstrated to be good
enough for BClIs; it is relatively cheap (while EEG equipment still does
not sell at bargain prices), and not difficult to use, although it requires
some time to put the electrodes in place and having conductive paste
in one’s own hair is not pleasant. Anyway, EEG seems to be the most
wide-spread system for interfacing with the brain, and it is also used at
Airlab. For this reason, the rest of this chapter makes reference almost
only to it, and its principles and practices are here described in some
details.

The electric potential on the scalp measured by EEG devices is
generated mostly by neurons located in the brain cortex. Each electrode
is influenced more by the region of brain just underneath the electrode,
and by using more electrodes, it is possible to build a map of the
potential of the whole cortex. The signal picked up on the scalp is
very weak, in the order of tens of microvolts. Very sensitive and high-
quality amplifiers are needed in order to record the signal without
adding too much noise. Modern electronic technology enables to build
relatively cheap and compact devices that exploit digital electronics (see
Figure 2.4), which feed EEG data to a personal computer instead of
driving a pen on paper as in the traditional ones. Sometimes, they apply
also some form of filtering, as band-pass filtering to remove unwanted
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Figure 2.4: A modern digital EEG amplifier (left) and some EEG
electrodes (right).

A B Nasion

Inion 10%

Figure 2.5: A and B: the 10-20 system; C: the 10-10 system. Odd and
even numbers are used respectively for the left and right
sides, and z for the center; Fp = frontal polar, F' = frontal,
C' = central, T = temporal, P = Parietal, O = occipital.
From [19, Web version]|.

high frequencies and drifts, or notch filtering to remove the pervasive
interference from the power line. EEG electrodes are small disks placed
on the scalp (see again Figure 2.4); they are made of a metal, normally
silver or gold, that does not interact with skin. A light abrasion of the
skin (to remove the outer layer of dead cells) and the use of a conductive
gel or paste are required to reduce their impedance to acceptable levels
(3-5k) are considered good).

Electrodes are usually placed in precise locations according to
international conventions. In this way, electrodes are placed always
at the same places for a given subject, and it is possible to compare
and communicate results between different institutions and clinicians.
There are two widely-used standards, the 10-20 and the 10-10, shown in
Figure 2.5. Both define the electrode positions in terms of the distances
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between two fixed point on the skull: nasion (the delve at the top of
the nose between the eyes), and inion (a small bony bulge at the base
of the skull, in the back). The names of the systems come from the
fact that the electrodes are placed at the intersections between lines
whose distances are 10% or 20% of the distances between the reference
points. The 10-10 uses only 10%-distances, so it is a superset of the
10-20 system. Each position has a name, and most of the electrodes
common to both systems keep the same names.

It is known from physics that an electric potential is defined only
with respect to some zero level, i.e., a reference. This is true also
for EEG. There a few different ways to define a reference in an EEG
acquisition. One electrode can be selected as the reference potential,
and the difference between the potentials of the other electrodes and the
reference electrode is measured (common reference). Typical places for
positioning a reference electrode are the mastoid (the bony prominence
just behind the earlobe), the earlobe, and the forehead. Sometimes
the average of electrodes placed at both mastoids or earlobes is used,
because of the symmetry of this setup; this average can be computed
numerically on the digitized data, or the electrodes can be physically
linked by a wire. After an acquisition, it is also possible to change the
reference electrode by subtracting its signal to all the other ones. A
variant is to subtract the average of all signals to each of them (average
reference). Both reference schemes just illustrated use one reference
for all signals (monopolar channels). An alternative scheme is to use
electrodes in pairs, so there is one reference for every recorded channel;
this configuration is called bipolar. The set of the recorded electrodes
together with the reference scheme define a montage.

2.2 BCls: From History To The Present

Electrical phenomena in the brain are known since the 19th century,
but it was at the beginning of the 20th century that scientists began to
study the activity of the human brain with electroencephalography [20].
Different types of waves, corresponding to different frequency ranges,
were discovered and associated to different activities or states of mind
of the subject (e.g., sleep, relax, anxiety, physical activity). Neurologists
used EEG mainly to evaluate neurological disorders in clinics and
to investigate brain functions in laboratories. Some studies explored
the possibility of using EEG for therapy, as a support to biofeedback
practice, but results are still controversial [21].
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More recently, as powerful digital hardware and new analysis
algorithms have become available, EEG has been investigated as a mean
of communication, i.e., as an input to a BCI. Jacques Vidal presented a
BCI system in 1973 [22], which was built at the University of California,
Los Angeles; it is the first BCI on record. Emanuel Donchin and
colleagues built a BCI in the 1980s, and in the next decade many more
people were doing research on BCIs. Results are very promising and
exciting, although both the state of the art and the foreseeable short-
term developments are still very far from what has been envisioned in
some movies (probably “The Matrix” is the most famous).

Different research groups use different names for the systems they
build: for example, brain-machine interface, direct brain interface,
thought translation interface. The term BCI seems to be the most
common and wide-spread, and for this reason it will be always used
in this work, even when referring to systems named differently by their
inventors.

While the idea of controlling a device directly with thought! is
interesting and challenging by itself, with many possible applications,
an important driving factor for this type of research is the application
of BClIs in helping disabled people. There are thousands of people
that become paralyzed in the world each year, whether by trauma
or by disease. In many cases, paralysis is complete, mostly because
of degenerative diseases like amyotrophic lateral sclerosis or muscular
dystrophies. Disabled people are the most likely to benefit by the use
of BCI, because BCls, as far as the state of development is now and
for the near future, are rather slow, and however sad it may seem,
the most needing people are the one that need the less to help them.
Communication rates of a few bits per minute are the norm, but such
a low bit rate is still very useful for people who have no muscle control
whatsoever, both to control the environment (e.g., switch lights on or
off) and to communicate via a computer (predictive algorithms can
be used to produce 1-2words/min). But a BCI would not benefit
paralyzed people with residual movement capabilities, as exploiting such
capabilities with custom keyboards, switches, eye-tracking devices, etc.
is more effective. Although useful for some people, BCIs are mostly used
in laboratories, with very few cases of use in everyday life. The reason
is that there are many aspect of BCIs that must be improved still (more
on this later).

The word “thought” is at best an approximation of the actual way of using a BCI,
as explained later in more details.
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Figure 2.6: Architecture of a BCI

The basic architecture of a BCI is illustrated in Figure 2.6. There
are three main components: signal acquisition; signal processing and
translation; and feedback and/or stimulation (these latter elements may
be missing in some settings). Signal acquisition is done with one of the
techniques mentioned before (see Section 2.1.2). The exact acquisition
parameters (e.g., electrode placements for EEG) depends on the kind of
brain activity that is going to be used. The brain activity of interest
could be generated by the conscious will of the user, or it may come from
an unconscious mechanism — but still reflecting a conscious choice — in
response to stimulations by the BCI. This difference allows us to make a
distinction between endogenous and exogenous BCls respectively. Also,
the type of input discriminates between dependent and independent
BClIs, i.e., between BCIs whose functioning depends on the activity of
muscles and those which do not. More important, from the point of view
of the user, is the distinction between synchronous and asynchronous
(also self-paced) BClIs; here the discriminant is whether the BCI or
the user sets the pace. An endogenous, asynchronous BCI lacks a
stimulation component, while it exist in exogenous and synchronous
BClIs.

Facial muscles and their nerves produce strong electrical signals, much
stronger than EEG, and they can be picked up by BCI sensors and
appears as artifacts in the recorded tracks. Ocular region is a great
source of artifacts, with movements of eyes, rising of eyebrows, and eye
blinks. Tongue and throat (swallowing) are another source, and heart
beat can also show up in the EEG of some subjects. Signals from muscles
are orders of magnitude stronger than EEG signals, and hence disrupt
performance [23]. But they could also be used by the BCI, so that a
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healthy user might in fact control the interface using his own eyebrows,
for example. This would invalidate any result or conclusion drawn from
such an experiment with regard to BCI effectiveness. BCI users are
normally given instructions to remain still, not to blink or to try to blink
only at certain times, and so on, but artifacts crop up anyway. There are
different techniques that can be used to identify and remove artifacts;
some are the same used for classifying features into the supposed user’s
response [24, 25, 206].

The acquired signal is digitized and further processed. The goal of
processing is to enhance the signal, for example, by removing artifacts,
or by isolating the relevant components in the raw signal. There is no
general way to do this; techniques are chosen based on the particular
brain event to be processed and the personal taste of the designer. Yet,
some standard techniques are applied often, like band-pass filtering,
frequency analysis, averaging, or spacial filtering. The same applies to
the features used for signal classification; features may be, for example,
intensity of spectral power components, autoregressive parameters, peak
values, wavelet coefficients. Salient features isolated by signal processing
are then translated into actual commands. This translation could be
anything from a plain classifier for binary outputs to a very complex
model that controls the trajectory of a robotic arm. The user of a BCI
may receive a feedback directly from a BCI, or the feedback may come
from the effects of the devices driven by a BCI. In some settings, this
feedback is useful also to train the BCI user.

Brain responses and EEG potentials change with users, therefore
machine learning and other adaptive techniques are important, as they
permit to fit a BCI to a particular user and to the changes of user’s
response with time. While it is possible for a user to learn and adapt to
a BCI, every help by the machine is useful, as user learning may require
long training sessions; moreover, control over some EEG features cannot
be achieved satisfactorily by all subjects.

2.2.1 Signals From The Brain

Over the years, neurological studies have found many phenomena taking
place in the brain. Among all the phenomena, some can be used to detect
the intentions or the choices of a subject, and these are the ones that
can be useful for a BCI. In this section, the phenomena employed in BCI
studies are described, along with the way they are used in a BCIL.
Although all research on BCIs is based on some well-known brain
aspect, attempts to work disregarding any knowledge of brain have been
made. In [27] a direct approach is depicted, where the user is required to
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concentrate on one of two commands (actually “yes” or “no”), without
reference to stimuli or previously-agreed strategies. This BCI uses only
general-purpose techniques (independent component analysis, genetic
algorithms, and support vector machines). While results are not as good
as other kinds of BClIs, it may open interesting routes for the future.

It is possible to control an external device with voluntary EEG
modulation by training the user with techniques derived from
biofeedback (e.g., slow cortical potential described below), but most
work in the field focuses on BCIs where the user has to perform precisely
defined tasks, which can be paying attention to particular stimuli (as in
the case of visual potentials, P300s, and ErrPs described below), or
thinking of moving a part of their body (motor imagery, see below),
or performing tasks like mentally manipulating numbers, words, and
geometric figures [28].

Visual Potentials

The visual evoked potential (VEP) (also visual evoked response) is
the electrical potential recorded on the visual cortex in response to
stimulation of the subject’s visual field. A VEP is the effect of the
processing within the visual cortex, and it changes with the changing of
the stimulus.

A possible setup of a BCI involving VEPs consists in different symbols
displayed on a screen, where each symbol is highlighted by modulating
their luminance at different moments or in different ways; the user should
look at the symbol he wants to select. VEPs can be viewed by averaging
many recordings synchronized on the stimulus onset.

The Vidal’s BCT [29] (the first BCI ever built cited above) was based
on VEPs. Users were asked to navigate through a maze controlled by
a computer. A stimulus consisting of a checkered diamond with four
points placed at the corners was shown for a brief time. By fixating one
of the four points, the user indicated the direction of the next movement.
The system discriminated between four possible VEPs and updated the
position in the maze.

SSVEP (Steady State VEP) is a particular VEP, which occurs in
response to light flickering at some fixed frequency. The response in the
brain has the same frequency of the stimulus. In a BCI [30], a panel
contains two or more symbols, each representing a possible choice for
the user, which flicker at different frequencies. When the user look at a
particular symbol, an SSVEP is elicited. An analysis of the frequency
components in EEG permits to identify the symbol. No particular
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training is required, as evoked responses are innate, and accuracy is
high [31].

These BCIs are examples of exogenous and dependent BCls, and they
basically detect gaze direction. They can be viewed as another mean
for detecting messages carried in the brain normal output pathways (in
this example, the gaze direction), so they may have limited value for
assistive technologies.

Slow Cortical Potential

Slow cortical potential (SCP) is a shift in the potential of the whole
cerebral cortex, in the frequency range below 1-2Hz. Subjects can
learn to self-control their SCPs when they are provided with visual
or auditory feedback of their brain potential. A positive or negative
change in the potential registered over a few seconds period can be
used to select between two choices or commands (more choices can
be allowed by using a binary selection tree). This is what Birbaumer
and colleagues at University of Tiibingen (Germany) have used in their
Thought Translation Device [32]. Even a few months of training is
needed to achieve an accuracy sufficient for communication (yet far from
100%).

Motor Imagery

Mu (8-12Hz) and beta (12-26 Hz) rhythms are correlated with motor
cortex idleness. Body movements or even imagined movements (motor
imagery) are typically associated with a decrease in mu rhythm and an
increase in beta rhythm, particularly in the hemisphere contralateral to
the movement. So motor imagery (or its absence) can be used to create
a binary signal [33]. In a slightly different approach, two (or possibly
more) different actions are imagined by the user, and the BCI system
tries to discriminate between the actions by comparing features of the
signals registered over the motor cortex [34]. In other works, additional
discriminating tasks are activities not related with imagined movements,
like performing mental computation or visualizing geometric figures [35].
More interestingly, this latter work uses a threshold of confidence for
classification, and whenever the threshold is not reached, the system
does not take any action.

Motor imagery is probably the most popular type of BCI. Possible
reasons for this fact are that is a protocol that require a not very long
training phase, and discrimination can be made with simple algorithms
like computing a Fourier transform. Yet, training on the part of the
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user is always needed, as it is not easy to concentrate on an imagined
movement without actually doing it. After a while, users report that
they no longer think of moving body part, but they produce the right
patterns automatically; this ease of use is beneficial for perspective users,
but it requires time. Simple algorithms are seldom used; more often,
they are replaced by more sophisticated ones in reality.

Several groups around the world make use of motor imagery. Here,
only a quick overview of the work of some of them is given. = The
Maia project (Mental Augmentation through Determination of Intended
Action) [36] was a European project (partners were the Swiss IDIAP,
the Italian Fondazione Santa Lucia, the Belgian Katholieke Universiteit
Leuven, the Finnish Helsinki University of Technology) that terminated
a few months ago, and which aimed at developing an EEG-based BCI for
controlling autonomous robots. It was based on the principle that the
human user imparts just high-level commands through a BCI, while an
autonomous robot deals with all the low-level details [37, 38]. Behaviors
like obstacle avoidance and wall following were built in the autonomous
control of a wheelchair, while the user just gave simple commands like
“go straight”, “go left”. Motor imagery was used; cortical potentials
were estimated from scalp EEG through a mathematical model [39], and
band energies were used to discriminate different imagined movements.
Interestingly, very high frequencies (> 100Hz) were also used in the
classification process [10]. Haptic feedback was given to the user [11],
and detection of error potentials (see Section 2.2.1) in the user helped
to lower the overall error rate of the system. They showed that it is
possible to drive a wheelchair with a BCI, also in live demos, though the
noisy environment lowered the performance dramatically.

The group lead by Gert Pfurtscheller at Technische Universitit
Graz have been working with motor imagery for several years. They
developed a system that records EEG in three points and discriminates
between three imagined movements: left hand, right hand, and feet.
Spectral features are used in classification. The first Graz BCIs were
synchronous [42], but in more recent works, as the virtual reality
project [43] or the restoration of movements in quadriplegic patients
through functional electrical stimulation [44], asynchronous protocols
are used.

The BCI research group at the Wadsworth Center (in Albany, NY,
USA) uses mu and beta rhythm over sensorimotor cortex to move a
cursor in one or two directions. New users are advised to use motor
imagery for producing changes in relevant wave rhythms, and they learn
to control the cursor in training sessions [33, 45].
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The Berlin BCI group, a collaboration between the Fraunhofer FIRST
institute and the Charité Universitdtsmedizin in Berlin, have developed
various BCIs based on motor imagery with the goal of reducing the time
the user spends in learning; this is achieved by employing many machine
learning techniques, but also by using a large number of electrodes
(typically 64 or more) [46, 47].

Motor imagery has been used in experiments with implanted
electrodes as well, such as those on human by Donoghue [11] and
Kennedy [10], or on animals by Nicolelis and Chapin [48, 12, 15] and
Schwartz [15, 49]. As expected, with implanted electrodes it is possible
to obtain better results than with EEG-based motor-imagery BCls.
Time will tell if the drawbacks of an invasive approach can be reduced
by new technologies and balanced by the improved performance.

Event-Related Potentials

Event-related potentials (ERPs) are components found in EEG
recordings generated in response to specific stimuli or events. In
general, ERPs do not stand out from the background EEG, but they
can be detected by averaging many recordings time-locked to stimulus
presentation. This averaging cancels out the background activity, which
is not synchronized with the stimulus, and leaves only the ERP. The
problem with averaging is that ERPs may change with time and between
sessions, and for this reason the so-called grand average may not capture
the whole complexity of the phenomenon. Examples of ERPs are P300
and error potential; they are described below in more details, as they
play a central role in the present work. Other examples are contingent
negative variation [50], a negative shift in the potential over the fronto-
central region visible when subjects are expecting a stimulus after
having been given a warning signal, or readiness potential (also called
Bereitschaftspotential by the German-speaking scientists who discovered
it), which is a negative shift in the potential of the motor cortex just
before a voluntary movement. Readiness potential has been used in BCI
studies [51, 52], and it has an interesting application: shortening reaction
times of human operators controlling time-critical devices. Of course,
confidence in detection of readiness potentials should be very high for
such an application, so as to avoid potentially catastrophic false positives
for the sake of gaining just a few hundredths of a second.
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Figure 2.7: Plot of a P300. Averages over many trials in an oddball
paradigm are shown. Onsets of stimuli are at time 0.

P300

A P300 potential is an ERP that occurs when a subject detects an
occasional target (oddball) stimulus in a regular train of standard
stimuli. Typically, the recording of a P300 presents a positive peak
at about 300ms (hence the name) after the oddball stimulus (see
Figure 2.7%). Stimuli can be visual, auditory, or even tactile. The
exact shape of the P300 depends on the characteristics of the stimuli
and their presentation and varies with the subjects. As the P300 has
been known for many years [53], it has been extensively studied. A
negative component, a peak at about 200ms after the stimulus, has
been observed to precede the positive peak. The intensity of the P300
is positively correlated with the salience of the stimulus, negatively with
probability (less probable stimuli elicit stronger P300s). Also, when
stimuli are difficult to discriminate, P300 is smaller. Subjects must be
conscious of and attentive to stimuli for a P300 to be elicited, and the
more the attention, the bigger the P300. Often subjects are suggested
to count the target stimuli, so as to keep their attention high.

As far as BCI applications are concerned, the exact shape of the P300
is not so important, as long as there is a way of detecting it. And given
that the P300 varies much between different subjects and even between
the same subject in different times, adaptive algorithms are needed. This
is true for all ERPs, not only for the P300.

The P300 has been widely used in BCIs, with many variations, but in
all cases the paradigm is basically the same: The BCI system presents
the user with some choices, one at a time; when it detects a P300
potential the associated choice is selected. The user is normally asked

2Many EEG devices show tracks with the positive axis pointing down. This
convention is followed in the present work.
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Figure 2.8: The visual stimulator for a P300-based BCI speller. Lines
and rows are flashed one at a time.

to count the number of times the choice of interest is highlighted or
presented, so as to remain concentrated on the task. As the P300 is an
innate response, it does not require training on part of the user, and
although individual response changes with time, as said before, it seems
that it is stable enough for an appropriate classifier to be able to work
even after a long time [54].

In [55, 56], Donchin and colleagues described a system to spell words
based on the P300. They built the first P300-based BCI in 1988: A grid
of letters and symbolsis presented to the user, and entire columns or rows
are flashed one after the other in random order (see Figure 2.8 for an
example). Flashing is repeated several times, and all the EEG recordings
related to the same letters are averaged together; the resulting signals
(one for each letters) are compared to find the one more likely to contain
a P300 and hence the letter selected by the user. Classification is made
through stepwise discriminant analysis (SWDA) applied to the averages
of samples (but other methods are also used). The number of times a
letter has to be flashed before calculating a P300 score is predetermined
for each user so as to get a good trade-off between speed and accuracy.

At the National University of Singapore a wheelchair controlled
through a P300 BCI is under development [57]. The wheelchair is
autonomous, but its movements are constrained to predefined paths; the
user selects a destination and the chair drives there. If an unexpected
situation occurs, the wheelchair stops and waits until the user decides
what to do. Classification of P300 events is done by a support vector
machine (SVM) fed with samples of the recorded EEG and its time
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derivative. Every stimulation is processed and classified as target or non-
target independently from each other; stimulation is repeated several
times for every possible choice, and classifications of stimuli referring to
the same choice are aggregated until a threshold is reached.

In [58], one of the winning groups of the BCI Competition 2003 [59, 60]
for the data set IIb describe the method they used. It is cited here
because that data set has been used also in the present work. Data
was provided by the Wadsworth Center and consist of EEG recordings
made with a P300 speller like the Donchin’s one described above. The
winners achieved 100% of correct classifications with only 5 repetitions,
i.e., after each column and each row has flashed for 5 times. The authors
trained an SVM on the raw samples of the digital EEG, almost without
preprocessing. SVMs are described in more details in Section 4.2.2;
they can be thought as a way to find a separation surface in the space
of EEG samples (with a non-linear distance metric). In a sense, SVMs
classify examples basing on similarity, although the similarity metric is
computed in a transformed space. So, it is somewhat surprising that
such a method works without extracting specific features of the signal
and without any a-priori knowledge of the problem. From the analysis
of the method, another fact seems interesting. Of the 64 EEG channels
in the data set, the winning group used electrodes placed on the central
line, where the P300 is typically more pronounced, but also electrodes
over the motor cortex and the visual cortex. This may suggest that
other phenomena, besides the P300, are used to discriminate the target
letter.

In [61] tests have been made both with healthy and impaired subjects.
The subjects control a cursor by choosing among four commands (up,
down, left, right) via the P300. Single-sweep detection is performed;
independent component analysis (ICA) is used to decompose the EEG
signal, a fuzzy classifier identifies a candidate P300 component among
the ones extracted by ICA, and a neural network classifies it as target or
nontarget. The system is more effective with healthy subjects, though
no exact reason could be pinpointed.

Although a P300 is delayed, and hence it can be detected only after
(at least) a few tenths of seconds, stimulations can follow one after the
other rapidly. This means that a P300 responses may be superimposed
with the next stimulation, but this does not seem to be a problem.

By looking in the literature at what kind of BCIs the various groups
around the globe are working on, it seems that motor imagery is the most
widely used. Probably, the reason for the popularity of motor imagery
is that in a P300-based BCI, the interface gives the timing, while it
seems more natural if the user sets the pace. Yet, it is not entirely true
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that a P300 BCI imposes timing constraint to the user; if provided with
a confidence threshold, or other ways to assess user attention, a P300
interface may just sit idle until the user turns his attention to it. Also the
time needed to present the user with enough stimulations to activate the
interface is similar to the time needed to operate a motor imagery BCI,
if we take into consideration that a binary or ternary motor-imagery
BCI conveys much less information per selection than a P300 BCI. For
example, in [62] a 3-class motor imagery is used and the classifier chooses
among the three classes 128 times per second, but such classification is
used to move a cursor on the screen and drive a virtual keyboard; the
speed of the keyboard is about 2 correct letters per minute, which is
comparable with the performance of a P300 speller. In [35], a 3-class
BCI performs a selection every 0.5 s, but the BCI is used to drive a mobile
robot, a task that does not involve many switches between commands —
as the authors observe; from the graphs and the data in the cited work it
is possible to estimate that the tasks involves about 20-25 switches per
minute, each conveying about 1 bit of information: Again, comparable
to a P300 speller. This quick comparison does not imply any judgment
regarding which one is the best BCI; the choice between different kinds
of BCIs must take into account many more aspects, as the requirements
of the task, the preferences of the user, and the actual speed achieved
by the individual user.

Error Potential

An error potential (ErrP) is an event-related potential that is present
when a subject makes a mistake, and, more relevant to BCI applications,
when the machine the subject is interacting with does not behave as
the user expects. Studies in the late 1980s made independently in
Germany and Illinois (USA) [63, 64] found a response in EEG recordings
shortly after the subject making a mistake. Subjects were asked to press
different keys in response to different stimuli, within a time constraint.
Both groups found a negative shift in the electric potential over the
fronto-central region (from Fz to Cz of the 10-20 system) occurring 50—
100 ms after an erroneous response. For this reason, it was called error
negativity (Ne) or error-related negativity (ERN). A subsequent positive
shift located in the parietal region was found only by the German
group [63]. This positive shift has been called error positivity (Pe), and
its maximum occurs between 200 and 500 milliseconds after the error.
The delay figures above are only indicative, as delays are influenced by
the characteristics of the particular task; in fact, different authors have
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Figure 2.9: Plot of an ErrP. Averages over many trials are shown. Signal
are synchronized on the key-pressing event, at time 0 in the
plot.

found different results. Figure 2.9 shows an example of an ErrP recorded
in an experiment at Airlab.

Many experiments have been done, with different types of tasks and
different parameters (e.g., timing). One variant is the use of a go/no-
go task, where the subject is asked to either press a key or to do
nothing depending on the stimulus type. A high variability in shape,
size, and delay of the Ne and Pe components has been observed. The
two components are thought to be the effect of different underlying
mechanisms, whose nature is not yet certain. Ne has been shown to
be smaller when time pressure increases, while Pe remains constant.
When there are more than one possible error (e.g., the subject has to
push one among four buttons), the severity of the error is correlated with
Ne amplitude, while, again, the Pe is not affected. Moreover, the Pe is
smaller with higher error rates, while the Ne amplitude is independent of
error rate. The most likely hypothesis explaining the Ne is that the Ne is
elicited when a mismatch is detected between the neural representations
of the correct and the wrong responses [65]. A study of Nieuwenhuis et
al. [66], where subjects are asked to control saccades (eye movements),
shows that the Pe is higher for conscious errors, i.e., when eye movements
are big enough for the subject to be aware of them. It seems that the
Pe is linked with a conscious perception of errors, but it is also possible
that it is the effect of a learning process or an emotional reaction.

The Ne has been found also in experiments where subjects do not
know if they have made a mistake until they receive a feedback about
their performance, as in a task where subjects are asked to estimate a
time interval [67]. Apparently, this phenomenon is still an ErrP, and it
is possibly connected to a learning process (a hypothesis made also for
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the “standard” ErrP). But a very similar ERP has been seen even in
gambling tasks [68].

Researchers at the Wadsworth Center [69] investigated the presence of
ErrPs in a BCI application (cursor movement by mu and beta rhythms)
and found a positive peak at Cz 40 ms after the end of erroneous trials.
Although the features of this ERP are rather different from the ErrP
mentioned above, it has possibly an interesting application: automatic
detection of errors made by the BCI in recognizing the user’s intent.

The Berlin BCI group performed experiments with ErrPs; apparently
they reported only works where subjects had to press the right key in
response to a visual stimulus [70, 52], although they reported “online
use of the error potential” as a line of research in a later article [47].

Millan and colleagues worked on the possibility to automatically
detect ErrPs due to BCI mistakes to improve their performance [71].
They first made experiments with a simulated BCI, i.e., subjects
interacted with the system by pressing keys instead of using
brainwaves [72]. Again, they found an ERP with different features from
the “classical” ErrP, where users did mistakes. They found a negative
peak around 270ms after feedback, a positive one between 350 and
450 ms, and another negative peak around 550 ms. More interestingly,
they trained a Gaussian classifier to recognize ErrP (reaching an
accuracy of about 80%). In further work [73, 74], Milldn and colleagues
found ErrPs in simulated BCI experiments. Six users where asked to
drive a discrete BCI using 2-class motor imagery, and the system was
programmed so as to give the correct feedback with 80% probability.
The classifier for ErrPs worked with an accuracy of 70-80%; the authors
estimated that using ErrPs should double the bit rate of that BCI for the
subjects of the study. They trained a classifier for the motor imagery in
parallel with the classifier for ErrPs; they estimated the bit rate of the
BCI on new session data with and without ErrPs detection and found
about a doubling of the performance. Online detection in a real BCI
has been recently reported [75].

In a work for detecting errors by Bayliss et al. [76], the authors found
that a P300 is elicited when the BCI selects the right element. While
this is not an ErrP, it permits a similar approach to error correction.

2.3 Some Considerations

After what has been said, it should be clear that the building of a BCI
is not a simple task. The performance of an independent BCI can reach
some 20 bits/min of information transfer rate [1]; for communication,
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this figure could be improved by the use of word and letter prediction,
so as to produce 1-2 words per minute. Results presented in most of
the literature have been obtained in laboratory environments, and the
time when a BCI could be used at home without problems has not come
yet. Trials have been done at home [77], but oversight of a technician is
still needed, both for electrodes (which cannot be worn for long without
maintenance) and the system.

Difficulties are many, and there is work to do in many areas. Selection
of EEG electrodes, for example, is not always a straightforward choice;
while physiological considerations may suggest some locations, the
optimal configuration changes from subject to subject. Dry electrodes,
i.e., which do not need any conductive paste, are desirable, and different
research groups are working on it (see for example [78]), but they are
still at a prototypical stage. Signal processing is an open problem; many
methods have been used, coming from different research areas: signal
analysis, data mining, statistics, machine learning. No technique has
proven to be “the best”. What works for a subject may not work for
another, or in different settings, but the field is still young, and only
time can say what works best.

Although BCI systems have been proven to be useful, there are many
limitations in the approaches found in the literature. In several systems,
the selection of the interaction protocol and the extraction of features
from brain signals are made as a preliminary step in the development of a
BCI. These are probably the most important points for the effectiveness
of a BCI, so a better approach would be to adapt them to each single
user. This is something that the work in Chapter 7 wants to help to
achieve.

All BCI systems in the literature have a training phase, so they
adapt to new users, but online adaptation, i.e., adaptation to changes
of signal during use, is far from common. EEG signals (like other
physiological signals) typically display variations linked with the more
disparate factors, like, e.g., time of day, hormonal levels, emotions,
fatigue, illness. A BCI should adapt to these changes to maintain
its effectiveness [79, 80]. This means that a software module should
supervise the use of the BCI and adjust its behavior, but, also, some
method to give a feedback to such supervisor module is needed.

In general, this kind of adaptation is difficult to implement, as many
components must interact effectively (the BCI, the supervisor, the
feedback provider), and the system must be programmed beforehand
to cope with situations not always well defined.

Adaptation of a BCI to a user is always done with the goal to obtain
a higher performance, i.e., a higher correlation between the system
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response and the user’s intention. This optimization is applied to several
components and parameters of a BCI, but they are often optimized
separately. A global optimization, i.e., the optimization of all aspects in
parallel, should deliver better results, but for sure it is computationally
more expensive, and this is why it is rarely done in practice. We can
expect that if computers continue to get more powerful as they have
done in the past, global optimization approaches will be more common
in the future.

Many protocols require users to adapt themselves to the BCI and
learn how to use it [81, 23]. Although this learning phase may last
for many months, it is a prerequisite for BCI use and it is considered
more or less concluded at that point. But humans — and the human
brain — continually adapt themselves to new conditions and change
with time, even after the initial training phase and during everyday use
of a BCI. We all have experienced such phenomenon in our everyday
activities. It could take the form of learning, i.e., an improving of
performance, or habituation, i.e., a decrease of the response. A decrease
of the brain response is very likely to negatively affect BCI performance,
but even learning might have a negative impact if the BCI cannot adapt
to changing conditions. It is important to note that these issues are
about long-term effects, so a more extensive use of BCIs is required to
talk about them beyond mere speculations. Only when BCls will exit
the laboratory to enter the ordinary clinical practice it will be possible
to see and understand what happens, and also try to develop BClIs that
incentive or take advantage of benign adaptation.

A final note. As already said, a BCI should be most useful to severely
ill people, but often tests are made on healthy people because it is easier.
On the one hand, that is regrettable, as less data are available on how
well a BCI works with disabled people than with healthy people. On
the other hand, making initial trials on patients may frustrate them or
create too high expectations: Some balance is needed.
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And they made letters and scrolls and books, and
wrote in them many things of wisdom and wonder
in the high tide of their realm, of which all is now
forgot.

J.R.R. TOLKIEN — The Silmarillion

‘A safer seat than many, I guess,” said Legolas.
J.R.R. TOLKIEN — The Lord Of The Rings

The work of this thesis is focused mainly on the detection of two different
ERPs (event-related potentials) in EEG data: P300 and ErrP (error
potential). We performed a number of experiments to acquire data to
test the algorithms developed for P300 and ErrP detection described in
the next chapters. Moreover, the work of the present thesis is a part
in a bigger work whose long-term goal is to provide BCI-based assistive
devices for paralyzed people.

This chapter describes the equipment and the software used for
the experiments done at Airlab (the Artificial Intelligence & Robotics
laboratory at Politecnico di Milano, where this thesis has been
developed).

3.1 EEG Acquisition

The core component of the EEG acquisition hardware is the unit that
amplifies and digitizes the EEG signals, and feeds them to a computer:
In our case, the amplifier unit is BE Light by EBNeuro [82], which is
shown in Figure 3.1. It has 28 channels: 21 monopolar, 4 bipolar, and
3 monopolar with a separate reference (polygraphic). The maximum
sampling rate is 8 kHz.

The unit is connected to a laptop through an optical fiber cable
and a custom PC Card adapter. The use of optical fiber electrically
isolates the computer from the amplifier and the subject. This is a
standard procedure to ensure the respect of safety standards and avoid
to endanger the subject. In our experiments, the computer is used also
to stimulate the subject and lies very close to him. For this reason, the
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Figure 3.1: EBNeuro Be Light EEG amplifier

computer is disconnected from the main power and runs on its internal
batteries for all the duration of the experiments.

We used the same montage in all our experiments. As the potentials
we are interested in, P300 and ErrP, are stronger on the midline of
the head, the four monopolar channels Fz, Cz, Pz, Oz are used (see
Figure 2.5 at page 8 for their positions). The reference is the right
mastoid, and a mass electrode is placed on the forehead. Finally,
two bipolar electrodes are placed near the right eye and measure the
electrooculogram (EOG), i.e., a potential correlated with eye position;
in the EOG channel are visible both eye movements and blinking. All
electrodes are Ag/AgCl cup electrodes. They are applied by following
the standard procedure: rubbing of the skin, application of the adhesive
and conductive paste, and check of the impedance levels.

The BE Light applies a high-pass filtering at 0.1 Hz to all EEG and
EOG channels, so that DC components and slow drifts are removed.
Frequencies above 1kHz are also removed by an anti-aliasing filter
(the internal sampling rate of the ADC is 8.2kHz), and a digital low-
pass filter is applied before the signal is downsampled to the desired
frequency. The effect of all the filters is that the recorded digital signal
contains all the frequencies between 0.1 Hz and 0.45 times the selected
sampling frequency (or up to 1kHz for very high sampling frequency).
The amplifier does not remove the 50 Hz power line interference, but
experiments have shown that keeping cables, sockets, and AC adapters
at least 0.5—1 m away from the subject is sufficient to have only negligible
effects on the signal quality.

We used a frequency of 512 Hz for all our experiments, so the useful
band according to the specifications is 0.1-230Hz. Although both
P300 and ErrP do not have significant components above 10-20 Hz,
we preferred to record data at a higher frequency for possible future
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studies. After all, it is very easy to discard unwanted high frequencies
or to downsample a signal with digital processing techniques, but it is
impossible to recover frequencies filtered during recording.

The amplifier comes with a software suite, Galileo, which handles all
the different tasks related to EEG acquisition, like controlling acquisition
parameters, displaying recorded data, performing some data analysis,
handling a database of recordings and subjects. Galileo has been thought
for clinical practice, and it has more features than we use. Our main
use of Galileo is to record data and export them for further processing.
But the visualization of EEG data in real time is useful to verify that
everything is working properly, and a quick look at the data just after the
end of an acquisition permits to identify potential problems and possibly
warrant the repetition of the acquisition. Real-time visualization has
been also useful to instruct the subjects about avoiding movements and
eye blinks, as they can appreciate the effect of their actions on the EEG
tracks.

Galileo does not provide any facility to feed the EEG data to another
application in real time. It writes data in a file, but it does so in batches
of 4, so this feature cannot be used to build a real-time BCI. Therefore,
we performed all our classification experiments offfine initially. Data
were acquired in Galileo, and only after the end of each acquisition
session they were exported for analysis. Nonetheless, care has been taken
that all the algorithms for processing and classification of potentials
could be applied also online.

After having accumulated experience with EEG signal processing, and
having tried the algorithm offline, we modified the system to work also
online. The first element we needed for online processing was a way to
get the EEG data from the amplifier. To this end, we wrote a plugin
that runs inside Galileo and feeds the EEG data into a software pipe,
where any other program can read them. Data are made available to
the plugin in batches of 62.5ms, with a delay of about 1-2 tenths of a
second, which is low enough for real-time process (thanks also to the
synchronization mechanism described in the next section).

3.1.1 EEG Synchronization

When doing experiments with ERPs induced by external stimuli, it
is very important to have the EEG recording synchronized with the
stimuli. The problem is that in the chain from the EEG electrodes
to the application running on the PC, there are several elements (the
amplifier unit, the PC Card adapter, the driver of such adapter), and
each of them uses internal buffers and introduces a delay. Delays are
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Figure 3.2: Detail of the colored square used for stimulus
synchronization

present also in the stimulation chain. If stimuli are generated with a PC,
after an application has issued a command for drawing the screen, time
passes before the video driver, the video card, and finally the display
update the current image.

If the stimulator application communicates the instants of stimulation
to the EEG recording application, stimuli and EEG tracks are off by a
noticeable amount of time. If both EEG recording and stimulation are
done by the same computer all the delays add together, and the sum
should lie in the range of the hundredths, possibly tenths, of second. If
a computer records the EEG while another one stimulates the subject,
the clocks of the two computers must be kept synchronized, or some
other mechanism must be devised to mark the EEG with the instants
of stimulation.

It is worth noticing that the actual offset of the stimuli on the EEG
tracks is not very important for ERP analysis, as what really counts is
how much the offset varies from stimulus to stimulus (as long as it is
not very large). But many of the delays mentioned above are stochastic,
as they depend on the task scheduler of the operating systems, or are
likely to depend on the parameters of EEG acquisitions, like sampling
frequency or the number of channels.

Because of all these reasons, and because the EEG recordings
of our experiments were done with the Galileo software, which
has no built-in mechanism to interface with external programs, we
devised a synchronization mechanism that does not depend on a
direct communication between the stimulator application and the EEG
recording software. The idea is simple: The visual stimuli are picked up
by the amplifier unit together with the EEG channels.

Figure 3.2 shows a screen shot of a visual stimulation used in one of
our early P300 experiments. In the top right corner of the screen, a
small square is visible, and it changes from white to black on the onset
of each stimulus. A small optical sensor is placed on the display used
for stimulations in correspondence with the square, and the signal from

28



3.1 EEG Acquisition

VCC

Vo

Figure 3.3: Scheme of the electronic circuit of the synchronization sensor

the sensor is fed to the EEG amplifier. The application that generates
the stimuli also controls the color of the synchronization square, and
care is taken that the stimuli and the square are drawn very closely in
time (more on this later). All the other delays are removed, as the EEG
and the synchronization signal travels together from the amplifier to the
processing application.

The scheme of the electronic circuit used for connecting the optical
sensor to the EEG amplifier is shown in Figure 3.3. It is very simple:
the optical sensor is a phototransistor, and the current induced by light
is converted in voltage by a resistor. The value of the resistance is such
that the output voltage is suitable for the input of the EEG unity. As
it depends on the luminance of the screen and the actual voltage of the
power source, a trimmer is put in series to a fixed resistor to adjust the
value. Power is provided by a lithium battery, so the insulation of the
EEG unit is preserved. There is a switch to turn the circuit on and
off, and an LED is used to signal the on/off state of the circuit. The
phototransistor employed is directional, but its case is transparent and
therefore the transistor is subject to the interference of external light
sources. For this reason, a black sheet is put over the phototransistor
and the synchronization square.

Because the circuit is very simple, the digitized signal require some
software processing to identify the transitions of the synchronization
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Figure 3.4: Synchronization signal in blue, and its envelope in red

square and hence the time instants of the stimuli. Figure 3.4 shows
a typical synchronization signal recorded by the EEG unit when the
synchronization square turns alternatively black and white. The sensor
is connected to one of the 3 inputs of the BE Light that have a reference
different from the one used for the subject, and allow DC coupling, i.e.,
no high-pass filter is applied. This is very useful, as the high-pass filter
present on the standard EEG inputs would have altered the shape of
the signal and made the detection of transitions harder. The intervals
where the signal is stronger correspond to white, as white generates more
current in the circuit than black.

The transitions are clearly visible in Figure 3.4, but there is a lot of
noise when the screen is white. This is probably due to the refresh of
the pixels in the LCD display. The simplest way to find transitions
in a square wave is to compare the signal with a threshold, placed
halfway between the maximum and the minimum. The noise may cause
many false positive, and indeed it happened in our first attempt to find
transitions, as the brightness of the screen was lower and the effect of
the noise was stronger. Although tinkering with the screen brightness
control helps, a more robust solution is computing the envelope of the
synchronization signal before the comparison with the threshold. A
simple function that find the maximum within a sliding window does
the trick, and the result is shown in the figure (red line). The lag of
the red line with respect to the actual signal at the rising front is not
important, because only the falling front is used. As it is apparent from
Figure 3.4, the transitions from white to black are faster and cleaner
than those from black to white, at least for the display we used. For this
reason, stimulus onsets are synchronized with the first kind of transitions
in all our experiments.

We verified that the synchronization system is adequate for ERP
experiments by measuring the time offset between the appearance of
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3.2 P300 Speller

the stimulation and the color switch of the synchronization square in
the stimulation programs. For this purpose, we assembled a second
optical sensor and placed it on screen in correspondence with the area
of a stimulus. We recorded the two sensors at the same time, and by
analyzing the resulting tracks we found that the maximum offset had
been one hundredth of a second. That was very good, as features in
ERPs are longer by at least a magnitude order.

As some experiments for ErrP require the pressing of buttons, we
have verified that the response times of the program controlling such
experiments are acceptable. We modified a USB keyboard by connecting
one pole of a double-pole switch in parallel to a key, while the other pole
of the switch was connected to an input of the EEG amplifier. In this
way we could operate a key of the keyboard and have an exact reading
of the time of that event with respect to the synchronization signal
generated by the usual square. We measured the times of key pressings
within the stimulation application and compared the two sequences of
measures, one coming from the analysis of the tracks recorded by the
EEG amplifier, the other from the program generating the stimuli. The
result was that the response time to key pressing was always below two
hundredths of a second, and often much less than that.

3.2 P300 Speller

We developed a classical BCI based on P300, the P300 speller, and
integrated the use of ErrP in it. We developed two versions of the
speller; one for offline use and a later version for online use. They are
the same in concept, and they only differ slightly for appearance and
timings; these differences are due to the fact that the two interfaces
have been developed in different environments, and we preferred to use
the parameters that simplified the development the most. We have not
yet made any study to find out which one is the most effective way to
present the stimuli and the feedback.

Our P300 speller is very similar in the appearance and in functioning
to the one described by Donchin [56]: 36 symbols are disposed on a
6 x 6 grid, and entire rows and columns of symbols are flashed one
after the other in random order. The grid of symbols is visible in
Figure 3.5: There are the letters from the alphabet, digits, and the
backspace, represented by the small arrow in the right bottom corner.
The intensification of rows and columns lasts for 100 ms and the matrix
remains blank for 100 ms between two consecutive flashes (125 ms were
used for the online version). Each row and column is flashed exactly
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Figure 3.5: Graphical interfaces of the P300 spellers used in the
experiments. They both show the moment of the letter
feedback used for ErrP-based confirmation.

once in the first 12 stimulations; then another round of 12 stimulations
is repeated, with flashing of rows and columns done in a new random
order, and this procedure is repeated for a total of 5 times. Each block
of 12 consecutive stimulations is called a repetition, and there is no pause
between repetitions.

After the fifth repetition, the P300 system detects the row and the
column that are more likely to have elicited a P300, and selects the letter
at their intersection. After a pause of 1s, the letter is presented to the
user in the rectangular frame in the top part of the interface for the
offline version, and in a big rectangle that pops up in front of the grid
for the online version (see Figure 3.5). The letter is also concatenated
to the text which is at the bottom in the offline version and at the top
in the online one. The presentation of the letter should elicit an ErrP
if the letter predicted by the P300 system is different from the one the
user intended.

An ErrP detection system figures out if any ErrP is elicited by the
presentation of the selected letter, and in that case it overrides the P300
speller and cancels the last spelled letter. After a 2-3s pause (this
parameter is tuned to each subject’s requirements), the speller starts a
new series of stimulations for the next letter. A trial, in this context, is
the whole series of 60 row/column flashes together with the feedback of
the speller selection made for each letter, i.e., a single trial is composed
of 60 P300 stimulations and 1 ErrP stimulation (a trial is about 15s
long).
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3.2 P300 Speller

During the training phase, i.e., when there is no trained classifier,
and during offline experiments, subjects are told the letter they must
pay attention to at the beginning of each trial, and no automatic error
correction is done. In order to elicit also ErrPs, the letter feedback is
chosen randomly so as to match the correct letter in 80% of the cases.

3.2.1 BCI2000

BCI2000 [83, 84] is a general-purpose software system developed at the
Wadsworth Center of the New York State Department of Health in
Albany, New York, USA, for brain-computer interface (BCI) research.
It is made available complete with source code at no cost to research
institutions, under a license that has some restrictions but permits to
do research freely. It has been chosen as the platform to base our speller
on because we deemed that it could speed up the development of the
systems (if that has been the case is not clear, as BCI2000 is not as
modular and flexible as it could be).

BCI2000 is composed by four processes which perform different
tasks. A source process acquires data from an EEG device; a signal
processing process performs all the data analysis and classification;
an application process interacts with the user and possibly external
devices; a supervisor process coordinates the other processes. The
processes exchange data together with state and control signals via
TCP/IP sockets. Different applications and data analysis algorithms
are implemented in BCI2000; this could help in bootstrapping the
development of new custom BClIs.

We developed three main components: a source module that acquires
EEG data from the Galileo plugin described above, an application
derived from the built-in P300 speller, and a dual-classifier processing
module to handle both P300 and ErrP classification. The source module
just feeds the EEG data read from the Galileo plugin to the rest
of BCI2000 system. The application module implements the P300
speller with ErrP-based error correction, as described above. The
processing module breaks the EEG signals in epochs synchronized on
the stimulation instants recovered from the synchronization signal (see
Section 3.1.1); it then processes the data and performs the classification
of the epochs according to two separate processing chains, one for P300s
and one for ErrPs (the two classifiers are described in Sections 5.4
and 6.1.1, respectively). The application module activates the classifiers
in turn by changing a global BCI2000 state, and uses their output to
select letters or cancel a selection.
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Main Menu Room Control
Turn Light On Air Conditioning
Speller Room Control
Turn Bedlamp On Open Window
File Manager Music
Close Curtains Main Menu

Figure 3.6: P300-based menu interface for control

3.3 P300 Menu System

The P300 speller is a part of a bigger system, based on a P300 BCI,
that is currently under development. The objective of this bigger
work is to develop a prototype of an assistive device that permits both
communication and control, where the communication part is based on
the P300 speller already described, and the control part is based on an
interface with hierarchical menus selected by means of P300 detection.
Each menu entry can lead to another menu, or perform an action, like
running a program or operating an external device.

This system is similar to the P300 speller in many respects, as both
work by eliciting P300 potentials in the user and detecting them, but
there are differences in stimulation mechanisms (single entries are flashed
for the menu, while entire rows and columns are flashed for the speller),
and different is also the kind of attention that a user may pay to the
task. These differences might elicit different variations of P300; this an
interesting point for research.

Figure 3.6 shows the menu interface and how it works. An initial
menu contains entries for different applications: the P300 speller, an
interface for controlling some devices in the room, a file manager, and an
application that plays music in the background. Entries in the current
menu are highlighted one at a time, and, after a number of repeated
stimulations, the detection of a P300 determines that the corresponding
entry has been selected by the user. If the user selects “Room Control”,
a new menu appears with one entry for each of the controllable devices,
plus an entry to go back to main menu. The first entry, “Turn Light On”
invokes an external application on the BCI computer, which acts on an
external interface connected with some relays or a more complex device
operating the main room light. The second entry, “Air Conditioning”,
shows a new menu with commands for controlling temperature and fan
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speed. The other entries behave in a way similar to the first: They run
an external program that operates the indicated device.

When a P300 is detected by the BCI, the corresponding menu entry is
selected and this is shown on the screen by a specific highlighting. This
can be used for detecting errors made by the BCI by means of ErrP. The
effectiveness of this option should be checked on the individual users,
as the impact of ErrP detection on the overall performance changes
dramatically with its accuracy.

The use of P300 is a natural choice for a menu-based BCI like the
one just depicted. The resulting interface can be consistent both in
appearance and usage. It could also be extended to use a different
mechanism for stimulation; for example, short audio clips reading the
menu entries aloud could be used for people with visual difficulties.
Although it is possible to use motor-imagery for making selections,
e.g., by moving a pointer or a cursor on a computer screen, it is not
easy to design such a graphical interface, and lack of precision in the
control of the cursor limits the number of possible choices. P300 BCls
are effective even when the number of menu entries is big, as the
P300 speller witnesses. Yet, the versatility of a menu-based interface
permits to launch motor-imagery-based application when they are more
suitable than P300-based ones. The fact that P300 is an involuntary
and automatic potential may help the acceptance by potential users, as
users do not have to acquire new skills. This point must be confirmed
with experiments with potential users, though.

3.4 Autonomous Wheelchair

The idea of P300-based menus can be extended to more complex
contexts, like giving commands to a robotic arm or driving a robotic
wheelchair. For the wheelchair, a menu can contain a list of different
locations, and the wheelchair reaches the selected location without
further intervention of the user. Given the limitations of BCIs, in
particular latency and information transfer rate, a wheelchair require
a good degree of autonomy in order to be operated through a BCI. In
this way, a user needs only to give high-level commands to such a device
and not care about exact and precise movements.

Figure 3.7 shows the autonomous wheelchair of the LURCH (Let
Unleashed Robots Crawl the House) project that is being developed
in a different — but related —, project at Airlab. This project aims to
provide an impaired person with a way to move autonomously in indoor
environments [85].
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Figure 3.7: The wheelchair of the “Lurch” project used at Airlab

Our main motivation for applying a BCI to a wheelchair is to test a
BCI in a more “noisier” environment and assess its robustness. Here,
there are two sources of noise: When sitting on a wheelchair, a subject
is very likely to get distracted by the surrounding environment, and
his attention may be lower; secondly, the movement of the wheelchair is
another source of distraction and may modify the shape of the potentials
used by the BCI or induce artifacts.

The actual usefulness of a BCI-controlled wheelchair is debatable, and
depends on the one hand on the needs of disabled subjects, and on the
other hand on the accuracy that the BCI reaches. With low accuracy,
people with residual movements may prefer joysticks, buttons, or other
assistive devices to drive the wheelchair; more severely paralyzed people
may simply not need to drive a wheelchair, as their priorities are more
likely to be communicating with friends and caregivers, or operating
objects like a lamp or a radio.  Although there have been progresses
in brain-actuated wheelchairs (e.g., the live demo of the Maia project
in Leuven in 2007), we are not aware of any such experiment that
involves totally paralyzed people driving a wheelchair through a BCI.
Therefore, it is not possible to predict exactly whether or how much a
BClI-controlled wheelchair will be accepted.
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3.4 Autonomous Wheelchair
3.4.1 Wheelchair Architecture

The aim of the LURCH wheelchair project is to provide navigation
assistance in a number of different ways, such as assuring collision-free
travel, aiding in the performance of specific tasks (e.g., passing through
doorways), and autonomously transporting the user between locations,
while at the same time keeping the cost of the whole system as low
as possible (the total cost of the framework for indoor environment,
wheelchair not included, is less then five thousands of euros, which is
cheap with respect to other works).

The wheelchair used for the project has been equipped with two
embedded PCs, a video camera, an odometry system, an inertial
measurement unit (not used in indoor environments) and two Hokuyo
laser range finders (used for obstacle avoidance — on the way to
be replaced with sonars); this equipment provides a self-localization
capability and a safe navigation ability to the wheelchair. The smart
wheelchair navigates, deals with all the low-level details, avoids obstacles
and reacts to emergency situations, while the user decides where (and
when) to go in a high-level fashion (e.g., “go to the kitchen”). In order
to meet the variable requirements of disabled people, the system has
been designed so that it can be modified simply and adapted to different
users’ needs. In particular, the user has the opportunity to choose among
autonomy levels and three different interfaces: a joystick, a touch-screen
and a BCIL.

The LURCH system has been designed to be easily adaptable to
different kinds of electric wheelchairs. Figure 3.8 outlines a scheme
of LURCH. As it is possible to notice from the image, our system is
completely separated from the wheelchair, and the only gateway between
LURCH and the vehicle is represented by an electronic board that
intercepts the analog signals coming from the joystick potentiometers,
and generates new analog signals to simulate a real joystick and drive
the electronics of the joystick interface board. In other words, we do not
integrate our system with the wheelchair at the digital control bus level,
but instead we rely on the simulation of the signals from the joystick
in the analogue domain. Though this choice could seem awkward, its
motivations are twofold: First of all, it is often hard to obtain the
proprietary communication protocols of the wheelchair controllers, or to
understand how they exchange data with motors and interfaces; second,
this solution improves the portability to different wheelchair models,
since it avoids a direct interaction with the internal communication bus
of the wheelchair.
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Figure 3.8: General scheme of LURCH system.

LURCH has been designed by adopting a modular approach (as
proposed in [86]). There are three main modules:

e Jocalization module: it estimates the robot pose with respect to
a global reference frame from sensor data, using a map of the
environment;

e planning module: this module selects the most appropriate actions
to reach the given goals, using knowledge about the environment
and the robot, while respecting the given task constraints;

e control module: it contains all the primitive actions, typically
implemented as reactive behaviors that can be executed by the
robot.

The localization algorithm makes use of a video camera pointing up
and some fiducial markers placed on the ceiling of the environment,
since this allows to avoid occlusions, and provides an accurate and
robust pose estimation. Of course, this restricts the use of LURCH to
indoor environments. Usually, a fiducial marker is a planar patch with
a known shape that contains some encoded information. In this work,
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Figure 3.9: LURCH: Example of localization and obstacle avoidance.

the ARToolKitPlus [87] system is used, where the markers are squares
with a black border, and the information is encoded in a black and white
grid in the inner part of the square. The marker identification process is
composed by three steps: identification of possible markers in the image
captured by the camera, rectification of the image, and comparison
of the information represented in the markers with the database of
known landmarks. If a marker is recognized, with the knowledge of its
dimension, it is possible to estimate its 6-DoF position and orientation
of the camera and hence of the wheelchair. In indoor environments, it is
generally sufficient to know the 3-DoF pose of the wheelchair; thus, we
decided to simplify the problem, improving in this way the robustness
and the accuracy of the localization algorithm.

The position and orientation of the markers in the environment is
registered through an initial calibration process. This involves driving
the wheelchair in a new environment where the markers have been placed
S0 as too acquire images containing more than one marker; a calibration
algorithm processes these images and computes the relative positions
between the markers [88].

The trajectory planning is obtained by SPIKE (Spike Plans In Known
Environments), a fast planner based on a geometrical representation
of static and dynamic objects in an environment modeled as a 2D
space (see [86] for more details). The wheelchair is considered as
a point with no orientation, and static obstacles are described by
using basic geometric primitives such as points, segments and circles.
SPIKE exploits a multi-resolution grid superimposed to the environment
representation to build a proper path from a starting position to the
requested goal by using an adapted A* algorithm; this path is finally
represented as a polyline that does not intersect obstacles. Moving
objects in the environment can be easily introduced in the SPIKE
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Figure 3.10: Screenshot of the graphical interface used to drive the
wheelchair. Possible selections are destination rooms (in
Italian).

representation of the environment as soon as they are detected, and they
can be considered while planning. Finally, doors or small (with respect
to the grid resolution) passages can be managed by the specification of
links in the static description of the environment.

The control module is MrBRIAN (Multilevel Ruling BRIAN) [89], a
fuzzy behavior management system, where behaviors are implemented
as a set of fuzzy rules whose antecedents match context predicates,
and consequents define actions to be executed; behavioral modules are
activated according to the conditions defined for each of them as fuzzy
predicates, and actions are proposed with a weight depending on the
degree of matching (see [89, 90] for more details).

3.4.2 Wheelchair And BCI

We chose an incremental approach to the integration of the LURCH
wheelchair with a BCI. The first integrated system, reported here, was
developed with the aim to be very simple yet fully functional; for this
reason, the communication between the BCI and the wheelchair has been
kept to the minimum. The BCI permits to choose among six possible
destinations, and it runs independently of the behavior of the wheelchair:
After every round of stimulations, it selects the most likely target and
sends it to the planning module of LURCH. This has the advantage
that in case of error the user has a chance to select the correct target
immediately, but at the cost of continuously focusing on the target while
the wheelchair is moving. While this setting is not the most convenient
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from the point of view of usability and user comfort, it is very useful to
test the robustness of the BCI as a communication system, as it has to
work in a condition where the user can be distracted by the changing
environment, and also artifacts may arise due to the movement of the
user with the wheelchair.

A screenshot of the BCI graphical interface is shown in Figure 3.10.
The possible destinations (not highlighted) are show on the left side,
while on the right the EEG tracks are visible. The white square in the
top right corner is the one used to synchronize the stimuli with the EEG
(see Section 3.1.1).

3.5 Software Tools

For the work of the present thesis, many different pieces of software have
been used; they are described in this section very briefly. Two pieces of
software used for data acquisition have been already described: Galileo
and BCI2000. For the offline experiments that elicit P300s and ErrPs,
we have written a few custom programs; these programs display stimuli
on a computer screen and record the stimulation sequence together with
some ancillary information in a text file. In some ErrP experiments
(described in Chapter 6), our programs record also the timing of buttons
pressed by subjects.

Data processing has been done with Matlab [91], a tool for numerical
programming. EEG data has been first exported from Galileo in EDF
format [92, 93], and imported in Matlab with the help of functions from
the BioSig toolkit [94, 95]. Weka [96, 97], a collection of machine learning
algorithms written in Java, and LibSVM [98], an implementation of
SVMs, have been used for classification. Matlab functions have been
written which find stimulation instants on the synchronization track,
segment EEG data according to the synchronization signal and the
information stored by stimulation programs, and perform all the further
processing steps according to the algorithms described in the next
chapters.
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We are met to discuss our plans, our ways, means,
policy and devices.
J.R.R. TOLKIEN — The Hobbit

As explained in Section 2.2, a BCI must decide whether a recorded signal
belongs to two or more possible classes. For example, a P300-based
BCI classifies each stimulus as target or nontarget; a motor-imagery-
based BCI classifies time segments as left-hand, right-hand, or foot
movements. Normally this is accomplished in a two-step procedure. In
the first step, the EEG signal is processed and some relevant features are
extracted or computed; this is called feature extraction. In the second
step, these features are fed to a procedure to make a decision; this
is called classification. Both steps can be considered as mathematical
functions; the first one maps real-world objects (or their representation)
into a feature space where (hopefully) samples from different class are
more separated. The second function assigns labels (classes) to elements
in the feature space.

In this chapter, the algorithms used to process EEG signals and to
recognize (i.e., classify) ERPs are presented.

4.1 ARX Models

As said before (see Section 2.2.1), event-related potentials (like P300)
are buried in the ongoing EEG. Methods are needed to extract the
interesting part of the EEG (the P300, in our case) from the recorded
signal. In this section, a method is described that has been tested in
the work of this thesis: ARX (AutoRegressive with eXogenous input)
models; such a model has been already used for the detection of ERPs
in EEG [99, 100].

Figure 4.1 shows the block diagram of an ARX model. In this diagram,
the signal y results from the superposition of a stochastic signal and a
deterministic one: The first (the upper one in the figure) is the output
of a process with a white noise e as input; the second (the bottom one)
is the output of an ARMA (AutoRegressive, Moving Average) system
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Figure 4.2: Usage of an ARX model for the modeling of ERPs

with a fixed input u(-). In formulas:

g+d—1

y(t) = > bpu(t —k) = > ajy(t —j) +e(t) (4.1)
i j=1

where a; and by are the coefficients of the ARMA system, ¢ and p are
their orders (i.e., the number of coefficients), and d is the delay between
the input and the output. Equation (4.1) can be written also as

A(2)Y (z) = B(2)U(z) + E(2) (4.2)

by using the Z transform [101]; Y(2), U(z), E(z) are the Z transforms
of y(+), u(-), e(-) respectively, and

A(z) =1+ zp: ajz7d (4.3)
j=1
q+d—jl
Bz)= Y zF. (4.4)
k=d

When applied to extraction of an ERP from an EEG recording, the
recording y(-) can be seen as a superposition of two contributions:

y(t) = s(t) + n(t) (4.5)
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Figure 4.3: Data flow in using an ARX model for ERP extraction

where s(-) represents the ERP component, and n(-) represents the noisy
component, i.e., the background EEG. The two components are modeled
by the two blocks in the ARX models (see Figure 4.2); more precisely,
the AR block models the ongoing EEG, an approximation justified by
several studies [102, 103], while the ARMA block filters the reference
signal to get the ERP part. The reference input to the ARMA block is
a pattern that resembles the characteristics of the ERP to be detected.
It is usually obtained by averaging many EEG recordings where the
ERP is supposedly present. The rationale behind this is that the ERP
component s(-) is similar — but not exactly equal — to the ERP average.
While averaging extracts the ERP component from many recordings
where an ERP is known to be present, the objective of the application of
the ARX model is to extract an ERP component from a single recording.
So, it can be used, for example, to discriminate between stimuli that
elicited a P300 and those the did not.

How to use ARX modeling for ERP extraction is shown in Figure 4.3.
The analysis works on segments (called epochs) of EEG recordings, long
enough to cover the expected duration of the ERP with some margin.
An initial batch of epochs of EEG recordings where the ERP is present is
used to build the reference signal u(-), by averaging. For every new EEG
recording the model in Equation (4.1) is identified, with y(-) being the
recording to be analyzed and u(-) the previously computed ERP average.
Identification of the ARX model is performed by using a least-squares
method, which minimizes the figure

1 N
= D et (4.6)

t=1

where N is the number of samples in an epoch. e(-) is the prediction
error of the model:

e(t) =y(t) —9(t) (4.7)
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where
q+d—1

9(t) = Y brult —k) = > ajy(t —j) (4.8)

k=d =1
After the identification, the useful component, s(-), can be computed by
filtering the reference signal u(-) with the filter B(z)/A(z), according to
Equation (4.1):

q+d—1

s(t)= > bult—k) = > as(t—j) . (4.9)
k=d j=1

The identification and filtering steps are performed separately for each
candidate EEG epoch. For P300 studies, it means one epoch per
stimulus.

The resulting signal s(-) hopefully contains the ERP when it exists,
and just noise otherwise. It can be used for a visual inspection by
a clinician, or it can be further processed by a computer in order to
classify it as containing the ERP in question or not containing it. For
a BCI, an automatic classification is obviously required. How this has
been done in our case is discussed in Section 5.2.

Before an ARX model can be used at all, the parameters p, ¢, and d
must be chosen. Normally, the choice is made by analyzing a training
data set, i.e., a set of EEG recordings for which it is known whether they
contain an ERP or not. The choice of the parameters p, ¢, and d cannot
be made by using a least-square criterion as in Equation (4.6), because
ever increasing the number of the parameters always makes the model
fit better. The magnitude of the contribution to the goodness of the
fit of new parameters must be taken into account. Akaike Information
Criterion (AIC) [104] does exactly that. It minimizes the figure

AIC =2n—2log L, (4.10)

where n is the number of parameters of a model, and L is the likelihood
of the parameters (i.e., the probability of the data given the identified
model). In the case of ARX models, it can be written as

AIC = 2n+ Nlogo?, 4.11
g

where o2 is the variance of e(-) given by Equation (4.7), n = p + ¢, and
N is still the number of samples. The equivalence of the Equation (4.10)
and (4.11) depends on the error e(-) being white, i.e., values at different
time instants are independent. This assumption must also be tested
when using Equation (4.11). A suitable test for this is the Ljung-Box
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test [105]. Briefly, the Ljung-Box test computes a statistic on the error
e(+), whose distribution is known (a x?) if e(-) is indeed white; the test
rejects the hypothesis that the error is random if the value of the statistic
is above a given percentile threshold.

4.2 Classification

A classifier is a function that assigns labels to objects. A learning
algorithm is a procedure that finds a good classifier given a set of labeled
examples. In more formal terms, the problem can be stated as following:
find a “suitable” classifier function f : X — Y, where X is a (feature)
space (say X C IR"), Y a set of possible labels (e.g., Y = {—1,+1}, i.e.,
a binary classification problem), given a probability distribution p(-,-)
defined over X x Y, and a training set of pairs (x;,y;) where x; € X,
yy €Y, i=1...N.

Often, f is constrained to belong to a family F of classifiers, and it
is written as f(-, a), where « is a parameter that identifies a particular
classifier in F. A good way to define more precisely what “suitable”
means is to look for the f that minimizes the expected number of errors,
ie.

R(e) = [ 5lv— f(@.0)lp(e,y)dedy (412

for the binary case. R(«) is called expected risk. Formula (4.12) depends
on «, obviously, but also on the distribution p(-,-). This distribution is
unknown in practice, and normally it is approximated with the empirical
distribution induced by the training set, and Equation (4.12) becomes

N

Remp(0) = = 3 Sl — fwe,0)] (113
i=1
which is called empirical risk.

Using (4.13) to find a good classifier may seem a good idea, because
Remp(a) — R(ar) as N increases (and samples are independents). The
problem is that for a finite N the difference between (4.12) and (4.13)
may be significant. This problem is called overfitting, and it means that
the selected classifier f(-, o) performs very well on the training examples
but poorly on generic samples € X. The capacity of generalization
of the classifier, i.e., the ability of a classifier to perform well on new
samples, can be obtained even when using Equation (4.13) for training,
as long as there is some limit to the complexity of the family F. How
and how much to limit this complexity is still an open question, on which
there is much ongoing research.
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The following sections present two of the classifiers we used; their
understanding is important for the understanding of the next chapters,
and for this reasons they are described in some details. The other
classifiers are very shortly described where they are mentioned.

4.2.1 Logistic Classifier

A logistic classifier [106] approximates the probability P(y ‘ az) with a
logistic function:
P(y=+1|z) = ! - (4.14)
1+ exp(wo + >3 wjz;)
_exp(wo + Y7 wizy)
1+ exp(w + > wiTs)
(4.15)

P(yz—l’m) :1—P(y:+1‘m)

where z; are the n components of the vector . The decision of the class
to assign to a given sample « is taken by comparing the two probabilities
P(y =-1 ’ :1:) and P(y =+1 ‘ ac) The parameter vector w can be found
by maximizing its log-likelihood

N
L(w) = ZlogP(yi‘a:i,w) (4.16)

by using gradient ascent. In order to improve the generalization ability
of the classifier, a penalization term can be added:

N
LW (w) :ZlogP(yi‘cci,w) — Mw|?. (4.17)
i=1

The additional term penalizes large values of w components. In other
words, less importance is given to the directions in the space X that had
the most discriminative power with (4.16), and the resulting classifier
is more balanced in X. The parameter A determines how strong the
penalty term is.

4.2.2 Support Vector Machines

A support vector machine (SVM) is a supervised learning method used
for classification and regression. It was developed by Vladimir Vapnik in
the late 1970s, while he was addressing the problem of the generalization
of a classifier from a theoretical point of view.
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7
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Figure 4.4: SVM: the maximum-margin hyperplane in the separable
case. Support vectors are surrounded by a circle.

Vapnik found theoretical bounds on the expected risk given the
empirical risk. For a binary problem stated as in Section 4.2, it holds

h(log 2¥ + 1) — log 1
R(a)gRemp(a)+\/ o 5 N> % (4.18)

with probability 1 — n, for every n, 0 < n < 1; h is the Vapnik-
Chervonenkis (VC) dimension, a number that measures' the complexity
of the family F. It is interesting that the second term of the right-
hand side of (4.18) does not depend on the distribution p(-,-); also,
it grows with h. So Vapnik proposed to keep the expected risk
low by minimizing (4.18), an approach that he called structural risk
minimization. On this principle he developed support vector machines.

In the simplest case, an SVM is a hyperplane in the space X. This
hyperplane separates the space in two regions, one for each labels.
Samples are assigned labels depending on which side of the hyperplane
they lie (see Figure 4.4). In formulas:

f(z) = sign(f*(z)) (4.19)
() =(w,z) +b. (4.20)

If the training set is such that there exist a hyperplane that separates
exactly the positive and negative samples, the SVM maximizes the

1A more in-depth and detailed explanation is beyond the scope of the present work.
For more details, see for example [107, 108]
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Figure 4.5: SVM: the maximum-margin hyperplane in the non-separable
case. Support vectors are surrounded by a circle.

distance of the hyperplane from the nearest samples. Equivalently, the
SVM maximizes the distance between positive and negative samples
along the direction w. Such distance is called margin in SVM
terminology. Margin maximization is a way to lower the VC-dimension
of the SVM, and hence minimize the structural risk [107]. The training
samples that are closest to separating hyperplane, i.e., those for which
it holds

yi ((w,xz) +b) =1 (4.21)

are called support vectors. The reason is that the problem of finding the
maximum margin is equivalent to minimize ||w||? subject to

yi ((w,z) +b) > 1 (4.22)

By introducing Lagrange multipliers c;, ¢ = 1...N, it is possible to
show [108] that for the optimum w it holds

w = Z QYT (4.23)
i

and «a; # 0 only for the x; that are support vectors.

If the training set is such that there is no hyperplane that separates
positive and negative samples, some samples are necessarily misclassified
by any hyperplane. In this case, minimizing ||w]|? is not enough, but the
SVM has to find a trade-off between the maximization of the margin and
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the minimization of the errors. In mathematical terms it can be written
by introducing slack variables &, 1 =1... N, and the SVM minimizes

lwl*+C> & (4.24)

subject to
yi ((w,x) +b) >1-¢& (4.25)
§&=>0 (4.26)

The parameter C can be varied to shift the trade-off between margin
and errors. Even in this case, for the optimum w (4.23) holds, but
a; # 0 is true also for all the misclassified samples, for which &; # 0 (see
Figure 4.5).

Although useful in some cases, a linear classifier proves to be
inadequate in the majority of real cases. It is possible to extend
the linear SVMs seen so far and make them non-linear in a simple
and straightforward way. The trick is to map samples @ in a higher-
dimensional space H by means of a non-linear mapping ® : X — H.
The separating hyperplane is now to be found in H. A good hyperplane
is more likely to exist in H than in X, because the number of dimensions
of H is greater than that of X, and hence data are more sparse. It is
also possible for H to be infinite dimensional, but there must be a way
to compute inner products in such a space. Inner products are needed
because they appear in (4.20) and in the formulas used to find the o
(not shown here). It turns out that is possible to avoid computing inner
products with the so-called kernel trick.

Putting together (4.20) and (4.23) yields

[(=z) = <Z QiyiTi, ) + b = Zaiyi<$i7$> +0, (4.27)

and in the mapped space H
f(x) = <Z iy ®(x;), ®(x)) +b= Z ayi(®(x;), ®(x)) +b. (4.28)

By using a suitable? @, it is possible to find a kernel function K such
that (®(x;), ®(x)) = K(x;,x), where K (-,-) is much easier to compute
than the inner product in H. (4.28) becomes

ff(x) = Z ayi K (x;, ) +b. (4.29)

Examples of kernels are:

2“Suitable” means in fact that H and ® satisfy Mercer’s condition [108].
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Polynomial K(z,y) = (1+ (z,y))?, where d is a parameter.

(w,y)?

Gaussian K(x,y) = exp(—-5,%), where o is a parameter.

Perceptron K (x,y) = tanh(b(x,y) — ¢), where b and ¢ are parameters.

With the introduction of kernels, SVMs become a family of classifiers.
The choice of an appropriate kernel for a given data set is still an open
issue; there are no predefined rules for selecting kernels. Often, one tries
many kernels, with different values of C', and chooses the combination
that has performed better.

4.3 Genetic Algorithms

Genetic algorithms (GAs) are a class of optimization algorithms that
mimic — in some respects — the way natural evolution works. These
algorithms work by considering potential solutions to the problem,
evaluating them, and combining parts of good solution in order to find
better candidate solutions. The range of problems solved with genetic
algorithm is very wide; they have been used in scheduling, budgeting,
optimization of networks, and many classical problems of operations
research.

The father of genetic algorithms can be considered John Holland,
who worked on them in the 1970s at the University of Michigan [109],
although a group at the Technical University of Berlin (Ingo
Rechenberg, Hans-Paul Schwefel, and Peter Bienert) worked on
evolution strategies [110] at the same time, an approach similar to GAs,
but different in some important aspects. The Atlantic Ocean separated
the two groups, which worked independently and unaware of each other
for a while. Work in the field continued since, and many variants have
been developed [111].

Candidate solutions for the problem are encoded in chromosome-
like data structures (called chromosomes), which often are just binary
strings. Genetic algorithms work on a subset of all the possible solutions,
which is called population. A genetic algorithm begins with an initial
population of chromosomes, which are normally chosen randomly (see
Figure 4.6). At every iteration of the algorithm, first all the solutions
represented by the chromosomes are evaluated with the respect to the
optimization problem. This is operation is in fact the ewvaluation of
the so-called fitness function. The fitness function is a measure of the
goodness of the parameters encoded in a given chromosome. Fitness
values are used to select individuals from the population. The actual
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Figure 4.6: General scheme of a genetic algorithm

selection process may be done in different ways, and an individual may
be selected more than once, but in any case “fitter” individuals have
greater chance to be selected. FExamples of selection are: the best n
individuals; roulette wheel, where individuals are picked at random
with a probability proportional to their fitness; tournament, where
many independent tournaments between randomly-chosen individuals
are performed, the winner of a tournament being the individual with
the best fitness.

Recombination and mutation are then applied to the individuals
selected in the previous step. Recombination (also crossover) is applied
to the selected population in pairs: randomly-selected parts of the two
chromosomes are exchanged, so as to form new, different individuals.
Normally, recombination is applied only with a given probability.
Mutation is the flipping of bits of the chromosomes (when they are binary
strings). Typically, mutation is applied to all the bits of chromosomes
with a very low probability (less than 1%). After mutation has been
applied, a new population is ready, and the algorithm restarts from
the evaluation. In GA terminology, a generation is the execution of
evaluation, selection, recombination, and mutation.

Generation after generation, the fitness of the population increases,
and thus better and better solutions are found. The process is
terminated by some criterion. It could be something like “until the
optimum is found”, but there are two problems: Maybe there is no
test for optimality, or maybe the time for finding the optimum is too
much, and obtaining a good yet sub-optimal solution is enough. So,
normally a genetic algorithm terminates after a predefined number of
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generations, or after a “good enough” solution has been found, or when
no improvement has been seen for some generations.

Genetic algorithms have been defined as a class of algorithms, because
even after choosing a selection scheme, a termination criterion, and the
all various parameters (e.g., mutation probability), the result is still a
schema of an algorithm and not an actual algorithm. The encoding of
solutions in chromosomes depends on the problem at hand, and a new
encoding must be devised for every new problem. The fitness function
is at the heart of GAs, and it contains the description of the original
optimization problem, rewritten in terms of chromosomes. Thus, there
is at least one fitness function for every optimization problem, given the
encoding. After defining an encoding and a fitness function, all elements
are in place to run an actual genetic algorithm. Sometimes, though, the
encoding for a particular problem makes use of structures that are more
complicated than a plain string of bits. In such cases, recombination
and mutation operators must be rewritten accordingly; the algorithm
described in Section 5.4 is an example of this.
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5 P300 Detection

To those who enter verily into Ea each in its time
shall be met at unawares as something new and
unforetold.

J.R.R. TOLKIEN — The Silmarillion

In this chapter some experiments made on detecting the P300 are
presented, with details about how the methods presented in Chapter 4
have been used. Numerical results for the classifications are given, along
with a consideration arising from the analysis of some aspects of the
experiments.

5.1 Data Sets

The experiments with P300 illustrated in this chapter were performed
on data from three different sources: recordings at Airlab — our
laboratory —, at the S. Camillo Hospital, and from the BCI Competition
2003.

5.1.1 Airlab Speller Data Set

We recorded data with the speller described in Section 3.2. Seven
young healthy subjects (2 female and 5 male) participated to one or three
sessions recorded in different days, each one consisting in the spelling
of some words. Each session was divided in 6-7 runs, each consisting of
4-5words, for a total of about 150-200 letters per session. Data were
recorded in a continuous fashion from four EEG channels, Fz, Cz, Pz,
and Oz (see Figure 2.5 at Page 8), and one EOG channel, all sampled
at 512 Hz.

5.1.2 S. Camillo Data Set

Other data were kindly provided by Francesco Piccione and Stefano
Silvoni, recorded at IRCCS S. Camillo Hospital, Venice. These data
are divided in two data sets, and are from experiments like the one
described in [61], where subjects had to move a cursor on a computer
screen and reach a cross, or from similar experiments where subjects had
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to move the cursor to one of four possible targets placed at the edge of
the screen. In all these experiments, movements are discrete, and four
directions are possible: up, down, left, right. Four arrows are present
near the margins of the screen, one for each direction, and they are
flashed randomly, with each flash representing a stimulus. Flashes last
for 150 ms, and are separated by 2.5s from each other. In this setting,
when an arrow flashes which indicates the direction the subject wants to
move the cursor, a P300 should be elicited in the subject’s brain. EEG
is recorded at positions Fz, Cz, Pz, and Oz of the 10-20 system; EOG
is recorded too. All signals are band-passed between 0.15 and 30 Hz,
and digitized and sampled at 200 Hz. Digitized EEG data are saved
on a hard disk as epochs beginning 0.5s before the stimulus onset, and
ending 1s after it.

In a first data set, data were recorded in different sessions in a period
of a few days from 11 subjects, 5 female and 6 male, 8 healthy and
3 affected by ALS, of ages between 21 and 43, except for a subject who
was 75. A second data set is composed by recordings made at S. Camillo
some months later (with different subjects), and again different sessions
were recorded in a period of a few days; 10 subjects affected by ALS
and 4 healthy subjects participated to the second study, 3 females
and 7 males, with ages between 31 and 73, in the ALS group, and
2 females and 2 males, with ages between 27 and 41, in the control
group. All participants underwent neuropsychological evaluation and
auditory odd-ball P300 testing, in order to exclude cognitive deficits.
All participants had preserved auditory, visual, and cognitive functions,
including adequate language comprehension.

5.1.3 BCI Competition Data Set

We used also the data set IIb from the BCI Competition 2003 [60, 59],
originally provided by the group lead by Jonathan R. Wolpaw at
Wadsworth Center, NYS Department of Health. These data come from
three recording sessions with a P300 speller, with a grid of 6 x 6 letters.
A P300 speller has been already described in details in Section 3.2; the
Wadsworth speller works in the same way, except for the fact that there
is no ErrP detection and some parameters are different: matrix flashing
lasts for 100 ms, and 75 ms separates two consecutive flashes; moreover,
15 repetitions! of the stimulation rounds are done for each letter.

Data were acquired from 64 EEG electrodes, in all the positions of
the 10-10 system (see Figure 2.5 at Page 8), with a sample frequency

The description of the data set uses the word “trial” for a round of stimulations.
For consistency, the word “repetition” is used in the present work.
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of 240Hz. In the first two recording sessions, 11 words were spelled,
for a total of 42 letters; the actual words spelled were available for
the competition, so the first two sessions constitute the training set.
The third session, 8 words and 31 letters, is the test set. The words
spelled in the third session have been made available after the end of
the competition, and we used this piece of information for the evaluation
of our methods.

5.2 ARX Models

ARX models, described in Section 4.1, have been already used in
the literature [99, 100] to extract various ERPs from ongoing EEG
recordings. For this reason, we applied the ARX model to the extraction
of P300s as the initial step in automatic P300 detection for a BCI. This
section explains how the ARX model have been used, the details of the
classification, and the results we obtained.

5.2.1 ARX Filtering
The model is described by Equation (4.1):

q+d—1

y(t)= Y brult —k) =Y ajy(t —j) +e(t) (5.1)
k=d

J=1

The orders (p, ¢, d) of the model are determined with Akaike’s
criterion (AIC), and the Ljung-Box test (see Section 4.1). Here the
procedure is described in details:

e EEG data are segmented in epochs. Each epoch begins 0.5 s before
the stimulus onset and ends 1 s after it. This interval is much longer
than the duration of a P300, because the extra time is needed for
a good identification of the AR part of the model.

e Target (P300) epochs are averaged together.

e A maximum value for each of the three ARX parameters (p, ¢, d)
is selected.

e For every possible combination of values for p, ¢, and d, and for
every epoch and every channel, an ARX model is identified. The
prediction error e(-) is computed for every identified model.

e From the prediction error, the AIC value and the Ljung-Box
statistic are computed for each of the models at the previous step.
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e Combinations of p, ¢, and d for which less than half of the epochs
have random residuals are discarded. This is an attempt to strike
a balance between avoiding non-random residuals, i.e., underfitted
models, and avoiding that a number of epochs become overfitted.
The threshold of 50% appeared to be robust, as modifying it did
not influence much the final results.

e AIC values from different epochs relative to the same combination
of p, q, d, and channel are added together. These step is justified
by the fact that models from different epochs are considered
independent, and hence their log-likelihoods can be summed. For
every combination of p, ¢, d, and channel, the fraction of epochs
that passed the Ljung-Box text — i.e., those whose residuals
appear to be random — is computed.

e Finally, for every channel the best combination of p, ¢, and d is
selected, i.e, the one that minimizes the AIC sum and passed the
previous step.

This procedure is applied separately to different data sets, and to data
coming from different subjects. While results may be different for
different channels, only one order triplet (p, g, d) per set/subject is
used in the further processing to simplify the implementation of the
ARX filtering. Values for different channels are rather similar, and the
procedure to select them contains many stochastic steps.

After the choice of the model orders, the ARX method is applied
as described in Section 4.1 and in particular in Figure 4.3: For each
EEG channel, the target average is used as a reference to identify an
ARX model, and the output of the ARMA block is considered to be an
approximation of the underlying P300 event. The actual procedure is a
little more involved, as it includes some preprocessing of the data and
some tricks to help the generalization of the final classifier. Here it is
described in full.

Given two data sets of epochs, one for training and the other one for
testing:

e Remove any trend from each epoch. This is done by fitting a line
to each epoch signal and then subtracting it.

e Split the training data set in two. If data come from different
sessions, single sessions are not split, but each session is assigned
to either group. The sizes of the two groups must be similar, but
not necessarily the same.
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5 P300 Detection

e For each of the two training groups, in parallel (see Figure 5.1):

— Temporarily discard the most “noisy” target epochs and
compute the average of the remaining ones. An epoch is
considered noisy if it differs from the full average by at least
two standard deviations in at least one time sample. Averages
are computed separately for each channel.

— Filter the target averages with a low-pass filter with a cutoff
frequency of 20Hz. This step should make the averages of
the two groups more similar.

— For every epoch and channel, identify an ARX model with
the target average coming from the other group as input, and
compute the response of the ARMA block.

e Compute the weighted averages (again, one for each EEG channel)
of the target averages of the two groups.

e For every epoch and channel of test set:

— Identify an ARX model with one of the weighted averages as
input, and compute the response of the ARMA block.

Figure 5.1 shows one half of the processing applied to the training set.
The other half is symmetrical, and has not been depicted to simplify the
figure. This procedure is a refinement of the basic procedure in which
the training set is processed in one batch. The rationale for the splitting
of the training set is to make the processing of the training set more
similar to the processing of the test set. The identification of the ARX
models for the test set is done with a reference that necessarily comes
from other sessions. By splitting in two the train set, it is possible to
have a similar situation also for the training set.

Several adjustments and modifications had been made to the ARX-
based procedure for P300 analysis described above, before it took
that form. For example, attempts were made with the application of
bandpass filtering with different frequencies before ARX identification;
we used the difference between the averages of target and nontarget
epochs as the reference signal u(-). We also tried to duplicate the ARX
filtering scheme of Figure 4.3, with one copy using the average of targets
as reference, and the other one using the average of nontargets: Each
epoch was processed by the two filters in parallel, and two different
classifiers were trained on the extracted features; the answers of the
two classifiers were combined by voting to get the final decision. The
use of two classifiers instead of one did not improve the results, and in
some cases it was even worse. This is probably due to the fact that
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Figure 5.2: Signal filtered with the ARX method

the reference signal for the nontarget model is weaker, and it does not
produce a meaningful response.

Figure 5.2 shows an example of the ARX processing on one channel
(Pz). The top graph shows the averages for both target and nontarget
signals. The nontarget average is not used and has been shown just for
reference. In the middle, two particular epochs are shown before ARX
processing, one target and one nontarget. ARX filtering has been applied
to these signals, and the results are shown in the bottom graph. The
responses in bottom graph are obtained by filtering the target average,
and in fact they are larger where the target average is larger. In this
case, the ARX filtering makes the difference between a target and a
nontarget signal more evident.

5.2.2 Feature Extraction And Classification

For classification, a series of features are extracted from the filtered
responses or directly from the ARX models. We used three kinds
of features: ARX coefficients, impulse response, and characteristics
of signals. Given a reference signal, ARX coefficients completely
determine the response of the model (see also Equation (4.9)). For this
reason, ARX coefficients should contain information about the nature
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target /nontarget) of the epoch. Impulse response? contains the same
g g

information as ARX coefficients, considering that it exists a one-to-one
mapping between coefficients and impulse responses®. While the impulse
response is infinite, only the first samples have been used as features,
because responses happen to go toward zero rather quickly; a number
of samples equal to 2 (p + ¢ + d) seemed to be sufficient.

The third kind of features are computed from the estimated ERPs, i.e.,
the ARX responses. They are (the time intervals reported are relative
to the stimulus onset):

e Amplitude (with sign) of the maximum peak within the 200-
600 ms window. If both a positive and a negative peaks exist in
the window, the one with the greater absolute value is taken.

e Latency of the above peak.

e Mean of the amplitude in a 100-600 ms window. This is to assess
that the peak of the first feature is not a short-lived phenomenon,
but something similar to the typical P300 shape.

e Mean of the amplitude in a 100-600 ms window less the mean of
the rest of the signal. Similarly to the previous, this feature is
to distinguish signals that have a strong positive component only
where a P300 is expected, and not in the whole epoch interval.

e cov[s(:),u(:)]/var[u(-)], the ratio between the covariance of the
response and the reference signal, and the variance of the reference.
Here, the reference is the one used for the identification of the
ARX model that has generated the response. This feature is the
slope of the regression line when the response is plotted versus the
reference.

e Number of peaks within the 100-600 ms window. This is a
regularity information.

All the three kinds of features are extracted separately for each EEG
channel. For classification of epochs, features from all the channels are
concatenated together. Some nontarget epochs are discarded from the
training set, so that the number of targets and nontargets is roughly
the same, and a classifier is then trained on the features of the training

2Impulse response is the output of a system when the input is an impulse, i.e., for
discrete-time models, a 1 followed by O0s.

3 Actually, this is not true in some boundary cases, when a pole and zero of the
transfer function coincide. This is a very unlikely situation for a model identified
on data.
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set. A P300 paradigm requires that nontarget epochs be many more
than target ones, and this is a problem when training a classifier, as
the classifier may become biased toward the most numerous (nontarget)
class; for this reason, the training set has to be balanced.

We applied various classifiers to these features: Bayes networks,
logistic, boosting of stumps, SVMs, neural networks (NNs), decision
trees. SVMs and logistic classifier are described in Sections 4.2.2
and 4.2.1, respectively. Bayes networks [112] are graphical models
representing sets of variables (features) and their probabilistic
dependencies. Decision trees [113] are composed by nodes connected
by branches, and at each node a branch is followed depending on the
comparison of the value of a single feature with a threshold; at the last
branching level, a class is assigned. Artificial neural networks [114] are
classifiers inspired to biological neural networks; they are arranged in
layers, where simple computational units can recognize even complex
patterns by working together. Boosting of stumps is the application
of AdaBoost [115], an algorithm that builds a classifier by combining
many classifiers with lower performances; stumps are decision trees with
a single branch, and AdaBoost combines them in a complex classifier.

Some classifiers, in particular SVMs and neural networks, have
parameters: the coefficient C' in Equation (4.24) and kernel parameters
for SVMs, and the number of neurons for neural networks. We
chose these parameters through a cross-validated optimization procedure
based on the training set. The training set was divided in three or
five folders (parts), and they were used each in turn as a test set for
classifiers trained on the remaining two folders. Classifiers with different
parameter combinations were tried, and the parameters with the best
average performance on all the folders were selected.

Decision trees performed very poorly; their results could have been
easily obtained by tossing a coin. Probably, there was some parameter
to tune for better performance, but we preferred to concentrate on the
other classifiers, which performed better.

5.2.3 Results

In a P300 speller application, the result is not just a classification of
epochs as target or nontarget, but a letter, which is hopefully the target
letter. All the classifiers used in our experiments return an answer with
a confidence value attached, and this means that, instead of just a 0/1
answer, a classifier outputs a number between 0 and 1. With this piece of
information available, a letter is selected as the most likely intersection
between rows and columns. In other words, if y1, ..., y, are the output
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Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net | 11/42 (26%) | 24/42 (57%) | 24/42 (57%) | 24/42 (57%)
Logistic 37/42 (83%) | 35/42 (33%) | 35/42 (83%) | 33/42 (79%)
Stump Boost | 16/42 (38%) | 22/42 (52%) | 31/42 (74%) | 30/42 (71%)
SVM 32/42 (76%) | 28/42 (67%) | 26/42 (62%) | 32/42 (76%)
NN 34/42 (81%) | 32/42 (76%) | 27/42 (64%) | 29/42 (69%)

Table 5.1: Results for the BCI Competition 2003 data set IIb: 5-fold
cross-validation on the training set. The number of correct
letters is shown.

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 8/31 (26%) 17/31 (55%) | 19/31 (61%) | 16/31 (52%)
Logistic 24/31 (77%) | 18/31 (58%) | 24/31 (77%) | 14/31 (45%)
Stump Boost | 8/31 (26%) 14/31 (45%) | 25/31 (81%) | 27/31 (87%)
SVM 19/31 (61%) | 16/31 (52%) | 18/31 (58%) | 20/31 (65%)
NN 25/31 (81%) | 26/31 (84%) | 24/31 (77%) | 20/31 (65%)

Table 5.2: Results for the BCI Competition 2003 data set IIb:
performance on the competition test set. The number of
correct letters is shown.

of a classifier for the n rows of the speller, the row r = arg max,—1._., Yr
is selected. The same happens for columns. If stimulations are repeated
for each letter, values of y, for the same row (or column) from different
repetitions are added together before taking the maximum.

For the competition, the 10 channels lying on the midline of the skull
are used (Fpz, Afz, Fz, Fcz, Cz, Cpz, Pz, Poz, Oz, 1z), and data is
decimated with a factor of 3. Decimation reduces the memory footprint
while retaining most information, as the resulting 80 Hz frequency means
that all components present in the original signal up to almost 40 Hz are
kept.

Tables 5.1 and 5.2 show the results obtained by applying ARX filtering
to the BCI competition data. The first table contains the results on just
the training test, cross-validated by a 5-fold cross-validation scheme.
The second table shows the results obtained on the competition test set
according to the competition rules. In both tables, each row represents
a different classifier, while columns represent four feature sets: the
three presented above (ARX coefficients, impulse response of the ARMA
block, characteristics of the filtered signal s(-)) plus the concatenation
of all these three features, in the last column. The figures are the
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number of correct letters over the number of all letters (higher is better).
Results in the first table are cross-validated, so they can be used as an
estimate of the generalization capacity of the various classifier-feature
combinations. If we pick the best combination, i.e., logistic classifier and
ARX coefficients, the corresponding result for the test set is 77%. While
this is not bad, the competition winners reached 100%. Another sign of
troubles is the fact that many classifier-feature combinations with good
results in the training set (mostly those involving the logistic classifier)
have a dramatic drop of performance on the test set. Probably, the
logistic classifier is overfitting; after all, the test set comes from a session
different from the training set, while the cross-validation on the training
set is done with data coming from the same sessions. This explanation
is supported by the fact that the most dramatic drops happens when the
number of features is larger (i.e., impulse response and the combination
of all features). So, there is still much room for improvement, or maybe
the ARX model is not so good an idea for this data set.

In the S. Camillo task, a subject may change the designated target
direction at any moment, because during the recording the cursor could
have been moved after each stimulus. In the data file there is only the
information weather a stimulus is a target or not, and for non-targets
there is no information about what was the target at that moment. So,
there is no way to tell when a change of target happened just by looking
at the saved data, and hence, it is not possible to compute something
like the “number of correctly predicted arrows” in a fair way; instead,
the figures for the performance of the classification system are related to
the capacity of discrimination between epochs containing or not a P300.
Because it is both simple to compute and simple to understand, recall
for both targets (left columns) and nontargets (right columns) is shown
in Tables 5.3 to 5.13. Recall means the fraction correctly classified for
a given class, i.e., the number of correctly classified examples of a given
class over the total number of examples for the class. Figures for other
criteria (mutual information, Kappa statistic, precision) have also been
computed, but they lead to the same conclusions as recall, and for this
reason, they are not shown. Accuracy is not much useful in this case, as
the data set contains many more examples of one class (nontarget). A
high accuracy may in fact hide a poor performance on the classification
of targets, which are underrepresented.

A few conclusions may be drawn by observing the tables with the
results on the S. Camillo data set. In general, features related to
characteristics of ARX responses (column Shape) are the best. Results
in the last column, where all the features are used together, are often
slightly lower; the combination of good features with worse ones seems

65



5 P300 Detection

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 53% 47% 7% 93% 5% 79% | 75% 79%
Logistic 79% 81% 76% 78% 83% 84% | 4% 75%
Stump Boost 68% 40% 54% 50% 73% 87% | 73% 86%
NN 59% 59% 68% 74% 79% 88% | 80% 81%
SVM 63% 62% 1% 74% 83% 85% | 82% 82%

Table 5.3: Results of ARX filtering for Subject SC1 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 523 (39.2%), nontargets: 812 (60.8%).

Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 18% 86% 19% 85% 68% 69% | 67% 68%
Logistic 67% 67% 61% 63% 73% 69% | 60% 60%
Stump Boost 54% 55% 54% 51% 68% 73% | 69% 70%
NN 47% 73% 29% 88% 67% 73% | 68% 67%
SVM 66% 58% 63% 62% 1% 69% | 69% 65%

Table 5.4: Results of ARX filtering for Subject SC2 in the S.Camillo

data set: 5-fold cross-validated recall for targets and

nontargets. Targets: 312 (25.6%), nontargets: 905 (74.4%).

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 26% 81% 28% 78% 69% 69% | T0% 67%
Logistic 66% 68% 63% 63% 70% 71% | 67% 59%
Stump Boost 52% 54% 51% 57% 70% 66% | 64% 68%
NN 49% 63% 52% 73% 74% 65% | 70% 64%
SVM 55% 61% 64% 66% 72% 71% | 70% 69%

Table 5.5: Results of ARX filtering for Subject SC3 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 222 (25.1%), nontargets: 663 (74.9%).
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Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 13% 88% 37% 69% 66% 64% | 70% 63%
Logistic 72% 75% 61% 69% 4% T1% | 64% 63%
Stump Boost 54% 54% 56% 51% 63% 71% | 64% 69%
NN 54% 65% 7% 62% 2% 4% | 73% 67%
SVM 67% 64% 1% 70% 3% 2% | 5% 71%

data set:

Table 5.6: Results of ARX filtering for Subject SC4 in the S.Camillo
5-fold cross-validated recall for targets and

nontargets. Targets: 261 (25.2%), nontargets: 774 (74.8%).

Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 11% 88% 12% 89% 49% 54% | 39% 66%
Logistic 70% 65% 61% 64% 61% 68% | 62% 62%
Stump Boost 62% 49% 53% 50% 54% 70% | 61% 52%
NN 36% 72% 41% 76% 62% 63% | 66% 58%
SVM 62% 56% 59% 66% 61% 70% | 66% 67%

Table 5.7: Results of ARX filtering for Subject SC5 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 298 (27.6%), nontargets: 780 (72.4%).

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 45% 62% 65% 46% 55% 72% | 58% 69%
Logistic 65% 66% 65% 63% 67% 73% | 65% 59%
Stump Boost 65% 53% 53% 59% 61% 70% | 64% 64%
NN 57% 57% 72% 58% 2% 67% | 64% 65%
SVM 62% 61% 67% 68% 67% 70% | 68% 67%

Table 5.8: Results of ARX filtering for Subject SC6 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 294 (24.9%), nontargets: 888 (75.1%).
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Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 34% 74% 52% 63% 3% 7% | 74% 76%
Logistic 74% 3% 66% 70% 7% 2% | 61% 67%
Stump Boost 56% 65% 56% 63% 4% 79% | 73% 79%
NN 75% 66% 73% 74% 7% T7% | 3% 7%
SVM 67% 72% 72% 76% 7% 76% | T7% 75%

Table 5.9: Results of ARX filtering for Subject SC7 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 231 (25.7%), nontargets: 669 (74.3%).

Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 24% 73% 65% 50% 60% 74% | 61% 75%
Logistic 1% 75% 59% 68% 69% 76% | 56% 65%
Stump Boost 59% 59% 57% 58% 58% 79% | 63% 72%
NN 38% 79% 61% 75% 67% 76% | 69% 73%
SVM 59% 69% 65% 74% 74% 5% | 69% 74%

Table 5.10: Results of ARX filtering for Subject SC8 in the S. Camillo
b-fold cross-validated recall for targets and
nontargets. Targets: 229 (27.5%), nontargets: 604 (72.5%).

data set:

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 30% 75% 46% 58% 66% 71% | 65% 71%
Logistic 2% 2% 61% 63% 69% 71% | 54% 61%
Stump Boost 62% 54% 52% 57% 66% 75% | 62% 72%
NN 44% 2% 64% 69% 67% 78% | 62% 81%
SVM 59% 67% 65% 72% 76% 72% | 72% 73%

Table 5.11: Results of ARX filtering for Subject SC9 in the S.Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 223 (27.8%), nontargets: 580 (72.2%).
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Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 21% 79% 51% 55% 59% 62% | 64% 58%
Logistic 69% 63% 62% 61% 68% 66% | 63% 59%
Stump Boost 63% 46% 54% 58% 62% 68% | 70% 57%
NN 72% 50% 78% 53% 75% 59% | 81% 51%
SVM 65% 62% 72% 63% 71% 63% | 66% 67%

Table 5.12: Results of ARX filtering for Subject SC10 in the S. Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 232 (25.4%), nontargets: 682 (74.6%).

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 42% 62% 54% 47% 62% 72% | 62% 64%
Logistic 65% 62% 61% 53% 70% 70% | 60% 48%
Stump Boost 59% 55% 50% 52% 71% 65% | 70% 59%
NN 69% 50% 73% 58% 74% 60% | 77% 59%
SVM 59% 68% 58% 72% 70% 65% | 66% 70%

Table 5.13: Results of ARX filtering for Subject SC11 in the S. Camillo
data set: 5-fold cross-validated recall for targets and
nontargets. Targets: 204 (43.6%), nontargets: 264 (56.4%).

to confound the classifiers. The best classifiers for this data set seem
to be logistic, neural networks, and SVMs. The logistic classifier is the
one that suffers more when the three kinds of features are combined. If
we discard the worst combinations of classifiers and feature sets, recalls
range from 60% to 80%. Because this is a 2-class classification problem,
60% is slightly better than random, and probably insufficient for a real-
life BCI, while 80% is definitely useful for building a P300-based BCI,
although not enough for single-sweep detection. The last three subjects
(SC9, SC10, SC11) are paralyzed; their results are worse than those
for healthy people, but the difference is not strong, and there is much
variability among subjects.

After having seen Figure 5.2 one might wonder why results do not
show a 100% correct classification. A possible explanation may lie
in Figure 5.3. Here, two more epochs from the same subject (which
happens to be Subject SC1) are shown, one target and one nontarget,
and also the corresponding ARX responses. While the unprocessed
signals are rather different, and the P300 in the target epoch is evident,
with a strong positive peak around 380ms, the filtered epochs are
very similar and almost all the difference has been washed away by
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Figure 5.3: Signals filtered with the ARX method

ARX filtering. The apparent cause is the dissimilarity between the
reference signal (the target average) and the target epoch in question;
the maximum of the reference lies around 440 ms, while in the target
epoch is earlier. It almost seems as this epoch has been anticipated by
half a tenth of a second.

The fact that a single ERP may differ considerably from the grand
average is well known from the literature. And the rationale of ARX
filtering bears on it actually, as ARX filtering should be able to adapt the
grand average to the changing of the ERP from case to case. Obviously,
extreme cases cannot be always handled correctly. By the way, the case
shown in Figure 5.3 is really an exception, because our method scored
correctly 80% of the same subject’s epochs.

5.2.4 EOG Removal

In some data sets also an EOG channel has been recorded. This is not
used for P300 detection, but it contains information about interferences
coming from the ocular region and could be used for artifact removal.
An extension of the ARX model that makes use of the EOG has been
developed, and it is shown in Figure 5.4. Here, the EEG signal y(-) is
considered the superposition of three components

y(t) = s(t) + r(t) + n(t) (5.2)
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Figure 5.4: Variant

where r(-) represent the contribution of ocular artifacts, s(-) still
represents the ERP component, and n(-) the unpredictable noisy
component. This contribution is obtained by filtering the recorded EOG
v(-) with a deterministic ARMA system:

q+d -1 p
= Y bult—h) = aylt—j). (5.3)
h=d' j=1

The resulting formula for this extended ARX system is:

g+d—1 q+d' -1
Z bru(t — Z bo(t—h
k=d h=d’

=) ajyt—j)+et). (5.4)
j=1

This extended ARX model is used exactly as the base version, with the
only difference that in identifying the parameters of the model also the
EOG is used. The objective is still to separate the ERP components s(+)
from the noise, and s(-) is the result of the application of the B(z)/A(z)
filter to the reference signal u(-). An ARX family is characterized by five
orders (p, ¢, ¢, d, d'), which can still be chosen by minimizing Akaike’s
score.

Tables 5.14 to 5.24 show the results of the extension of the ARX
method that takes into account ocular interference. They are practically
identical to the ones where the EOG channel is not used. The reason
for this somewhat surprising result may be found in the fact that P300
is generally stronger in the parietal region, where the influence of EOG
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Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 42% 58% 8% 93% 71% 81% | 71% 81%
Logistic 76% 79% 74% 5% 81% 82% | 72% 73%
Stump Boost 62% 40% 61% 40% 68% 88% | 69% 84%
NN 57% 58% 69% 69% 80% 82% | 73% 83%
SVM 60% 62% 70% 73% 79% 85% | 80% 81%

Table 5.14: Results of extended ARX filtering for Subject SC1 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 523 (39.2%), nontargets: 812
(60.8%).
Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 4% 95% 4% 95% 66% 70% | 66% 70%
Logistic 65% 66% 65% 64% 70% 70% | 64% 58%
Stump Boost 48% 60% 58% 53% 65% 76% | 66% 70%
NN 66% 52% 58% 1% 67% 73% | 656% 74%
SVM 66% 63% 65% 69% 72% 70% | 69% 69%

Table 5.15: Results of extended ARX filtering for Subject SC2 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 312 (25.6%), nontargets: 905
(74.4%).
Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 40% 70% 39% 70% 63% 67% | 64% 68%
Logistic 67% 65% 56% 61% 68% 71% | 60% 62%
Stump Boost 53% 60% 52% 57% 66% 70% | 69% 67%
NN 39% 72% 62% 60% 68% 69% | 69% 68%
SVM 52% 62% 64% 64% 72% 3% | T1% 68%

Table 5.16: Results of extended ARX filtering for Subject SC3 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. 222 (25.1%), nontargets: 663

(74.9%).

72

Targets:




5.2 ARX Models

Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 8% 93% 33% 1% 67% 65% | 67% 64%
Logistic 70% 75% 66% 68% 2% 71% | 64% 61%
Stump Boost 46% 61% 56% 55% 61% 72% | 67% 63%
NN 53% 67% 65% 72% 75% 65% | 73% 68%
SVM 68% 66% 70% 71% 2% 4% | 76% 70%

Table 5.17: Results of extended ARX filtering for Subject SC4 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 261 (25.2%), nontargets:
(74.8%).
Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 35% 65% 0% 100% 26% 83% | 61% 48%
Logistic 69% 64% 59% 62% 70% 63% | 62% 61%
Stump Boost 54% 53% 55% 55% 56% 66% | 656% 57%
NN 33% 74% 1% 46% 63% 70% | 64% 66%
SVM 62% 57% 59% 67% 1% 65% | 69% 64%

and nontargets.

Table 5.18: Results of extended ARX filtering for Subject SC5 in the
S. Camillo data set: 5-fold cross-validated recall for targets
Targets: 298 (27.6%), nontargets: 780

(72.4%).

Classifier Features
ARX Coeff. | Imp. Resp. Shape All

Bayes Net 17% 85% 69% 40% 59% 62% | 62% 58%

Logistic 64% 66% 62% 62% 65% 72% | 62% 61%

Stump Boost 63% 42% 52% 56% 53% 79% | 61% 64%

NN 55% 58% 73% 58% 71% 65% | 69% 61%

SVM 63% 60% 69% 66% 67% 73% | 68% 65%

Table 5.19: Results of extended ARX filtering for Subject SC6 in the
S. Camillo data set: 5-fold cross-validated recall for targets
and nontargets. Targets: 294 (24.9%), nontargets: 888

(75.1%).
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Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 44% 70% 58% 62% 1% 75% | 69% 75%
Logistic 1% 1% 66% 67% 74% 3% | 66% 63%
Stump Boost 56% 65% 63% 58% 1% 79% | 75% 72%
NN 74% 66% 69% 72% 4% 7% | 2% 5%
SVM 65% 74% 72% 73% 76% 77% | 76% 76%

Table 5.20: Results of extended ARX filtering for Subject SC7 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 231 (25.7%), nontargets: 669
(74.3%).
Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 20% 78% 72% 29% 58% 5% | 57% 76%
Logistic 59% 72% 59% 64% 66% 75% | 62% 60%
Stump Boost 48% 60% 57% 56% 64% 74% | 60% 76%
NN 61% 55% 54% 75% 62% 75% | 64% 73%
SVM 57% 62% 61% 73% 72% 70% | 66% 74%

Table 5.21: Results of extended ARX filtering for Subject SC8 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 229 (27.5%), nontargets: 604
(72.5%).
Classifier Features
ARX Coeff. | Imp. Resp. Shape All
Bayes Net 0% 100% 14% 85% 59% 74% | 59% 74%
Logistic 74% 69% 63% 56% 1% 1% | 57% 63%
Stump Boost 57% 52% 39% 62% 67% 69% | 61% 73%
NN 51% 63% 66% 67% 64% 7% | 73% 67%
SVM 58% 63% 62% 72% 70% 76% | 71% 73%

Table 5.22: Results of extended ARX filtering for Subject SC9 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. 223 (27.8%), nontargets: 580

(72.2%).
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Classifier Features
ARX Coeff. | Imp. Resp. | Shape All
Bayes Net 41% 67% 55% 56% 63% 61% | 70% 61%
Logistic 69% 65% 64% 60% 67% 69% | 61% 57%
Stump Boost 51% 55% 51% 59% 70% 63% | 69% 61%
NN 70% 51% 75% 55% 63% 70% | 72% 58%
SVM 61% 63% 63% 67% 68% 70% | 63% 71%

Table 5.23: Results of extended ARX filtering for Subject SC10 in the
S. Camillo data set: 5-fold cross-validated recall for targets

and nontargets. Targets: 232 (25.4%), nontargets: 682

(74.6%).

Classifier Features
ARX Coeff. | Imp. Resp. Shape All

Bayes Net 13% 84% 6% 96% 56% 71% | 61% 69%

Logistic 66% 64% 59% 61% 65% 73% | 63% 61%

Stump Boost 48% 66% 46% 66% 63% 74% | 65% 67%

NN 44% 75% 55% 2% 57% 75% | 2% 64%

SVM 55% 71% 59% 71% 65% 69% | 67% 71%

Table 5.24: Results of extended ARX filtering for Subject SC11 in the
S. Camillo data set: 5-fold cross-validated recall for targets
and nontargets. Targets: 204 (43.6%), nontargets: 264

(56.4%).

is attenuated by the distance. On the contrary, the Fz channel is much
affected by the ocular region, but it seems that either this channel has
little importance for classification, or even the “basic” ARX filtering
is robust enough to reject ocular artifacts. It could be interesting to
confirm either hypothesis with an analysis of the ARX responses, but
this has been left for the future, as we have concentrated on different
aspects.

5.3 SVMs: A Direct Approach

The results shown for the detection of P300 based on ARX filtering
range from “almost acceptable” to “good”, depending on the subjects.
In general, they are far better than random, and the system could be
used for a live P300 BCI (though we have not tested it online yet).
However, the results on the BCI competition data set are much worse
than the winning entries to the competition; a fair estimation of our
result on the test set is 77% of correct letters, as explained above, which
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is much worse of the 100% obtained from five different participants to
the competition.

One of the advantages of using data coming from a competition is
that it is easy to make comparisons with other people’s results. In our
case, the results told us that our method was not making the best use
of the information available in the EEG data, but we needed a way to
understand where the problem lied, in the ARX filtering or in the feature
extraction and classification.

To this aim, we studied and replicated the method used by the
winners of the competition, Kaper and colleagues from the University of
Bielefeld, Germany [58]. Their method relies more on the power of the
classifier employed, an SVM, than on signal processing, and the feature
extraction is done implicitly by the SVM; in other words, this is a blind
algorithm, which does not rely on specific knowledge about the P300.
The blindness of this method made us confident that its application
to the classification to the responses of ARX filtering could provide an
answer to our question about the relative weaknesses of the steps of our
ARX method.

In Kaper’s method, an epoch begins at the time of stimulus, and ends
600 ms after. Data from channels Fz, Cz, Pz, Oz, C3, C4, P3, P4,
Po7, and Po8, are used. Epochs are bandpass filtered between 0.5 and
30Hz, and then normalized to the [—1,+1] interval. The training set is
balanced by taking only two nontarget examples from each repetition,
which already contains exactly two target examples, and an SVM is
trained directly on the balanced training set. In this case, the normalized
samples of the EEG signals are used as features for the classification.

In order to find out the unknown letter in the test set, several
repetitions are combined together. Starting from the first repetition,
a score is assigned to each row and column. Scores from different
repetitions are added together, and the row and the column with
the maximum total score after the last repetition is selected and the
corresponding letter is chosen. This procedure is repeated for each
letter in the test set. It is possible to halt the procedure just after a
few repetitions, without making use of all the 15 repetitions in the data.
The authors correctly classified all the competition test set with only 5
repetitions per letter.

The score mentioned above is the SVM discriminant function f*(-) in
equation (4.29):

f(x) = Z aiyiK (zi, ) +b (5.5)
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No. of | Direct SVM | ARX Response | ARX Residual
Repet. + SVM + SVM
5 100% (31/31) 9.0% (2.8/31) 49.7% (14.6/31)
15 100% (31/31) | 36.8% (11.4/31) | 73.2% (25.8/31)

Table 5.25: Results (fraction of correct letters) of SVMs applied to ARX
responses for the competition test set

In this case, the kernel function K(-) is Gaussian. The parameter o of
the kernel and the penalization coefficient C' in the objective function of
the SVM are found with a cross-validation scheme on the training set.

5.3.1 Mixing ARX With SVMs

We tried to see what happened if we trained an SVM, according to the
procedure just related, on the responses returned by the ARX filtering.
Results were surprising: Table 5.25 shows the number of correct letters
after 5 and 15 repetitions with three methods applied on the test set of
the BCI Competition 2003 data.

The first method (second column) is the one described in the last
section, and predicts 100% correct letters. The next column is for
an SVM working on responses extracted by the ARX filtering method
introduced before; they are rather bad. But the last column is the more
interesting one. It shows the results for an SVM applied to the residuals
of the ARX filtering, i.e., the outputs of AR parts.

The results in Table 5.25 refer to ARX systems with orders (p, ¢, d)
equal to (8,2,0). There are decimals for the numbers of wrong letters as
they are the means of results obtained from different (random) choices
of nontarget epochs. So, it seems that the SVM works better with
what should have been just noise than with what should have been
an informative signal. This suggests that the ERP estimated by the
ARX filtering contains only a part of the useful information, but not all.
These results lead us towards a different approach, as explained in the
next section.

5.4 Genetic Algorithm

The approach of Kaper and colleagues illustrates an interesting point: It
is possible to classify epochs in an effective way without the usual chain
of preprocessing, processing, feature extraction, and classification. This
is not a completely new idea, as others have applied a similar concepts to
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signal classification, even in the BCI field; see for example [116]. Inspired
by this, we developed a “shallow” approach which is based on automatic
feature extraction. In this approach, a genetic algorithm operates on
features to be used for the classification of P300 epochs. Features are
encoded in variable-length chromosomes, where each gene encodes one
feature. The fitness of an individual is given by the performance of a
classifier trained on the encoded features.

GAs have been used already in the BCI field. In [117], the best
combination between different features and different classifiers is sought
for a motor-imagery task. In [118], a GA selects P300 features extracted
by means of a wavelet, and finds the best linear classifier that operates
on them.

In our approach, the GA is used only to select the best features to
be fed to a classifier, while the classifier itself is trained in the classical
way. FEach individual in the population has one chromosome, whose
logical structure is shown in Figure 5.5. A chromosome contains a
variable number of genes, with an identical structure, and each gene
is formed by five elements. The first three elements define a feature:
The first one is an integer number designating one feature extractor
out of a predetermined set, while the two following elements encode
two real-valued parameters for such an extractor. Feature extractors
are functions with three arguments: a signal from which a feature is
extracted, and the two parameters encoded in genes; these parameters
are within the range [0,41), and their actual meaning varies from
extractor to extractor. The fourth element of a gene is an integer
number, which identifies the EEG channel the feature encoded in the
gene is to be extracted from. The last element of a gene is a Boolean
flag that determines whether the gene is active or inactive. Inactive
genes are not used to compute the fitness of a chromosome. Their role
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Figure 5.6: The weight functions encoded in genes

is of a genetic reserve, as they can be turned on in a later generation by
mutation. The position of a gene within a chromosome is not significant.

We used up to six different feature extractors, which share a very
simple scheme: The input signal is multiplied by a weight function, and
the result is integrated over time. In other words, feature extractors
compute the cross-correlation between the input and a weight function.
If we call s(-) the EEG signal from the channel the feature is to be
extracted from, a feature extractor constructs a weight function wu(-)
from the parameters specified by the gene elements and then computes
the resulting feature x with the formula:

T
z =) ult)s(t). (5.6)

t=1
The six weight functions used by the six feature extractors are shown
in Figure 5.6. The feature that uses the weights shown in the top-right
box is proportional to the average of the input signal over an interval;
the extremes of the interval are determined by the two parameters (Al
and A2 in the figure) encoded in genes. The weights in the top-left box
produce a similar effect, but the samples at the center of the interval
weight more. The functions in the middle row compute the differences
between two adjacent intervals; again the extremes are encoded in genes.
The functions in the bottom row compute the cross-correlation with a
sine wave; genes encode frequency and phase of the sines. The interval
where the bottom-right weight function is not zero is fixed, and it goes
from 0 to 600 ms after the stimulus, i.e., it is centered around the P300.
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These last two functions permit to do a sort of frequency analysis of the
signal.

5.4.1 Fitness and Selection

The fitness of a chromosome is determined by measuring the
performance of a logistic classifier on the features it encodes. To have a
fair estimate of the performance, a 4-fold cross-validation scheme on the
training set is used, and the mean performance on the 4 folds is used
as the fitness. The actual criterion used to evaluate the“performance”
depends on the kind of data. The fitness function of our genetic
algorithm can be easily changed without modifying anything else in the
algorithm. This permits to adapt the fitness computation to different
BCI tasks.

For data recorded with a P300 speller, the number of correctly
predicted letters is used, with a little bonus for letters that can be
correctly predicted with less than the maximum number of repetitions,
i.e., the number of times the whole grid is flashed for each letter. Let
us call [ the number of correctly predicted letters out of a total of n, N
the number of repetitions in the data set, and r;, 2 = 1...n, the number
of repetitions needed for the prediction of the letter i. The fitness f is
then given by

1 1 N—Ti
=—|1+= .
% =] 67

where [ is the set of correctly predicted letters. The second term in the
parentheses computes an index, averaged over the [ correct letters, that
grows with the decreasing of r;; this index is always strictly less than
1, and therefore it contributes to the fitness less than a single correctly
predicted letter. In this way, a higher number of correct letters is always
preferred to a lower number of repetitions needed for correct prediction.
Repetitions are taken in their occurring order, and r; is computed in way
such that if a letter is correctly predicted by using the first r; repetitions,
then it must be correctly predicted also by using the first r; +1,..., N
repetitions. In other words, if a letter were predicted correctly after 3
repetitions, wrongly after 4, and again correctly when using 5 repetitions
or more, then r; would be 5, and not 3.

For the S. Camillo data set, we chose a different fitness function,
as explained above (Section 5.2.3) single epochs should be treated
separately due to the characteristics of the protocol. The fitness f of a
classifier is obtained by combining precision pt and recall rt for targets

80



5.4 Genetic Algorithm

according to this formula:

2 1
f=z-pr+ T (5.8)

3 3
The definitions of precision and recall in terms of true positives (T P),
false positives (F'P), and false negatives (F'N) are:

TP TP

“TPYFP " TPYFN (5.9)

pr
The rationale behind this formula is that, while it is good to recognize a
large portion of P300s (recall), that should not result in too many false
positives, which are taken into account in precision. Precision has been
weighted more because — at least in the task under consideration — a
false positive does more harm than a false negative.

In a genetic algorithm, fitness is used to select the most promising
individuals for the next generation. The selection mechanism employed
is tournament selection with elitism, a standard setup in genetic
algorithms, with no particular adaptation. Briefly, in tournament
selection each individual of the new population is selected by setting
up a tournament: A fixed number & of individuals are chosen at random
from the old population, and the one with the highest fitness is declared
the winner and will get in the next generation. Values for k are usually
small, as large values would favorite the fittest individuals too much,
causing a loss of diversity in the population; in our work, & = 4. Elitism
is the practice of keeping the fittest individual or individuals in the new
generation, even when selection discarded them (e.g., because they never
participated to any tournament), or mutation and selection modified
them.

5.4.2 Genetic Operators

After selection, the selected population undergoes crossover and
mutation. These two operators have been slightly modified in order
to adapt them to the non-standard chromosome structure we employed.
Figure 5.7 shows how crossover works. Crossover is applied to pairs
of chromosomes in the selected population (chosen at random) with a
probability of 0.7; both chromosomes are split in two sections at a gene
boundary in a random way, and then the four sections are recombined.
Because the order of genes in a chromosome is not important, one section
from one chromosome can be coupled with either section from the other
one, and so there are two different way of doing crossover. Which
way to use is randomly chosen each time, and it is important to use
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Figure 5.7: Crossover operator. The two possible ways of applying it are
shown.
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Figure 5.8: Mutation operator. Gene elements selected for mutation are
marked.

both ways, as this choice increases the mixing of the genetic material.
Crossover may be applied to individuals with a common ancestor, and
so they may share some genes. In this case, it is very likely that at
least one of the new chromosomes contains duplicated genes, and many
duplicates accumulate with time. These duplicates are ignored for fitness
evaluation.

Mutation (see Figure 5.8) operates on gene elements; for each
element in each gene, a random choice is taken whether to mutate it,
independently from each other, but with the same (small) probability,
which is 0.005 in this algorithm. Elements are modified differently
accordingly to their type. For a discrete element (extractor, channel, and
active flag), mutation modifies it by choosing one of the other admissible
values for that kind of elements, at random. For a continuous element
(the two extractor parameters), a perturbation is added according to a
Gaussian distribution; if the result lies outside the admissible interval
[0,1), it is wrapped around, e.g., a value of 0.95 which is perturbed by
0.07 does not result in a new value of 1.02, which is not legal, but it is
wrapped to 0.02.

The use of normalized extractor parameters is useful because the way
mutation works. When mutation is applied to the gene element that
encodes the feature extractor, the parameters are always legal also for
the resulting new feature extractor; moreover, in some cases the old and
the new weight functions are similar, and this helps the GA.
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Figure 5.9: Evolution of fitness over time (generations) for the whole
population in a GA run. Noise has been added to the point
positions so as to make visible also overlapping points.

5.4.3 Population Size and Stop Criterion

The size of the population is constant throughout a GA run; for our
experiments we used populations ranging from 70 to 120 individuals.
Apart from size, the initial population is completely random; the length,
i.e., the number of genes, for each chromosome is extracted from a
geometric distribution with mean 20. The actual values for gene
elements are taken from uniform distributions over the whole range of
legal values for each elements.

The last component to complete the GA description is the stop
criterion. We relied only on the number of generations, after some initial
experiments where we noticed that in all runs no improvements could
be seen in both the fitness of the best individual and the mean fitness
of the population after 10-15 generations. Figure 5.9 shows how the
fitness of a population evolves in a typical GA run; it is evident that
the maximum fitness reaches a plateau after only 7-8 generations, and
population fitness tends to stabilize around the 12th generation. This
kind of behavior has been observed for all runs, with numbers varying
little; for this reason, we decided to stop GA after 15 generations, or
a couple of generations before for the most time-consuming runs. In
any case, a check on the fitness growth is made after each run, so as
to be sure that evolution has actually stopped: If the maximum and
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Figure 5.10: Evolution of chromosome length over time. These graphs
refer to the same run of Figure 5.9; the generation is shown
inside each graph.

mean fitness has been constant for the last 3—4 generations, evolution is
considered finished.

5.4.4 Feature Set Validation

After the end of each GA run, the performance of the individuals with
a high fitness is validated on a test set, never used before by the GA.
This validation is done on the individuals with a fitness at least 99% of
the fitness of the best individual in the last generation. Evaluating more
than one individual and not just the best one results in a more robust
assessment of the effectiveness of the method.

For each individual, the features encoded by its chromosome are
extracted from all the training data (i.e., the data used for fitness
evaluation), and a logistic classifier is trained on them. The same
features are extracted from the test set, and the classifier is evaluated on
them. The classifier can also be used online, together with the feature
extractors it was trained on.
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GA can be very time consuming. The length of chromosomes grows
with generations (see Figure 5.10 for an example), and this makes
training the logistic classifier more and more expensive. With very large
data sets (more than 10000 epochs) the evaluation of a population of
about 100 individuals could take even more than an hour on a modern
32-bit processor running at 2 GHz. Yet, the feature extractors and the
trained logistic classifier are very fast to apply (especially with the trick
shown in Equation (5.20) in the next section), and they can be used
online in real-time.

5.4.5 Results

We applied the genetic algorithm first on the BCI Competition 2003
data set IIb, to compare it with other classification methods. In the
procedure we used for this data set, data is first decimated by a factor
of 3, so as to reduce memory usage, segmented in epochs, and detrended.
We used epochs 1.5s long initially, the same used for the ARX method;
in later experiments we shortened them to 1s, from 200 ms before the
stimulus to 800 ms after it, to speed up the computation. Of the 64
channels, only 10 have been used, in three different combinations: those
lying on the midline of the skull (Fpz, Afz, Fz, Fcz, Cz, Cpz, Pz, Poz,
Oz, 1z), those used by Kaper and colleagues [58] (Fz, Cz, Pz, Oz, C3, C4,
P3, P4, Po7, Po8), and other 10 channels lying on or near the midline
(Fz, Fe3, Fed, Cz, Cp3, Cp4, Pz, Po3, Po4, Oz). We also normalized
EEG data in some classification experiments.

Table 5.26 shows the results of some of the most significant of our
classification experiments; other experiments we made with different
parameters do not provide further insight. The performance on the test
set is given, as the ratio of the number of correct letters over the total
number of letters. A single GA run usually returns more than one set
of features, because many different chromosomes reaches the top fitness.
All these chromosomes are closely related, due to the mixing of the
genetic material. For this reason, it is not possible to summarize their
performance in one number, as by averaging, for example. Therefore,
Table 5.26 shows the entire range of values obtained for all chromosomes
with a fitness above 99% of the top fitness.

From the table, it is apparent that the single most important
parameter is the channel selection. When using the channels from
Kaper, the GA consistently returns only chromosomes that score 100%
correctly on the test data. The other parameters affect little the test
performance, although they may influence the speed of convergence.
When the number of feature extractors grows, the GA takes more
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Norm. | Channels | Epoch | Feat. Funcs | Runs | Test perf.
- zZ long £3 1 29-30/31
1 z long f3 1 28-30/31
4 zZ long £3 1 30-31/31
3 z long £3 1 28-30/31
3 z long £5 2 28-30/31
3 k long £5 1 31/31
3 k long £3 1 31/31
3 k short £2 4 31/31
- k short f2 7 31/31
- v short f2 2 30-31/31
3 v short £2 2 26-31/31

Table 5.26: Results of the genetic algorithm on the competition data set.

Legend

Norm. shows the type of normalization: ‘-’ = no normalization; ‘1’ = the same
factor is used for all channels of all epochs; ‘3’ = each channel of each epoch
is normalized independently of the others; ‘4’ = within each epoch, the same
factor is used for all channels, but epochs are normalized independently of each
other.

Channels shows which channel combination has been used: ‘z’ = Fpz, Afz, Fz, Fcz,
Cz, Cpz, Pz, Poz, Oz, 1z; ‘k’ = Fz, Cz, Pz, Oz, C3, C4, P3, P4, Po7, PoS§;
‘v = Fz, Fc3, Fcd, Cz, Cp3, Cp4, Pz, Po3, Po4, Oz.

Epoch is ‘long’ for the (—0.5,41.0) interval, and ‘short’ for (—0.2,40.8).

Feat. Funcs indicates the subset of the functions of Figure 5.6 used: ‘f2’ = triangle
and square wave; ‘f3’ = triangle, square, and sine wave; ‘f5’ = all the functions
except for the short sine wave.

Runs indicates the number of times the GA has run.

Test perf. is the number of correct letters in the test set.
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generations before converging. The reason is that the more the feature
extractors, the bigger the search space is. Using a shorter epoch length
speeds up the computation of the fitness function and reduces the
memory usage.

A typical problem of GAs is overfitting, as they are optimization
algorithms. However, we have not observed overfitting in any of our
classification experiments, probably because the cross-validation used in
the fitness evaluation combined with the noisiness of the EEG data help
in finding features with a good generalization capacity.

The number of the features found by the GA ranges from 100 to 150,
more or less, as can be deduced from Figure 5.10, where only the number
of unique and active genes is shown. In general, the chromosomes
contain a number of genes about three times as bigger, because some
genes are inactive, and duplicates crop up because of recombination.

At this point, one may expect to find a list of the features found by
the GA, or a graph where they are nicely shown in a 2-dimensional
map highlighting the most important time interval for every channel.
Well, it turns out that we can do better than that. The GA deals not
only with features, it optimizes the features for the classifier used in the
fitness function as well. So, features are strongly connected with the
classifier, and with some algebra it is possible to explicit this connection
and understand the real meaning of what the GA finds.

Let us call s(-) an EEG signal from a single channel of an epoch, and
consider only the features extracted by the GA for this channel. For
feature extractors like the one described above, a feature is obtained
by computing the cross-correlation of the signal with a weight function

u;(+):
T
zj= > u;(t)s(t), (5.10)
t=1

where j means that z; is the feature encoded by the j-th gene, and T is
the number of time samples per epoch. Please notice that u;(-) is not a
generic function, but the precise function encoded by all the parameters
contained in a gene. A trained logistic classifier estimates the probability
for the signal s(-) to belong to a class according to Equation (4.14):

1
1+ exp(wo + 327 wyz;)

P(y=+1|x) = , (5.11)
where x; are the features given by Equation (5.10). Equation (5.11)
gives the probability for the target class, which is enough because the
probability for the other class can be computed by difference: P(y =
—1‘3:) = 1—P(y:—|—l|:c).
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It is possible to rewrite the argument of the exponential in
Equation (5.11) by substituting the (5.10) in it:

n n T
wo + Z w;T; = wo + ij (Z uj(t)s(t)>
j=1 j=1 t=1
T n
= wo + Z Z W;Uj (t)
t=1 \j=1

(5.12)

The term

v(t) = wu(t), (5.13)
Jj=1

with t = 1...T, depends only on the feature set (through u(-)) and on
the classifier (through w), and therefore it is the same for all epochs.
Equation (5.11) becomes

1
1+ exp(wo + Y1y v(t)s(t))

P(y=+1]s()) = , (5.14)

or, by considering v(-) and s(-) as vectors, whose components are the
time sample, and using the dot product notation:

1
1+ exp(wo + (v, 8))

P(y=+1|s) = (5.15)

Let us return to consider all the channels. Let s.(-) denote the signal
for channel ¢, with ¢ = 1...C, and C is total number of channels, and
let also ¢(j) be the channel the j-th feature is to be extracted from.
Equation (5.10) becomes

Zu] )se() ( (5.16)

and from Equation (5.12) we have

n n T
wo + Y wizy =wo+ »_ w; (Z uj(t>sc(j)(t)>
j=1 j=1 t=1

n

—wo—i—z Zw]u] )Se()(t)

(5.17)
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If we split the inner summation by grouping features relative to the same
channel, we get

T n
wo + > [ D wius(t)ses)(t)
=1 \j=1

T C

=wo+ > | D0 D wiuy(t)se(t) (5.18)
t=1 \ =1 jie(j)=c
cC T

cur [ ] s,

c=1 t=1 j;c(j):c

Again, there is a term that is the same for all epochs, but now it depends
on the channel:

ve(t) = Y wjuy(t), (5.19)
jie(j)=c
witht=1...Tandc=1...C.
Putting everything together, in vector notation:

1
N 1+ exp(wo + 25:1 <'007 Sc>) ‘

P(y=+1|s1,...,s¢) (5.20)

This formula estimates the probability for the target class directly from
the epoch signals si,...,8c. The dot product (v.,s.) is actually a
correlation, as elements of these vectors are time samples, and we can
see Equation (5.20) as a classification based on the similarity of epoch
signals with some templates (v.). These templates can be considered as
the real output of a GA run.

This explains the fact that after some experiments with or without
using some of the feature extractors, we found that the first two functions
in Figure 5.6 (the triangle and the rectangle) were sufficient. The reason
is now clear: If templates are the real output of GA, what the individual
features are is not important, as long as they allow the building of
complex enough templates.

Figures 5.11 to 5.14 show the ten templates (green solid line) for
the ten channels used for the BCI competition data set. Together, the
averages for target and nontarget epochs are also shown, for reference.
Templates have been multiplied by a scaling factor so that they can be
shown in the same graph as the averages; the same factor has been used
for all templates in all figures, so no distortion has been introduced.
The figures refer to two different runs of the GA (two template sets, i.e.,
chromosomes, for each run are shown) on the same data set and with
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the same preprocessing: same channel selection, decimation by a factor
of 3, and detrending.

All the template sets shown in the four figures achieved 100%
correct letters, yet they are very different. There are some common
characteristics, like the negative deflection around 300 ms in Pz, and the
positive peak followed by a negative one between 300 and 500 ms in PoT7.
The negative peak of Pz is present in all the templates that achieved the
maximum fitness we have looked at, and is much in accord with the most
important feature of the P300 found in the literature: a positive peak
about 300 ms after the stimulus, stronger in the parietal region. The
sign of the template is negative because the logistic function in (5.20)
reaches the maximum for negative values of the exponent.

There also some peculiarities in the templates. For example, there is
a strong difference between the two averages in channels Fz, Cz, and C4,
but it is ignored in all the examples shown. Yet, the template for C4
in Figure 5.11 shows a strong peak at 550 ms after the stimulus, where
the averages almost coincide. This is probably caused by the presence
in the training set of epochs for which the difference between target and
nontarget signals is significant at 500ms in C4, and also the features
that are more discriminant for other epochs are less effective. Verifying
such an explanation is not easy, though, and also difficult is to asses the
real impact of a template on the classification, as neither the templates
nor the EEG channels can be considered independent. Some hints may
come from the comparison of the templates from many good-performing
individuals; for example, the fact that the template signals for either
channel Po7 or Po8 are rather strong suggests that the activity in the
visual cortex is important for the correct classification.

The last consideration suggests that the interpretation of features and
weights as templates could permit to select the most important channels
for classification. An objective measure of the relative contribution of
the various channel could be extracted from Equation (5.20), but our
first attempts failed. More work is needed to obtained useful results.

Table 5.27 shows the results obtained on data from the P300 speller
experiment run in our laboratory. The classifiers were trained and
tested independently for each subject. The test set consisted in the
data recorded in the last session for the subjects that recorded a total
of three sessions (as shown in table), and the data from the last run
for the subjects that recorded just one session; the training set was
composed by the remaining data. Data were decimated with a factor of
4, resulting in a frequency of 128 Hz, segmented in epochs from 200 ms
before to 800 ms after stimuli, and detrended; the EOG channel was
not used. As before, the performance on the test set is given as the
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Figure 5.11: Weight templates for a run of GA on the competition data
set (first of a set of four). Positive axes point down. Time
in seconds.
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Figure 5.12: Weight templates for a run of GA on the competition data
set (second of a set of four). Positive axes point down.
Time in seconds.
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Figure 5.13: Weight templates for a run of GA on the competition data
set (third of a set of four). Positive axes point down. Time
in seconds.
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Figure 5.14: Weight templates for a run of GA on the competition data
set (fourth of a set of four). Positive axes point down. Time
in seconds.
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Subject No. of Training GA Test SVM Test
sessions set size performance performance
Airlab S1 3 429 121-126,/143 (85-88%) | 119/143 (83%)
Airlab S2 1 165 24-27/30 (80-90%) 23/30 (77%)
Airlab S3 3 409 89-95/165 (54-58%) | 89/165 (54%)
Airlab S4 3 372 91-94/144 (63-65%) | 64/144 (44%)
Airlab S5 3 344 80-85/199 (40-43%) | 92/199 (46%)
Airlab S6 1 175 14-16/23 (61-70%) 17/23 (74%)
Airlab S7 3 396 46-52/135 (34-39%) 51/135 (38%)

Table 5.27: Results of the GA on the Airlab data set; the performance of
SVMs are shown in the last column. Training set size is the
number of letters spelled in the training set. Performance is
given as the number of correctly predicted letters over the
total numbers of letters in the test set.

range of the values obtained for the GA individuals with at least 99%
of the maximum fitness; the results come from two different runs of the
GA. Two subjects achieved very good results, with more than 80% of
correct letters; another subject achieved correct classification rates above
60%, which is still a good result, and the other four subjects obtained
less impressive figures, although still much above the level of a random
classifier, which is about 3%. Given that we used only 4 channels and 5
repetitions, the overall performance of the GA can be considered pretty
good.

Table 5.27 shows also the results achieved by the SVM method
illustrated in Section 5.3. By comparing the GA with SVM, we can
see that the GA results are always better or comparable to those of
SVM; only for Subject S6 the SVM performs significantly better. For
Subjects S2 and S4 the GA is significantly better, with a difference of
about 20% in correct letters for Subject S4 in favor of GA.

We applied the GA also to the second S. Camillo data set (the
second data set was deemed more interesting as it contained more ALS
subjects than the first). EEG data were decimated to half of the original
frequency; epochs were trimmed to the interval from —.2s to +.8s (i.e.,
half a second was thrown away), and the linear trend was removed.
No normalization of data was performed; we tried to normalize EEG
data before running the GA, but it did not change the test performance
significantly, so we chose the way that required less computation. The
GA was trained on the first three quarters of the available data for
each subject, and the features encoded by the best chromosome and the
corresponding classifier trained on the training set were applied to the
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Subject Training Test Recall

Targ. | Non-T. | Targ. | Non-T. Targ. Non-T.
SC12 204 703 99 284 61%+3% | 66%+2%
SC15 121 354 58 166 96%+1% | 95%+1%
SC16 98 277 o7 206 63%+5% | 77%+3%
SC17 175 492 61 178 86%+4% | 83%+3%
SC18 114 325 32 94 5%+7% | 78%+3%
SC19 124 356 52 148 87%+3% | 85%+5%
SC20 144 433 50 138 82%+4% | 76%+3%
SC21 112 340 39 112 82%+7% | 72%+5%
SC23 188 550 91 278 59%+7% | 55%+3%
SC25 185 529 50 154 94%+2% | 86%+2%
SC26 219 690 47 142 97%+2% | 82%+2%
SC13 86 228 30 84 75%+4% | 81%+2%
SC14 116 327 34 95 85%+5% | 90%+3%
SC22 218 617 84 240 T1%+3% | T71%+2%
SC24 165 489 61 170 55%+7% | 73%+4%

Table 5.28: Results over 14 runs of GA for the second S. Camillo data
set: means and standard deviations of recall for targets and
non-targets.

remaining quarter of the data. This procedure was repeated with 14
independent runs of the GA on each subjects.

The results are shown in Table 5.28: For each subject, the mean
value and the standard deviation of the recall of targets and non-targets
over all the 14 runs are presented. Subjects SC13, SC14, S22, S24 are
healthy, while all the others are affected by ALS. For most subjects, the
performance of the GA is good, achieving consistently more than 70%
of recall in 8 subjects (i.e., the mean is at least two standard deviations
over 70%). In 6 subjects, the classifiers achieved often more than 80%
of correct answers.

Figures 5.15 and 5.16 show what the GA has found for Subject SC15,
in two different runs of the GA that obtained 90% of correct epochs in
the test set. As before, the continuous green lines represent the weight
assigned to individual EEG samples in the final logistic classifier, while
the averages of targets and non-targets epochs are given as references.
Units are uV and s; the templates have been scaled to fit in the graphs.
The averages of targets and non-targets are not very different, yet the
algorithm found good classifiers concentrating more on the Fz and Cz
channels, between 400 and 800ms after the stimulus, and basically
ignoring Pz, where a P300 should be more prominent.
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Figure 5.15: Examples of templates obtained in a GA run for
Subject SC15 (first in a set of two). Units are uV and
S.

A possible explanation of this preference for the Fz and Cz channels
can be found in the physiology, by recalling that the P300 complex
includes other subcomponents besides P3b (which has its maximal
amplitude in parietal regions), as P3a and the slow wave post P3b, which
have their maximal amplitude over fronto-central regions. P3a occurs
when the changes in physical properties of the novel stimulus are task
relevant and attention is switched to the stimulus source, and the slow
wave post P3b occurs in the latency range from 500 to 1400 ms, and its
amplitude increases as the task becomes more demanding and difficult
[119, 120]. This suggests that the characteristics of the task and the
attention requirement determine a strong response in the front-central
region, which is exploited by the classifiers found by the GA.

5.4.6 Averages As Templates

The templates obtained by the GA show some similarities with the P300
averages in some time intervals, so we wondered if the P300 averages
could be used as templates in Equation (5.20). Averages cannot be put
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Figure 5.16: Examples of templates obtained in a GA run for
Subject SC15 (second in a set of two). Units are uV and s.

in the formula directly, because templates are on a different scale, and
therefore we considered the cross-correlation of epoch signals with P300
averages as features to be used in a logistic classifier. The results for
such a system are shown in Table 5.29, in the column Template/Target.
They have been obtained by using the very same training and test sets as
for the results shown in the previous pages, and so a direct comparison
with the GA results is possible (shown in the column GA). Using P300
averages as templates performs worse than the GA, and the use of the
differences between the averages of P300 epochs and the averages of
non-P300 epochs as templates (shown in column Template/Difference)
does not improve the results.

5.4.7 GA And Training Time

The actual time needed to run the GA depends mostly on the size of
the training set. In our experiments, it took about 15 minutes for the
small data sets (e.g., S. Camillo), and up to 10-12 hours for the biggest
data sets (Airlab P300 speller). When the training time is so long,
one could argue that it could be difficult to adapt the classifier to the
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Subject / Template
Data Set Target Difference GA
Comp. 2 31/31 (100%) 30/31 (97%) 100%
Airlab S1 | 109/143 (76%) | 105/143 (73%) | 85-88%
Airlab S2 17/30 (57%) 21/30 (70%) | 80-90%
Airlab S3 | 72/165 (44%) | 63/165 (38%) | 54-58%
Airlab S4 | 33/144 (23%) | 47/144 (33%) | 63-65%
Airlab S5 | 47/199 (24%) | 54/199 (27%) | 40-43%
Airlab S6 5/23 (22%) 5/23 (22%) 61-70%
Airlab S7 | 20/135 (15%) | 19/135 (14%) | 34-39%

Table 5.29: Results of using grand averages as templates

natural drifting of the ERPs that happens with time or with changing
conditions of the user. Yet, our system has not been optimized for
speed; it relies on a mix of Matlab and Java and there are some known
inefficiencies. A port of the algorithm to a more efficient setup (e.g., pure
C language) should dramatically improve the speed. Moreover, even
with a training time of a few hours it is possible to run the GA overnight,
so that every morning a user can have a new classifier, updated with the
recording of the day before. When the GA is used to adapt the classifier
to ERP drifts, there are further possibilities to improve speed that can
be explored; for example, the GA could reuse the results of old runs
instead of starting from scratch.

5.5 Online Results

Here we present some preliminary results of the application of the GA
in a functioning (i.e., online) P300 speller, as described in Section 3.2,
and in driving the wheelchair described in Section 3.4.

5.5.1 P300 Speller

Three subjects participated in a first set of online experiments. The
data were acquired as in our experiments before, i.e., at locations Fz,
Cz, Pz, and Oz, and at a frequency of 512 Hz. The P300 speller used
5 repetitions of each stimulation per letter, except for one user, who was
tested also with a lower number of repetitions. In these experiments,
the users had to select letters indicated to them by the BCI before
each trial, so as to simplify the evaluation of the performance. The
results are shown in Table 5.30: They are similar to those obtained
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Subject Training No. gf Online
set size | repetitions | performance
) 41/44 (93%)
B1 196 4 19/21 (90%)
3 40/52 (77%)
B2 67 5 57/233 (24%)
B3 108 ) 108/181 (60%)

Table 5.30: Results of the GA online. Training set size is the number
of letters spelled in the training set. Performance is given
as the number of correctly predicted letters over the total
numbers of letters in the online usage.

Subsi Training No. of Online

ubject | ot size repetitions | performance
B1 196 4 74/109 (68%)
B3 108 5 137/202 (68%)

Table 5.31: Results of the GA online in free mode. Training set size is the
number of letters spelled in the training set. Performance is
given as the number of correctly predicted letters over the
total numbers of letters in the online usage.

offline (see Table 5.27), and confirm the validity of the method. The low
performance of Subject B2 seems not to be due to the small training
set, but to low concentration; the subject reported problems in focusing
on the task, perhaps because of a failure of the brightness regulation of
the computer screen that affected the recordings.

Subjects B1 and B3 also tried to use the BCI to spell words in the
so-called free mode, where they spelled words of their own choosing and
had to correct errors by selecting backspace. The results are shown in
Table 5.31 and confirm that the classifier found by the GA can be used
to really drive a BCI application. Subject B2 could have tried to use
the speller by increasing the number of repetitions, but as the data was
recorded also to evaluate error potentials, this would have made the
recording sessions much longer.

5.5.2 Wheelchair Driving

A second set of online experiments was made with two subjects driving
a wheelchair through a P300 BCI, as described in Section 3.4.2. EEG
channels and sample frequency are the same as for the speller: channels
Fz, Cz, Pz, and Oz, sampled at 512 Hz. The number of repetitions was
always equal to 10. We expected to have a lower performance than
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Subi Training No. of Online

ubject | got size repetitions | performance
B2 70 10 93/112 (83%)
B4 99 10 87/94 (93%)

Table 5.32: Results of the GA online for the wheelchair driving task.
Training set size is the number of destinations selected in
the training set. Performance is given as the number of
correctly predicted destinations over the total numbers of
destinations in the online use.

in the speller, due to movement artifacts, distraction, and a higher
ratio between targets and nontargets, therefore we used a number of
repetitions higher than in the case of the speller. Results are shown
in Table 5.32. Subject B2 recorded training data on a day and test-
drove the wheelchair on two other days; Subject B4 did part of the
tests on the same day of training, and part on a different day. The
performance obtained is good for both subjects, especially if considered
that the wheelchair didn’t move very smoothly, and the experiments
were made in an environment where there were other people talking
and making noise. Moreover, during some experiments an electrode cap
was used instead of stand-alone cup electrodes; this is a remarkable fact
because electrodes had high impedance (10-30k(2), and channel O1 was
used instead of Oz without retraining the classifier. The P300 classifier
worked equally well with both montages.

4The use of this setup was not planned in advance, but was due to a coincidence.
In the same days of the wheelchair experiments we had to test a new conductive
gel with the electrode cap; so we tried to use the electrode cap with the GA
classifier and the wheelchair BCI just to see if we got meaningful signals. After
unexpectedly achieving 100% correct targets in the first run, we decided to use
the cap in more experiments on both subjects, as a test of the robustness of the
classifier.
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‘As T said, the Big Bosses, ay’, his voice sank
almost to a whisper, ‘ay, even the Biggest, can make
mistakes’.

J.R.R. TOLKIEN — The Lord Of The Rings

Real BCIs sometimes misclassify user intent, and much research is
devoted to improving BCI classification ability in order to improve their
performance. An alternative way to improve BCI performance is the
early identification of errors and their automatic correction. We know
from the literature that BCI errors elicit error potentials (ErrP), and the
detection of ErrP could be a viable way to improve BCI performance.
In this chapter some experiments with error potentials, arising from
mistakes both of subjects and of the machine they are interacting with,
are presented. The chapter is closed by some considerations about the
impact that ErrP detection may have on the performance of a BCI; in
particular, the case of a P300 speller is studied.

6.1 User Errors

Our interest in error potentials lies in using them for BCI, as a mean
to improve the performance of a BCI, by automatically aborting the
commands that the BCI has got wrong. Nonetheless, we concentrated
first on ErrPs induced by of human mistakes, on which the knowledge
appears to be more consolidated. We designed two experiments to this
aim, taking inspiration from the literature.

Eriksen Task There are different tasks that have been used to study
ErrPs in the literature; the first task we concentrated on is one of the
many variants of the task originally presented by Eriksen and Eriksen
in [121], which appears to be widely used to study attention and error
potentials. Subjects are presented with stimuli on a computer screen in
rapid succession, each consisting of one target arrow pointing either left
or right, and two other “noise” arrows pointing either in the same or
the opposite direction of the target arrow (see Figure 6.1); subjects are
supposed to press one of two buttons, either left or right, indicated by the
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tit
i3

Figure 6.1: Graphical interface used for Eriksen tasks. In both cases
the subject is supposed to press “right”; the top and bottom
arrows are used as a disturbance.

target arrow. Subjects are asked to respond as quickly as possible, and
in fact they have a short time limit to press the button ; the exact length
of this limit is defined during a preliminary session, where subjects also
learn to respond fast. The limit is chosen long enough that a subject is
able to respond in time almost always, but short enough to induce him
to make mistakes, i.e., to press the wrong button; we used limits ranging
from 300 ms to 400 ms, depending on the subject. The direction of the
target and noise arrows are randomized and balanced, so that the four
possible combinations are equally represented. In order to avoid visual
ERPs interfering with ErrP, arrows are left on the screen for 500 ms after
the button pressing.

Each subject participated in several sessions, each one consisting of
100 trials (stimuli) separated by 1.5s; EEG at positions Fz, Cz, Pz,
Oz, and also EOG were recorded at 512 Hz, as explained in Section 3.1.
During recording sessions, if a subject failed to respond within the given
time, a sound signaled the fact and the trial was discarded from further
analysis.

In this kind of task the subject is not told of an error by the system,
but he becomes soon aware of it, as the error is due only to time pressure.
Following the literature (e.g., [63]), we measured time beginning from
the stimulus for our analysis. This is reasonable, because it is the event
of pressing the button that generates the error potentials!.

Five young healthy subjects performed Eriksen tasks in one or two
sessions, divided in runs of 100 trials each. Figure 6.2 shows the

LOut of curiosity, we compared the averages of epochs synchronized on the stimulus
and on the key pressing. Indeed, the difference between epochs with and without
errors is stronger when the synchronization instant is the key pressing.
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Figure 6.2: Error-minus-correct means for five subjects in Eriksen tasks.
Units are seconds and microvolts. Time 0 is button pressing
time.

difference between the averages of ErrP epochs and the averages of non-
ErrP epochs (error-minus-correct means) for all subjects, band-passed
in the range 1-10 Hz. There is an evident Ne component in all subjects,
stronger in Cz, followed by a Pe component except for Subject S9; the
negativity peak coincides with the time of button pressing, which is
consistent with the theory that subjects realize of their error even before
moving their fingers, but too late to suppress the movements.

Stopwatch Task In the “stopwatch” task, a subject is asked to
mentally estimate a fixed amount of time, which is very similar to what
was presented in [67]. This task is more similar to the way a BCI could
exploit error potentials, as subjects are not aware of an error until the
system they are interacting with gives them a feedback.

More precisely, in each trial the screen is initially blank; a black circle
appears on the screen, and this signals the subject to start mentally
keeping track of the time passing. When the subject thinks that a
predetermined amount of time has passed (5s in our first experiments,
then we reduced it to 3 to speed up recordings), he presses a button, and
this makes the circle disappear. After a short pause, 500 ms, a feedback
appears as a black circle containing either the word “OK” or “NO”,
depending on whether the time estimated by the subject has been close
enough to the requested time. The feedback remains on the screen for a
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Figure 6.3: Error-minus-correct means for five subjects in stopwatch
tasks. Units are seconds and microvolts. Time 0 is feedback
time.

second, and then it disappears, leaving the screen blank until the next
trial, which begins 3 s after.

Some subjects seem to learn to estimate time better during each
session, but their performance drops again when a new session begins.
If the tolerance for the estimation error were fixed, such subjects would
make many mistakes at the beginning of a session, and virtually none
near the end. In order to keep the error rate uniform within a session,
we used a dynamic tolerance: After every successful trial (i.e., when the
subject estimates the time within the current tolerance), the tolerance is
reduced by a few hundredths of seconds; after two consecutive errors, the
tolerance is increased by a few tenths. The initial value of the tolerance
has been determined in preliminary experiments and set to 400 ms for
all subjects; during experiments, it went from as low as 50 ms to more
than 1s.

Five young healthy subjects performed stopwatch tasks in one or two
sessions, divided in runs of 20-30 trials each; EEG and EOG were
recorded, with the same montage and frequency of the Eriksen task.
Figure 6.3 shows the error-minus-correct means, again band-passed in
the range 1-10 Hz. For this task, ErrPs are studied by using the feedback
appearance as time 0. There is an evident Ne component in all subjects,
although weaker for two of them, with latencies ranging from 260 ms
to more than 400 in one case; a Pe is clearly discernible only for three
subjects. Subject S1 presents a visible oscillation at about 8 Hz, which
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-1 -0.5 0 0.5

Figure 6.4: Error-minus-correct means for Subject S1 in stopwatch
tasks. Units are seconds and microvolts. Time 0 is feedback
time.

is not probably related to ErrP, as it is present even a second before
the feedback. The fact that this oscillation is weaker ca. 500 ms before
feedback, i.e., the time of button pressing, and it is more evident in
channel Cz (see Figure 6.4) suggests that maybe it is a kind of p rhythm.

6.1.1 Automatic Detection

ErrPs can be useful in a BCI only if they can be detected automatically;
here, the method we used is described.

First, data are segmented in epochs ranging from 100 ms before the
synchronization instant to 500 ms after it. The synchronization instant
is the key pressing for the Eriksen task and the feedback onset for the
stopwatch task. Epochs containing strong EOG activity are discarded
before further analysis; in particular, if the EOG exceeds at any time
the threshold of 50 uV, the epoch is discarded.

The implication of discarding epochs in a BCI is that in those
cases there is no way to correct possibly wrong responses. Obviously,
robustness with respect to EOG contamination is a desirable property
for a detection algorithm, but we preferred to concentrate first on
producing something working, and leave the improving of its robustness
for the future. The results of a first work where a very simple idea is
used to evaluate and address this problem are described in Section 6.3.

After discarding noising epochs, remaining data are then filtered in
the band 1-10Hz; this filtering enhances the signal-to-noise ratio by
eliminating frequency components extraneous to ErrP. Filtered signals
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show, on average, a difference between ErrP epochs and non-ErrP ones,
but only in some time intervals; these intervals are those in Figures 6.2
and 6.3 where the means are not zero. We decided to concentrate
only on the these intervals for ErrP detection, and developed a way
to automatically determine significant intervals.

Student’s t-test is used to find time points where the ErrP and non-
ErrP epochs differ; for each channel and time point, the distribution of
signal samples are divided in two groups, depending on whether they
came from ErrP or non-ErrP epochs, and their mean is compared. In
formulas, this means considering signals s.;(t) from channel ¢ of ErrP
epochs and s () from the same channel of non-ErrP epochs as random
variables, where ¢ ranges on the sampling times from —0.1 to 0.5s. The
t-test is used to see if, for any given ¢ and ¢, the mean of s.;(t) differs
significantly from the mean of s.o(t); the significance level has been
chosen to be 0.01, but much smaller p-values have been often found in
analyzing data.

The t-test requires that the distributions of the samples under test be
normal and have the same variance. This has been verified by means
of normal probability plots drawn for a subset of time instants. In a
normal probability plot, samples are plotted in a graph as empirical
probability against values. Although in some cases the tails of the
observed distributions are longer than the Gaussian ones, the departure
from normality is never dramatic. It must also be noted that the t-
test is used only to get a rough idea of where the two averages differ
significantly, and it is not important if the p-values are not very precise.
Equality of variance has been also tested in a more formal way by
applying the F-test to data from some subjects, and it is verified at
significance level around 0.01. This check has been done only in a
preliminary analysis to verify our assumption; the automated procedure
skips this step.

The t-test is applied at every sampling time, and it finds interesting
time points. These points tend to lie in groups, because the filtered
signals have a strong autocorrelation for short lag; but intervals may be
many and of different sizes, with “holes” in between (see the top part of
Figure 6.5 for an example), while we are interested only in finding one
contiguous time interval containing all the interesting features of signals.
For this reason, a clustering algorithm is run on the time points found by
the t-test to fill holes and discard isolated points or small intervals. We
chose DBSCAN [122], a clustering algorithm based on density, because
it clusters together nearby points and ignores outliers, which is exactly
what we need. More precisely, DBSCAN has two parameters, k and ¢,
and divides points in three categories: core points, whose neighborhood
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Figure 6.5: Procedure for the identification of significant intervals. Top:
areas in green contain the samples that passed the t-test
with a p-value of 0.01 or less. Middle: clustering of samples.
Bottom: the interval used for classification.

of radius ¢ (e-neighborhood) contains at least k points, border points,
which are contained in the e-neighborhood of a core point and are not
core points themselves, and noise points, which are all the other points.
Core points that are less than € apart are iteratively fused in one cluster,
and border points are assigned to the same cluster of the core point in
whose e-neighborhood they are contained. Noise points do not belong
to any cluster.

For our application, a cluster is transformed in an interval by taking
the smallest interval containing the cluster; in other words, any gap is
filled (see Figure 6.5). For the DBSCAN parameters, we have chosen
k = 10 and € = 60ms; k is also the minimum number of points in a
cluster (a cluster contains at least a core point and the points in its
neighborhood), so the smallest interval found by DBSCAN must be at
least k samples long, which, in our case, means 10/(512 Hz) ~ 20 ms. ¢ is
also the minimum distance between two core points in different clusters,
hence sequences of contiguous points from the t-test less than 60 ms are
fused together; when Ne and Pe components are present, they generate
(more or less) contiguous sequences of points passing the t-test, and
these sequences are fused by clustering as they are closer than 60 ms.

If more than one interval (cluster) per channel is found by DBSCAN,
only the largest interval will be considered in the further processing
steps. More often than not, the channels with the most significant
interval found by the t-test have been Cz and Fz, in accord with
the literature. For this reason, we use only these two channels for
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epoch classification. As a further simplification, the intervals found by
DBSCAN for the two channels are fused together (the minimum interval
encompassing both is taken), and used for both channels.

The significant intervals are used to extract two different kinds
of features: raw sample values and coefficients of polynomial
approximation. Features of the first kind are just the values of the
EEG samples falling within the time interval found with the above
method for the channels Fz and Cz of each epoch. The second kind
of features is computed by fitting (in the least square sum sense) two
third-grade polynomials to the EEG signal from the Fz and Cz channels
of each epoch; the 8 (4+4) coefficients of both polynomials represent the
extracted features.

Features are then fed to classifiers; we used a total of four different
classifiers: LDA, k-NN, a Bayesian classifier, and a SVM. A linear
discriminant analysis (LDA) classifier was used for both kinds of
features. If we call & the vector of features, then LDA finds a vector of
weights w and a scalar ¢ such that (w,x) — ¢ = 0 is the linear decision
boundary between two regions of the feature space corresponding to the
assignments of either class in a binary classification problem (see [123]
for more details).

Another classifier used on raw samples is k nearest neighbor (k-
NN) [124, 125], which is probably the simplest classifier one can think
of and still achieve respectable performance. When k-NN classifies a
given example, it looks at the k nearest examples in the training set
and chooses the majority class. We used 5 as the value of k, and
the Euclidean distance in the feature space as the metric for distances
between examples. In presence of noise, the fact that there are more
examples of one class than another biases the classifier in favor of the
more represented class; in order to reduce this effect, randomly chosen
non-ErrP epochs are discarded from the training set so as to equalize it.

We used also two methods from the literature, which were already
been applied to detect other event-related potentials: the Bayesian
method described in [116], and the SVM-based approach [58] already
used for P300s, as seen in Section 5.3. The SVM-based method was
applied to all the four channels of whole epochs, as a sort of a check
that the selection of channels and time interval would not lower the
classification performance.

The Bayesian approach cited above considers signals s, 1(¢) and s, (%)
at time t from channel ¢ of respectively ErrP and non-ErrP epochs
as Gaussian random variables, and it also assumes that samples from
different channels or taken at different times are independent and have
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Subject Size | LDA | Bayes | k-NN | P. LDA | SVM
g1 ErrP 309 | 79% 73% 74% 85% 85%
N-ErrP | 1390 | 84% 74% 83% 81% 87%
ErrP 166 | 58% 61% 62% 66% 67%
N-ErrP | 831 73% 65% 68% 69% 72%
ErrP 189 | 5% 65% 47% 68% 70%
N-ErrP | 366 | 69% 66% 76% 70% 5%
ErrP 35 60% 74% 63% 69% 69%
N-ErrP | 189 | 80% 75% 86% 81% 72%
ErrP 83 67% 58% 67% 81% 81%
N-ErrP | 760 | 83% 68% 1% 81% 81%

S8

S9

S10

S11

Table 6.1: 10-fold cross-validated results of ErrP detection in Eriksen
tasks

the same variance. This results in a very simple discriminant function
DD ) = peo)? < DD (D) = pea (1))’ (6.1)
c t c t

where sg)(-) is the signal from the channel ¢ for the epoch i, and pi (%)
and fi.1(t) are the mean for the channel c at time ¢ of, respectively, all
the ErrP and non-ErrP epochs.

While the independence assumption is clearly false, the model would
be too complex to be used without it, and the final discriminant
function (6.1) seems to work nonetheless. It is interesting to note that
Equation (6.1) states that an example is classified depending on the
distance from two points in the feature space, which are the means
taken over the training examples for each class.

6.1.2 Classification Results

Results of the methods just described in detecting ErrPs are shown in
Tables 6.1 and 6.2 for the Eriksen and stopwatch tasks respectively.
Percentages represent the fraction of ErrP or non-ErrP epochs correctly
classified (recall). To have a robust estimation of the performance, we
applied 10-fold cross-validation to the classification step; the step that
finds the interesting time interval was not cross-validated, because it
has been seen to vary very little when discarding a small number of
examples. The size shown in the tables is the number of epochs, either
ErrP or non-ErrP, that remained after discarding the most noisy ones.

In general, the best classifiers seem to have been SVM and LDA
applied to polynomial coefficients. The additional information made
available to SVMs does not appear to have given any advantage to
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Subject Size | LDA | Bayes | k-NN | P. LDA | SVM
312 ErrP 39 54% 67% 74% 59% 67%
N-ErrP | 99 68% 70% 74% 75% 74%
q1 ErrP 89 56% 66% 69% 60% 61%
N-ErrP | 287 | 63% 70% 73% 67% 70%
913 ErrP 38 58% 66% 64% 58% 68%

N-ErrP | 33 64% 61% 64% 64% 18%
ErrP 60 47% 73% 60% 67% 68%
N-ErrP | 117 | 64% 74% 58% 71% 74%
ErrP 75 53% 51% 55% 52% 56%
N-ErrP | 121 | 63% 60% 60% 65% 64%

S6

S14

Table 6.2: 10-fold cross-validated results of ErrP detection in Stopwatch

tasks
Subject . Size Performance
Train. | Test

g1 ErrP 181 139 86-88%
N-ErrP 935 513 84-86%

g8 ErrP 108 133 61-70%
N-ErrP 580 586 62-70%

39 ErrP 122 126 80-86%
N-ErrP 328 173 51-59%

Table 6.3: Results of ErrP detection with GA in Eriksen tasks

them; thus, concentrating on shorter time intervals seems a good idea,
as it permits to achieve the same performance but requires less resources
than using the whole epoch. The Bayesian classifier and k-NN performed
a little worse in general, although in a couple of cases outperformed the
two best classifiers by a small margin. The Eriksen task seems to elicit
ErrPs that are more easy to classify than those from the stopwatch
task. Subject S13 has recorded only few epochs (71 remained after
discarding EOG-contaminated epochs), and this small number may
explain the poor performance, not mentioning the fact that the ErrP
seen in Figure 6.3 is not very strong. Subject S14 has the weakest
response and indeed classification is slightly better than random.

We tried also the genetic algorithm (GA) described in Section 5.4
on some data recorded in Eriksen tasks. Table 6.3 shows the results,
expressed as percentage of correct classification for the two classes. In
this case, epochs from 200 ms before the key pressing to 600 ms after were
used, with a decimation factor of 4 (128 Hz was the resulting frequency)
and detrending; also, removal of epochs with noisy EOG was performed.
Data was divided in two sets, one for training and one for testing, and
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o

Figure 6.6: Graphical interface for the Ferrez-Millan task

the GA was run twice for each subject. Fitness was a combination of
precision (i.e., the number of correctly predicted examples of a class
over the number of examples predicted as belonging to that class) and
recall for ErrP, with a weight of %/3 for precision, and /3 for recall.
The performance for the first two subjects is good, in line with the
results of the best classifiers in Table 6.1, while the GA appears to have
some difficulties in recognizing trials without ErrP of Subject S9. These
results suggest the GA could be a good method to classify also ErrPs,
and not only P300s, but a more extensive work is needed to verify its
effectiveness.

6.2 Machine Errors

In the previous section we have studied errors made by human subjects,
but in the BCI field, ErrPs due to machine errors are more relevant. For
this reason, we have set up two different experiments to study this kind
of ErrP.

Ferrez-Millan Task In the first experiment we replicated the settings
described by Ferrez and Millan in [72]. The interface is shown in
Figure 6.6; the user is supposed to fill either the left or the right bar
by pressing one of two buttons. Each bar is composed by ten parts,
and every time the user presses a button, the next part gets filled,
according to the button pressed; and when either bar is full, the trial
ends. The user is free to choose either left or right, but the interface is
programmed such that with a probability of 20% the wrong bar grows.
To avoid unwanted overlapping of different parts of a trial, the user is
not supposed to press any button until the word “GO” appears at the
center, which happens after a pause of at least 1.5s from the previous
trial; feedback, i.e., bar filling, is given 500 ms after a button pressing,
when all motor activity should be over.

Subjects are fully aware of how the system works; nonetheless, epochs
relative to “errors” are significantly different from epochs with no errors,
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Figure 6.7: Error-minus-correct means for five subjects in Ferrez-Millan
tasks. Units are seconds and microvolts. Time 0 is feedback
time.

as shown in Figure 6.7. In three subjects there is a very strong Ne
component (more than 10 uV), followed by a weaker Pe, while the other
two have weaker responses but still visible (the vertical scale of Figure 6.7
is almost four times that of Figure 6.3). Results in Table 6.4 reflect the
intensity of the responses: the classification work best with the subjects
with the strongest responses. For Subject S10, results are practically
random, except for the Bayesian classifier, which achieved good results
also for the other subjects. LDA applied to polynomial interpolation and
SVM appear in general to be a little worse than the Bayesian classifier,
but better than the other k-NN and LDA applied to raw samples. All
in all, it seems that we have been able to discriminate ErrP even in this
case, more related to BCI.

P300-Speller Task In the last experiment we made, a BCI was
simulated by following the P300-speller protocol described in Section 3.2.
The interaction with the BCI was simulated in the sense that subjects
were told that the BCI would select letters basing on subjects’ P300s,
while in reality it selected the right letter with a probability of 80%, and
did not consider the EEG recordings at all. The letter to spell was told
to the subjects before the beginning of each trial, and when a wrong
letter was spelled, the subject had to choose the backspace symbol in
the next trial.
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6.2 Machine Errors

Subject Size | LDA | Bayes | k-NN | P. LDA | SVM
g1 ErrP 165 | 72% 78% 68% 73% 80%
N-ErrP | 544 | 83% 82% 82% 78% 86%
g9 ErrP 38 68% 76% 66% 74% 1%
N-ErrP | 104 | 83% 85% 84% 84% 83%
310 ErrP 36 53% 69% 42% 47% 50%

N-ErrP | 141 | 59% 65% 47% 64% 62%
ErrP 74 59% 70% 65% 65% 59%
N-ErrP | 251 | 72% 2% 72% 69% 73%
ErrP 49 61% 76% 76% 80% 80%
N-ErrP | 221 | 86% 80% 82% 83% 82%

S11

5S4

Table 6.4: 10-fold cross-validated results of ErrP detection in Ferrez-
Millén tasks

We chose an 80% probability because it is reasonable for such a BCI,
and it is low enough to have a considerable number of error epochs
without frustrating users too much and inducing them in believing that
the BCI does not work.

Five subjects took part in this experiment, each in three separate
sessions. Figure 6.8 shows the usual error-minus-correct means, filtered
in the 1-10 Hz band. Four out of five subjects have a strong Ne with a
peak at about 300 ms, followed by a proportionate Pe 100 ms after. The
response of Subject S3 is rather weak, with peaks of less than 3 uV in
absolute value.

Compared to the most similar task, the Ferrez-Millan, latencies appear
to be longer, and this is true also for Subjects S1 and S4, which took part
to both experiments: The negative peak is about 100 ms later for the
P300-speller task than for the Ferrez-Millan task. This might suggest
that the more complex the task, the bigger the latency is, but the number
of subjects employed is not enough to support any such correlation (see
also Figure 6.9 and its discussion at Page 117).

Table 6.5 shows the classification results, but with a difference with
the respect to the previous tables: This time, the three sessions of
each subject were used as the folds of a 3-fold cross-validation. Except
for Subject S3, the best classifiers (SVM and LDA with polynomial
coefficients) reach about 80% of recall, which is good. The performance
for Subject S3, whose responses in Figure 6.8 are the weakest, is just
slightly better than random.

We tested the GA described in Section 5.4 also on the ErrP data
recorded in the P300 speller task; the results are shown in Table 6.6.
The preprocessing of data is very similar to the one used for the method
described through this chapter. Epochs running from 200 ms before the
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Figure 6.8: Error-minus-correct means for five subjects in P300-speller
tasks. Units are seconds and microvolts. Time 0 is feedback
time.

Subject Size | LDA | Bayes | k-NN | P. LDA | SVM
31 ErrP 89 69% 65% 65% 69% 79%
N-ErrP | 352 | 86% 5% 87% 83% 84%
ErrP 56 54% 46% 50% 54% 52%
N-ErrP | 284 | 66% 55% 62% 68% 56%
ErrP 83 59% 72% 64% 72% 70%
N-ErrP | 384 | 81% 81% 82% 84% 84%
ErrP 88 74% 5% 68% 7% 84%
N-ErrP | 434 | 86% 76% 86% 88% 82%
ErrP 41 54% 66% 63% 73% 1%
N-ErrP | 245 | 81% 2% 80% 87% 80%

S3

54

S5

S7

Table 6.5: 3-fold cross-validated results of ErrP detection in P300-speller
tasks
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Subject Training Test Recall

ErrP | N-ErrP | ErrP | N-ErrP ErrP N-ErrP
S1 66 268 23 94 69%+6% 90%+3%
S3 58 223 14 111 55%+11% | 61%+t4%
S4 65 296 23 112 75%+5% 81%+2%
S5 50 283 38 156 67%+6% 82%+6%
S7 38 202 10 61 64%+10% | 76%+6%

Table 6.6: Results over 10 runs of GA for ErrPs in the P300-speller task

stimulus to 600 ms after, were decimated by a factor 4 ( 128 Hz was the
resulting frequency), and detrended; epochs with strong EOG activity
were removed. The training set for each subject is composed by the data
recorded in the first two sessions, and the test set by the data of the third
session. The fitness function is the combination of precision and recall
of ErrPs described by Equation 5.8 (Page 81). Ten independent runs of
the GA were executed for each subject, and the performance on the test
set of the chromosome with the highest fitness was measured. Table 6.6
shows the mean value and the standard deviation of the recall of targets
and non-targets over all the runs for each subject.

If we compare Tables 6.5 and 6.6, we can see that the results are
rather similar. If we compare the LDA classifier applied to polynomial
coefficients (column P. LDA), which was consistently one of the best
classifiers, with the GA, the major difference can be seen for Subjects S5
and S7, which happens to be also the two subjects with the smallest
number of ErrPs in the training set. It seems that the GA is more
sensitive to the size of the training set; this may warrant to reserve
the GA for the recognition of P300s, for which it is easier to collect
more epochs. As a side note, the number of epochs between the two
tables differ slightly; this is due to the fact that the rejection of epochs
contaminated by EOG was applied after the decimation for the data
used by the GA. The difference in processing is the results of the way the
software running the genetic algorithm, originally developed for P300s,
has been adapted to deal with ErrPs.

We can conclude that even in this case of the P300-speller task, which
is the nearest thing to ErrPs elicited by a real BCI, automatic detection
of ErrPs has been possible with good results (except for one subject).
This is very promising for the improving BCI performance by means of
ErrPs.

Comparison Of Classification Intervals Figure 6.9 shows the intervals
found by the DBSCAN algorithm and used for the classification of ErrPs
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Figure 6.9: Intervals used for ErrP classification for different subjects
and tasks. The four variable-width lines in the lower part
represent the number of times each time interval has been
used for the given task. Time on the horizontal axis is in
seconds.

for the various subjects and tasks. Also, the variable-width lines in the
lower part show how often a particular interval has been used for the
given task (the thicker the line, the more often the corresponding time
interval has been used). In the figure some intervals are prominent
for being very short: Subjects S13 and S14 in the stopwatch task,
Subject S10 in the Ferrez-Millan task, and Subject S3 in the P300
speller task; the difference between the error and the correct responses
seems not significant, and, accordingly, the classification performances
are very low, even for the SVM classifier, which uses the whole epoch.
The summary lines are consistent with the observations about the ErrP
latencies made before: The significant intervals for the Eriksen task
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begin much earlier than those for the other tasks; moreover, it seems
that ErrPs from the P300 speller are slightly later than those from the
stopwatch and Ferrez-Millan tasks.

6.3 EOG Artifacts Handling

EOG artifacts may corrupt EEG data, and users may unconsciously
blink or move their eyes in different ways depending on the stimulus
and thus drive the BCI using their eyes instead of only their brains,
especially healthy users. The problem of EOG-corrupted epochs is
particularly important when the number of epochs is not very high or
for the ErrPs in the spelling tasks, where the ErrP stimulation occurs
after a period of intense visual stimulations: We had a user that initially
tended to systematically blink after the end of the P300 stimulations in
the spelling tasks, i.e., very close to the to ErrP stimulus. For this reason,
we preferred to remove epochs with strong EOG activity altogether. The
problem with this approach is that it cannot work online: When running
online, a classifier must choose whether the given epoch contains an ErrP
or it does not; the system may be programmed to take no action when
the EOG channel goes above a given threshold, but this is equivalent to
classify the corresponding epoch as not containing an ErrP.

In preparation for the online experiments, we studied the behavior of
the classifiers described above when dealing with epochs contaminated
by EOG activity. More precisely, we removed contaminated epochs from
the training set, but left them in the test set. Table 6.7 shows the cross-
validated results obtained when no epoch is removed from the test sets;
epochs with noisy EOG were removed from the training sets. Apart
from the handling of contaminated epochs, the training and validation
procedure is the same used for the compilation of Table 6.5, so it is
possible to make comparisons. It is easy to see that the performance on
the full test set is very similar to the performance on the “clean” epochs;
the only exception is Subject S7, which exhibited a poor performance
on EOG-contaminated epochs.

There is another way to handle noisy epochs: They can be considered
as not containing an ErrP by default. Table 6.8 shows the results of
Table 6.5 corrected to take into account discarded epochs, which are
treated as if they were classified as non-ErrP. By comparing these new
number with those in Table 6.7, we can see that this approach does not
seem to be a good idea; the only possible exception, again, is Subject S7,
which exhibits a decrease in the recall of ErrPs, but also an increase
in the recall of non-ErrPs. Whether these contrasting variations in
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Subject Size | LDA | Bayes | k-NN | P. LDA
g1 ErrP 92 67% 65% 65% 67%
N-ErrP | 450 | 86% 74% 85% 84%
ErrP 97 51% 48% 49% 54%
N-ErrP | 477 | 66% 59% 60% 68%
ErrP 90 58% 68% 63% 70%

S3

54 N-ErrP | 426 | 80% 80% 81% 83%
35 ErrP 91 75% 76% 68% 78%

N-ErrP | 452 | 8% 76% 86% 88%
g7 ErrP 88 47% 65% 65% 60%

N-ErrP | 443 | 82% 65% 69% 82%

Table 6.7: 3-fold cross-validated results of ExrrP detection in P300-speller
tasks on the whole test set

Subject Size | LDA | Bayes | k-NN | P. LDA
g1 ErrP 92 66% 63% 63% 66%
N-ErrP | 450 | 89% 81% 90% 87%
3 ErrP 97 31% 27% 29% 31%
N-ErrP | 477 | 80% 73% 7% 81%
94 ErrP 90 54% 67% 59% 67%
N-ErrP | 426 | 83% 83% 84% 86%
35 ErrP 91 71% 73% 66% 75%

N-ErrP | 452 | 87% 7% 86% 88%
ErrP 88 25% 31% 30% 34%
N-ErrP | 443 | 90% 85% 89% 93%

S7

Table 6.8: 3-fold cross-validated results of ErrP detection in P300-speller
tasks with correction for removed epochs

120



6.4 Online Results

Subject Train. Online
Size Performance
B1 ErrP 84 23/35 (66%)
N-ErrP 290 51/74 (69%)
B3 ErrP 65 38/65 (58%)
N-ErrP 193 91/137 (66%)

Table 6.9: Results of the online ErrP classification. Training and test
set size is the number of selections of each class. Performance
is the fraction of correct classification.

Subject S7 compensate or make a difference is not possible to tell without
a framework for judging the performance of the ErrP classifier and its
impact on the underlying BCI, which is the topic of the next chapter.

6.4 Online Results

The experiments with the P300 speller reported in Section 5.5.1
made use also of ErrPs. We used one of the classifiers presented in
Section 6.1.1: LDA applied to raw EEG samples (after band-passing and
decimation). Classification was applied both offline and online during
such experiments; of particular significance are the experiments made
with the speller in free mode, i.e., when the ErrP classification influences
the spelling and the user has a real-time feedback about the classifier
decisions and performance. Such experiments were performed only by
subject B1 and B3, as already explained in Section 5.5.1.

Results of the online experiments are shown in Table 6.9. The
classifiers were tested in sessions different from those used for training,
so they are really indicative of a possible online use. For both users
the classification performance is well above chance level, but this is not
enough to say whether ErrP detection has been useful for such users.
Again, answering this question (and the more general question whether
ErrP detection can improve the performance of BCI) requires a more in-
depth analysis of the performance measuring in a BCI. The next chapter
contains such analysis and also the answer to the question of whether
ErrPs can improve the performance of a BCI and how much.
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7 Measuring The Performance Of
A BCI

Sam paid it out slowly, measuring it with his arms:
‘Five, ten, twenty, thirty ells, more or less,” he said.
‘Who’d have thought it!” Frodo exclaimed.
‘Ah! Who would?’ said Sam.

J.R.R. TOLKIEN — The Lord Of The Rings

Incorporating an automatic correction system based on ErrPs in a BCI
may be a way to improve its performance. Yet, if the classifier that
recognizes the ErrPs makes too many mistakes, it may make things worse
instead. So, the work on ErrP detection in the previous chapter brought
up the question when ErrP detection can improve the performance of
a BCI, and this in turn brought up the question how to measure the
performance of a BCI. This chapter details the problems we found with
methods for performance measuring found in the literature, and how we
tried to address them using an approach based on wutility. This approach
is then applied to the results of the previous chapters so as to answer the
question when ErrP detection can improve the performance of a BCI,
and how much.

7.1 Performance Measures

If ErrPs can be used to improve a BCI performance, a way is needed
to measure such performance in order to assess any improvement.
The performance of a BCI can be expressed in many different ways;
classification accuracy, information transfer rate, letters or words per
minute, kappa statistic, and others are used in the literature.

The problem is that there are many different BCI protocols, and
their differences must be taken into account when comparing results
for different experiments; it is not fair to compare the accuracy of a
binary protocol, e.g., a BCI based on motor imagery of left /right hand,
with the accuracy of a more complex protocol, like a motor-imagery
BCI discriminating four movements or a P300 speller with a 36-symbol
matrix. It is not only a problem of the number of possible choices in a
selection, but also the time needed to operate different BClIs is different.
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Classification accuracy, i.e., the fraction of examples correctly
classified, is the simplest performance measure used in the BCI
literature. Sometimes, the error rate is used instead, but it is equivalent
to accuracy, as the error rate is the fraction of examples wrongly
classified. They are both easy to compute and to understand, but have
many shortcomings. They do not make any distinction between different
kinds of errors, while different kinds of errors have different impact (cost)
in general. Moreover, classes that appear less frequently in the data are
weighted less in the accuracy computation, and this is likely to lead to
biased classifiers and biased evaluations.

Another way to measure BCI performance is Cohen’s Kappa
coefficient [126]; the Kappa coefficient is a way to express the agreement
between two classifications. This measure takes into account the
different frequencies for classes and also how errors are distributed
among classes, although its meaning is not so explicit as for accuracy.

Information transfer rate (ITR — sometimes simply called bit rate)
seems to be the performance measure most used in the literature. It
has many advantages: It does not depend on any particular protocol, it
takes into account both the number of choices and time, it is strongly
theoretically grounded, and it could be applied also to continuous ranges
of choices [127].

There is a problem with information transfer rate, though: In many
articles in the literature, no real transfer is measured, and instead a
theoretical figure from information theory is used. In [128], the authors
derive a formula to compute the (mean) number of bits transferred per
trial: .

B:10g2N+plog2p+(1—p)log2N7_pl, (7.1)
where N is the number of possible choices per trial, and p is the accuracy
of the BCI, i.e., the probability that the BCI selects what the user
intends. Equation (7.1) divided by the trial duration gives the mean
number of bits transferred per time unit. This formula, as the authors
say, is derived from Shannon’s theory [129], and it represents the mutual
information between the user’s choice and the BCI selection, under the
assumption that all choices convey the same amount of information (i.e.,
they are chosen by the user with equal probability), p is the same for
all the possible choices, and that all the wrong choices have the same
probability in case of error. In this view, a subject communicates by
using a BCI that is a noisy channel, where the noise is introduced by
the BCI every time it selects the wrong choice.

According to Shannon’s noisy channel coding theorem [129], it
is possible to achieve an arbitrarily small error probability in a
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communication on a noisy channel as long as the information transfer
rate does not go beyond a certain limit: the channel capacity. The
channel capacity is given by the mutual information', and this seems
to justify the use of mutual information in Equation (7.1). The only
problem is that Shannon proved his famous theorem by transferring
information embedded in ever increasing blocks of bits, and in practice
only very complex error correction schemes have permitted to get near
Shannon’s limit. For a BCI, where a human subject sits at one end of
the noisy channel, it is not possible to implement such complex error
correction schemes, and thus the limit given by the mutual information,
as in Equation (7.1), represents a theoretical figure, unreachable by any
real BCI whose error rate is significantly different from zero.

To better understand how far from practice can be the performance
measure of Equation (7.1), let us focus on a simple example with a
standard P300 speller, like the one already described in Section 3.2 but
without ErrP detection, where there are 36 symbols. Let us suppose
that the speller speed is 4 letters per minute, and that a user achieves a
performance of 45% in accuracy, which is low, but still far better than
random-level accuracy (2.7%). By substituting p = 45% and N = 36
in Equation (7.1), we get B = 1.36bits. The theoretical bit rate for
this user would be 4 - B = 5.4 bits/min; this is not very fast, but, still,
communication should be possible.

Now let us look at the practical use of such a BCI: The most natural
way would be to move on to the next letter when the speller gets one
right, and to “hit” backspace every time the speller is wrong. What is the
actual transfer rate for this way of using the speller? Since every letter is
more likely to be wrong than not, and this happens to backspace as well,
wrong letters pile up and the expected time to spell a letter correctly
is infinite, and thus the answer is, on average, exactly 0bits/min (see
also the derivation of Equation (7.14)). While it could be still possible
to raise p above 0.5 by increasing the number of stimulations per letter
and render the P300 speller of the example usable, the channel capacity
measured by Equation (7.1) promises a performance far beyond what is
attainable once the details of the BCI are taken into account.

There exists a generalization of formula (7.1) that makes use of the
confusion matrix and allows each letter to have a different probability of
occurrence and a different accuracy [130], but such formula has the same
shortcoming of (7.1), i.e., it treats the BCI as a communication channel

!Actually, the channel capacity is the maximum mutual information over all
probability distributions for the input symbols. The input symbol probability
cannot always be controlled, especially in the BCI context, where it is not possible
to use arbitrary coding systems.
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with no reference to the way the channel is actually used; moreover,
it has a huge number of parameters. In order to keep the exposition
simpler, we limit the discussion to the simplified formula, but all our
considerations can be easily extended to use the general formula.

7.2 Utility: An Alternative Performance Measure

Given the problems of the performance measures described above, we
developed a different measure, more user-centered, based on the concept
of wtility. If the BCI is supposed to serve the user as a tool, the user
should get a benefit when the BCI works correctly. We can formalize
this utility concept by defining utility as the mean benefit over time for

the user: -
b(t)dt
lim 7f0 ®)

U=E
T—o00 T

(7.2)

where b(t) is a benefit function, which assumes positive (or negative)
values depending on whether the choice at time ¢ conforms to (or
contradicts) the user intention.

Let us consider the case of a discrete BCI, i.e., a BCI system with
a finite number of outputs. In this situation, the benefit function will
be discrete, and defined only in the time-instant ¢; when an output is
generated. In fact, a quantifiable benefit can be defined only when an
output is selected (e.g., a letter printed by the speller, or a target reached
on the screen). In mathematical terms we may write

K
b(t) =Y bpd(t — ty), (7.3)
k=1

where K is the number of outputs in the interval [0,7]. Putting
Equation (7.3) into Equation (7.2) and observing that T = Zle Aty,
where Aty =t — ty_1 for k > 1 and Aty = t1, we may write

T
. SN S bed(t — ty)dt
T—o00 T

(7.4)

K
=E| lim 7% i
K—oo Zk‘:l Atk

For a stochastic variable n generated by an ergodic process the following
relation holds X
D Sy
lim ==—=— =E 7.5
Jim 2L (75)
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Figure 7.1: Different metrics measure performance at different points

which can be used to derive a formulation of utility valid for a discrete-
BCI system:

(7.6)

e[ Bl P

E[At;]|  E[A]

This formula is easily readable as the ratio between the average benefit
(among all the possible discrete choices) and the average time needed
to get it. If a BCI system is able to reach the desired target (maximum
benefit) in a shorter interval of time, utility will be larger.

Figure 7.1 helps in pointing out a major difference between the utility
concept and other measurements used in the literature. Our utility
measures the performance of a BCI in terms of the satisfaction of the
user intention, by comparing the action performed by the BCI (e.g.,
words spelled, commands issued to an external device) with the action
intended by the user; this comparison is performed at the level of block
‘B’ in Figure 7.1. Conversely, the other performance measurements
(such as the information transfer rate or the Kappa coefficient) compare
the output of the classifier with the desired output (the comparison is
performed at level of block ‘A’), without taking into account the way this
classification is used by the BCI system. As utility is application related,
it is an elective measurement to compare different implementations of
BCI applications (i.e., with or without a automatic correction system).

7.3 Utility And Bit Rate In A P300 Speller

Let us apply the concept of utility to the P300 speller. A benefit is given
to the user whenever the speller writes a correct letter. A correct letter
can be spelled in just one trial if the BCI classifier predicts the column
and raw properly, or more than one if the classifier is mistaken, and the
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user has to try to erase the wrong letter first and then respell the desired
letter. So, evaluating the utility as expressed in (7.6) for a P300 speller
requires only to compute the expected time between two correct letters.

In order to keep the exposition simpler, we use the same assumptions
of Equation (7.1); moreover, we assume that the accuracy of the speller
p is constant and the system has no memory, i.e., each trial is not
influenced by the result of the previous one. These assumptions permit
also to compare the utility with the ITR easily.

If we call T1, the expected time needed to correctly spell a letter, and
c is a constant expressing the duration of a single trial, i.e., the time to
spell a letter either correctly or wrongly, then:

T, =c+ (1 —p)(T& + 1Y), (7.7)

where T]gl) is the cost of a backspace, and TIEI) is the cost of respelling
the letter after the backspace; in other words, if the letter is wrong,
which happens with probability 1 — p, one has to take into account the
time of a backspace followed by another letter, with the correction of
any other error that may ensue. Similarly,

1) =+ (1)1 + 1) (78)
Y =c+(1-p)(@y) + 1), (7.9)

where superscripts are used to distinguish the costs of different
occurrences of letters or backspaces; by substituting the (7.8) and (7.9)
into the (7.7),

T, =c+2(1—ple+ (1—p2(TP + 7P + 1" + 7®) . (7.10)
By iterating the above steps, one gets
T, =c+2(1 —p)e+4(1 —p) e+ 8(1 —p)c+ ...
= ci(Q —2p)t. (7.11)
i=0

This is a series, and, if 2 — 2p < 1, it converges to its limit

C

T = .
L= o1

(7.12)

But when p < 0.5 the series does not converge, and the expected time to
spell a letter correctly is indeed infinite, i.e., the information transferred
is 0.
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— Utility bit rate
5H---ITR bit rate
Kappa coeff.

0O 01 02 03 04 05 06 07 08 09 1
Accuracy

Figure 7.2: Comparison between utility, theoretical bit rate, and Kappa
coeflicient for a P300 speller with 36 symbols.

The utility of the P300 speller is simply the ratio between the average
benefit b;, carried by any correctly spelled letter divided by the expected
time 71, required to spell it:

U—T—L.

(7.13)
We could take 1 as a measure of the benefit of a letter, or we can use the
information conveyed by a letter. Only N —1 symbols can appear in real
words (the backspace cannot), and we are measuring the information
contained in the spelled text; together with the assumption of equal
probability, this permit to assert that the information conveyed by a
spelled letter is by, = log2(N — 1) bits. While we disregard the fact that
in reality different letters appear with different frequencies, this is useful
to compare Equation (7.13) with the theoretical bit rate (the ITR) based
on Equation (7.1).
By substituting the values in Equation (7.13), we get
(2p — 1) logy(N — 1)

U= 7.14
: , (7.14)

while the theoretical bit rate is given by Equation (7.1) divided by ¢,
the time of a trial:
B logy N +plogyp+ (1 —p)logy yh

T = = . 7.15
TR =~ ; (7.15)

Figure 7.2 compares the two measures and shows how different they
can be. The reason is that (7.15) measures the capacity of a channel,
i.e., the maximum performance obtainable by a noisy channel, while
(7.14) measures the expected performance of the same channel when
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information is conveyed in a specific way; in our case, this is the natural
way of using a P300 speller. As expected, the latter curve lies always
below the theoretical limit, and it is equal to zero when the accuracy
is too low. For high accuracy values, the two curves almost coincide,
although there is a small gap due to the presence of a backspace symbol,
which is obviously never used if no error is committed. The bit-rate
curves in Figure 7.2 are consistent with the plots in [131, Chapter 3],
where a somewhat similar approach to measuring a BCI performance is
developed.

It is worth noting that the graph shows regions where the channel
is useless for a P300 speller (when p < 0.5 in our case) and also
areas where the speed of the speller is very far from the theoretical
limit. The reported comparison should also warn us against applying
Equation (7.15) blindly, because it may provide very unrealistic scores
when accuracy is not very high.

Figure 7.2 shows also the value of the Kappa coefficient versus
accuracy. It is apparent that also Kappa is not a good predictor of
the usefulness of a BCI.

The problems pointed out above are not meant as a critique against
the use of mutual information per se, because mutual information is
useful as a mean to compare different BCls, as already explained. But
this comparison gives only a rough indication on relative performances,
and for the evaluation of the gain of using ErrP detection we need
something more precise. Therefore, we developed a different approach
to performance measuring based on the actual task.

7.4 Impact Of ErrP Detection In A P300-Speller

Using the same techniques employed in the last section, we can compute
the utility of a P300 speller that makes use of ErrPs for automatic
error correction, and come closer to answer the question about the
improvement brought by ErrPs. As explained in Section 3.2, such a
speller selects a letter by means of P300 detection, displays the letter on
the screen, and if it detects an ErrP, it cancels the last selected letter.

While the performance of a P300 speller can be expressed as a function
of one parameter p that conveys the goodness of the classification, the
performance of an ErrP classifier needs two parameters, because the
accuracies for error and correct trials could be different.

As it will be apparent in the following, using recalls of the two classes
(error and correct) simplifies the formulas. So, let us define g as
the recall for errors, i.e., the fraction of times that an actual error is
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recognized by the ErrP classifier, and r¢ as the recall for correct trials,
i.e., the fraction of times that a correctly spelled letter is recognized
by the ErrP classifier. Along the line of the previous assumptions, we
assume that rg and r¢ are constant and do not depend on the actual
letter.

The utility of the speller is still given by Equation (7.13), but 71, is to
be computed according to the functioning of the new speller. There are
four possible cases:

1. The P300 speller selects the correct letter, and the ErrP classifier
correctly recognizes it. This happens with probability p; = prc.

2. The P300 speller selects a wrong letter, and the ErrP classifier
does not recognize the error. This happens with probability ps =
(1 —p) (1 —rg), and the user has to “spell” a backspace and then
the letter again.

3. The P300 speller selects the correct letter, and the ErrP classifier
wrongly detects an error. This happens with probability ps =
p(1 —rc), and the user has to respell the letter (which has been
canceled by the error detection system).

4. The P300 speller selects a wrong letter, and the ErrP classifier
recognizes the error. This happens with probability py = (1—p) rg,
and the user has to respell the letter; the wrong letter is canceled
by the system.

As before, let us call T1, the expected time to spell a letter correctly,
and T the expected time to effectively issue a backspace command; both
times take into account the correction of any error, i.e., the removal of
possible misspelled letters. The expected time to spell a letter correctly
can be computed by weighting the time for each of the four possible
cases above with their probabilities.

T, =p1-c+py-(c+Tg+1TL) +p3-(c+TL) +ps-(c+1T1)
=prc-c+(1—-p)(1—rg) - (c+Ts+11)
+p(1—rc) - (c+TL)+ (1 —p)rg-(c+1TL), (7.16)

where ¢ is the constant duration of a trial, as before. In this case ¢ also
includes the time for the feedback used by the ErrP classifier, but, given
the small latency of ErrP and the fact that any P300 speller must give
a feedback so as the user can decide the next letter to spell, the effect
on ¢ would be negligible, if any.

A formula for Ty can be derived in the same way, by considering the
four cases:
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1. The P300 speller selects the backspace, and the ErrP classifier
correctly recognizes it. This happens with probability p; = prc.

2. The P300 speller selects a letter, and the ErrP classifier does not
recognize the error. This happens with probability po = (1—p) (1—
rg), and the user has to issue the backspace command twice.

3. The P300 speller selects the backspace, and the ErrP classifier
wrongly detects an error. This happens with probability ps =
p(l — r¢), and the user has to reissue the backspace command
(which has been canceled by the error detection).

4. The P300 speller selects a letter, and the ErrP classifier recognizes
the error. This happens with probability ps = (1 — p) rg, and the
user has to reissue the command; the last wrong letter is canceled
by the system.

Again, by weighting time with probability:
Tg=prc-c+(1—p)(1—rg)-(c+21B)

+p(A—rc)-(c+T8)+ (A =p)re-(c+Tp). (7.17)

By subtracting Equations (7.16) and (7.17) from each other (only one
term on the right-hand sides differs), it is possible to derive the equality

Ty =1T1. (7.18)

Solving either equation leads to

C
S pre+(1-p)rg+p—1°

., =18 (7.19)

This formula represents a limit of a series, the sum of ever increasing
sequence of letters and backspace with ever smaller probability; the limit
exists only if the denominator in Equation (7.19) is positive, i.e., when

1 —
re > —};9(1-—TE). (7.20)

Figure 7.3 shows the boundaries defined by Inequality (7.20) for different
values of p; the inequality is satisfied for the points lying above the lines.
The time for spelling a letter is finite, i.e., the P300 speller can be useful,
only for the values of rg and r¢ satisfying Inequality (7.20). It can be
noticed that the constraint becomes tighter as p diminishes, with recall
of ErrPs becoming ever more important.
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Figure 7.3: Condition for usability of a P300 speller with ErrP detection

Inequality (7.20) can be written also as

prc>(1—-p)(1—1g), (7.21)

where the two sides are the probabilities p; and py (defined at Page 131);
in other words, the speller can be used as long as the number of correct
selections surpasses the number of wrong letters. The number of letters
canceled by the error detection system affects the speed of the speller,
but it does not affect the fact that the right letter is spelled eventually.

We can now compute the utility for the P300 speller with automatic
error correction. As before, we use the information conveyed by a spelled
letter, by, = loga(IN — 1) bits, for the benefit; by substituting by, and the
value for 11, given by Equation (7.19) in Equation (7.13), we get:

U= (Prc+(1—P)TE+p_1)10g2(N_1)- (7.22)

C

Now we can answer to the question: When does ErrP detection
give any improvement to the P300 speller? The answer can be
found by comparing Equations (7.14) and (7.22), or — equivalently —
Equations (7.12) and (7.19).

A first observation is that, as expected, Equation (7.12) can be seen
as a particular case of Equation (7.19) with rc =1 and rg = 0, i.e., no
error is ever corrected.
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Figure 7.4: Comparison between two P300 spellers with and without
ErrP detection

For p < 0.5 Equation (7.12) has no sense, but, as shown in Figure 7.3,
it is possible to operate a P300 speller even with such a high error rate
as long as the error detection is sufficiently accurate. Actually, it could
be argued that this is an unlikely scenario, as P300 detection can be
done after many repetitions, while ErrP must be detected in a single
sweep; yet, this is part of the whole picture.

When p > 0.5, Equations (7.12) and (7.19) must be compared directly.
In order to have any improvement,

prc+(1—p)rg+p—1>2p—1, (7.23)

i.e.,

re > g +1. (7.24)

Figure 7.4 shows the boundaries defined by Inequality (7.24) for
different values of p (for p < 0.5 the comparison has no sense);
points above the lines represent values of rc and rg for which ErrP
detection is advantageous. In this case, as p grows the area defined
by Inequality (7.24) shrinks; this happens, because as p grows the
performance of the “vanilla” P300 speller gets better and better, and
it becomes harder and harder for the ErrP classifier to improve the
speller performance.
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Figure 7.5: When ErrP detection improves the performance of a P300
speller

An alternative form for Inequality (7.24) is

prc+(1—p)rg > p, (7.25)

where the left hand side is equal to p; + py4 (defined at Page 131); this
means that ErrP detection is advantageous when the overall accuracy of
the P300 and ErrP system is better than the accuracy of the sole P300
system.

Figure 7.5 summarizes both Figures 7.3 and 7.4, and shows the values
of rc and rg for which ErrP detection is advantageous for the whole
range of p. As before, the part of the plane above the lines is the useful
part; values below the lines are either useless or counterproductive.
Figure 7.5 can be used as a guide to decide to bias the ErrP classifier
either toward correct or erroneous epochs, depending on the value of p.

Figure 7.5 shows also where the results of the ErrP classifiers in
Table 6.5 lie; for each subject, only the best and the worst results (in
term of performance improvement) are shown. Subject S3 can hardly
get any improvement, but the other four subjects can take advantage
of ErrP detection even if their accuracy for the P300 speller is as high
as 70-80%. If we consider the performance of the genetic algorithm for
P300 detection shown in Table 5.27 (Page 95) as indicative, Subject S1
is not helped by ErrP detection, because of the high performance of the
P300 classifier (about 85%). Subjects S3, S4, S5, and S7, which scored
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Subj. P300 LDA Bayes k-NN P. LDA
Acc. Ut. | Ut. Ratio | Ut. Ratio | Ut. Ratio | Ut. Ratio

s1 87% 15 14 0.95 12 0.81 14 094 14 0.93

80% 12 13 1.04 11 0.87 13 1.02 12 1.01

3 56% 2.5 | 3.2 1.28 2.1 0.85 2.3 0.93 3.7 1.49

80% 12 8.8 0.72 7.6 0.61 7.8 0.63 9.3 0.75

S4 64% 5.7 7.4 1.29 8.1 1.42 79 1.38 8.7 1.51

80% 12 11 0.93 12 0.96 12 0.96 12 1.01

g5 42% 0 4.5 oo 3.7 o 3.6 o0 50 oo

80% 12 13 1.08 11 0.93 13 1.04 14 1.10

g7 3% 0 0 — 0.41 oo 0.71 o0 1.1 o0

80% 12 11 0.92 9.2 0.75 9.9 0.80 12 0.96

Table 7.1: Performance for an integrated P300+ErrP speller when noisy
epochs are classified

about 56%, 64%, 42%, and 37% with the P300 speller respectively, can
be helped (tough the margin for Subject S7 is tiny). It is interesting to
notice that Subjects S5 and S7 fall in the “unlikely” scenario mentioned
above, where the P300 speller accuracy is below 50%.

The gain of introducing ErrPs in a P300 speller can be computed as
the ratio of the utilities given by Equations (7.22) and (7.14):

_prcet+(d=-pret+p-1
(2p - 1)

subject to the constraints that both the numerator and the denominator
are positive, i.e., Inequality (7.20) and p > 0.5. If only the denominator
is negative, it means that the P300 speller cannot work without ErrPs,
and hence g should be considered infinite. If both the numerator and the
denominator are negative, it means that the P300 speller cannot work,
with or without ErrPs, and hence ¢ is indefinite. If only the numerator is
negative, it means that introducing ErrPs renders the speller unusable,
and hence g = 0.

: (7.26)

7.4.1 Performance In The P300 Speller Experiments

Now we can compute the utility of the P300 speller with automatic
error correction and the gain with respect to a plain P300 speller, a
question we left open in the previous chapter. In order to do this,
we take the recall figures for errors of Table 6.7, where no epoch is
discarded from the test sets, and we use them together with the accuracy
figures of Table 5.27 obtained with the GA for the P300 speller. By
substituting those numbers in Equations (7.14), (7.22), and (7.26), we
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Subj. P300 LDA Bayes k-NN P. LDA
Acc. Ut. | Ut. Ratio | Ut. Ratio | Ut. Ratio | Ut. Ratio
s1 87% 15 15 0.99 13 0.89 15 0.99 15 0.96
80% 12 13 1.07 12 0.96 13 1.08 13 1.05
93 56% 2.5 | 3.0 1.20 1.8 0.73 2.4 0.99 3.1 1.25
80% 12 10 0.84 9.0 0.73 9.7 0.79 10 0.85
4 64% 5.7 7.5 1.31 8.5 1.47 8.0 1.39 8.9 1.54
80% 12 12 0.95 12 1.00 12 0.98 13 1.04
g5 42% 0 4.0 oo 34 o0 34 o0 4.6 oo
80% 12 13 1.06 12 0.94 13 1.03 13 1.09
g7 3% 0 0 — 0 — 0 — 0 —
80% 12 12 0.95 11 0.90 12 0.95 13 1.02

Table 7.2: Performance for an integrated P300-+ErrP speller when noisy
epochs are considered not to contain an ErrP

obtain Table 7.1; we used N = 36 and ¢ = .25 min to have the utility
measured in bits per minute. The table shows, for every subject, the
accuracy of the P300 speller obtained by the GA, the utility of the
P300 speller without automatic error correction, and then, for each of
the classifiers trained on ErrP data, the utility of the speller with error
correction and the ratio between the utilities. Ratios greater than 1
indicate that error correction improves the performance. The second line
for each subject is obtained with an accuracy of the “basic” P300 speller
is 80%, the value used during the recording sessions to generate some
errors. The table confirms what we said before commenting Figure 7.5.
Subject S1 is not helped at all by error correction; Subjects S3 and S4
can get an improvement of about 50% with the LDA classifier applied
to polynomial coefficients; Subjects S5 and S7, who suffered from low
accuracy of the P300 speller, could use the speller with error correction.
The numbers in the table tell us more, tough: For example, the utility
for the last subject in Table 7.2 is so low (it is equivalent to about 1 letter
every 5 minutes) that we can say that the subject have no control of the
BCI even with automatic error correction; and also the performance of
Subject S3 is very low, less than a letter per minute.

Table 7.2 is similar to Table 7.1, but performance is computed by using
the recall values from Table 6.8, i.e., by considering epochs contaminated
by EOG noise as not containing an ErrP. The performance values are
not very different from those in the previous table, with two notable
exceptions: a reduced gain for Subject S3 when using the LDA classifier
applied to polynomial coefficients, and the impossibility to use the P300
speller even with error correction for Subject S7. In most cases it seems
that both ways of handling epochs contaminated by EOG noise are
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equally good in most of the cases, but the idea of trying to classify
noisy epochs anyway seems to work better overall. This means that
thee classifiers are able to extract some meaningful information even
from epochs affected by artifacts.

As a final comment on Tables 7.1 and 7.2, we can say that for ErrP
detection is very important to have a high accuracy, more important
than for P300 detection, as ErrP stimulations are not repeated. There
are different ways to improve the accuracy: Work can be done to devise
better signal processing algorithm and classifiers, or new presentation
interfaces and protocol could be introduced that better capture the
subject attention and hence enhance the signal quality. Either way,
the utility metric can be used to assess the performance improvement
and thus to guide the development of algorithms and interface.

7.4.2 Comparison With The Theoretical Bit Rate

It is interesting to compare the gain in adding ErrP detection computed
with the approach based on utility and with an approach based on the
theoretical bit rate. The information theoretical gain of introducing
ErrPs can be computed as in [72], where the authors compare the
information per trial given by (7.1) with the following formula, which
they derived:

/

B=p- <log2 N +p'logyp' + (1 —p')log, ]1\7 p1> , (7.27)
where pt = prc+(1—p) (1 —rg) and p’ = prg/p;. In other words, they
derive the new accuracy p’ for the system after discarding outcomes
rejected by the ErrP detection, and use it in (7.1); the factor p; takes
into account the fact that discarded outcomes do not contribute to any
information transfer.

Figure 7.6 shows the performance gain factor obtained by applying
the theoretical bit rate approach (darker surface with blue grid) and our
utility-based approach (lighter surface with red grid). The two surfaces
show the ratios between the bit rate or the utility of a P300 speller with
and without ErrP detection as a function of the recalls r¢ and rg, for
the cases where the accuracy of the P300-based classifier is p = 0.6 or
p = 0.8, and there are N = 36 symbols in the matrix. The regions of
the two surfaces that represent gains greater than 1, i.e., the regions
in the rq,rg plane corresponding to points for which ErrP detection is
advantageous, and the magnitude of the gain can be very different. The
difference between the two approach is small for high values of p, and
it grows as the value of p gets smaller. The approach based on the
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Figure 7.6: Comparison of performance improvement ratio in a P300
speller (N = 36 symbols) computed according to utility
and theoretical bit rate, for different accuracies of the P300
speller p

theoretical bit rate seems to underestimate the contribution of ErrPs;
this is due to its tendency to underestimate the cost of errors, as shown
in Figure 7.2.

If we consider a slightly different scenario involving a binary BCI,
things are different, though. Let us consider the case where the two
commands of the binary BCI cancel each other, i.e., if the BCI recognizes
the wrong command, the user can undo it by selecting the other
command; e.g, the BCI drives a cursor in one dimension. We can
measure the utility of such a BCI by considering the time needed to
reach a given result, e.g., a position for a cursor. The time needed for
a cursor to reach one of two targets that lie on a line n step from the
starting position, and where the cursor moves with probability p in the
direction intended by the user, can be computed by modeling the task
as a 1-D random walk where p is the probability of moving in a given
direction (let us say right). For n and p sufficiently high the walk ends
on the right-hand target with probability 1, i.e., it ends on the left-hand
target with probability 0. So, we can simplify the model by considering
a walk that is unbounded on the left side.

It is interesting to notice that also the P300 speller can be modeled
as 1-D random walk bounded only in one direction; if consider the
number of letters to spell plus the number of letter to cancel with
backspace as the distance from the target, writing n letters with a P300
speller exhibits the same behavior (in terms of time and probability
distribution) as a 1-D random walk to a target n steps afar: Every
correct letter that is spelled is a step toward the goal; every wrong
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Figure 7.7: Comparison of performance improvement in a binary BCI
(p=80%) due to ErrPs obtained according to different
formulas

letter is a step back, which must be undone by subsequently selecting
backspace. For this reason, we can use the equations found for the P300
speller to compute the expected time needed to move the cursor by one
step in the right direction: Equation (7.12) when no error correction is
used, and Equation (7.19) when error correction is present. In order to
reach a position n steps farther, the time must be multiplied by n; the
exact value of n is not important, as we are interested only in ratio of
the two time lengths, not in their values. So the time to reach the target
is

c
= 7.28
"o 1 (7.28)

when no automatic error correction is used, and
T = ¢ (7.29)

n
prc+(1—-p)re+p—1

with error correction.

The ratio between Equations 7.29 and 7.28 can be used to predict the
performance improvement when ErrPs are used, in terms of expected
time to complete the task. While we can use the ratio between
Equations 7.27 and 7.1 to compute the gain according to the theoretical
bit rate measure. Figure 7.7 shows the ratios between the performances
with and without ErrP detection for a binary BCI controlling a 1-D
cursor, where the accuracy of the base classifier is p = 0.8 or p = 0.6,
computed both with the channel-capacity approach (darker surface with
blue grid) and our utility-based approach (lighter surface with red grid).
The situation is the opposite of Figure 7.6: Here the channel-capacity
approach overestimates the impact of automatic error detection.
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7.5 Application Of Utility To More Complex BCls

Sometimes a BCI entails a more complex interaction, where users reach
their final goal after more than one step, e.g., hierarchical menus.
Computing the utility in such cases is more complicated than the
examples shown so far, because the influence on the utility of right and
wrong selections at different steps is different. Yet, the example in this
section shows that it is possible and rather easy to compute utility even
in such cases.

There are two ways to do it: simulation and modeling. Simulation
means taking a Monte Carlo approach (where a random number
generator is used to simulate the repetition of many experiments,
according to given probability distributions for different events, and
averages are computed), while modeling means computing the relevant
expected result from a mathematical model, as we did in the previous
sections. In this section we will use a Markov model, which is general
enough to be applied to virtually all interesting cases of discrete BCls.

The interface chosen as an example is based on the P300 and presents
the user with four choices (we label them with the first four letters ‘A’,
‘B’, ‘C’, and ‘D’), which are highlighted one by one in random order.
An epoch is associated with each highlighting event, and each epoch is
classified as target or non-target independently of the others. When one
of the choices has been highlighted and recognized as eliciting a P300 for
three times, the choice is considered confirmed, and the corresponding
action is carried on. The execution of an action concludes a single run,
and then a new run begins, with all counters reset.

For this application it makes sense to assign a negative utility to wrong
selections and a positive utility to right selections; the values may differ
among different selections, according to the importance of selections, or
the adverse effects of selecting a particular item at the wrong time. We
can expand the utility given in Equation (7.6):

Zx,yES P (.CC, y) Cay

U= ,
Zx7yes P (l’, y) t:vy

(7.30)

where S is the set of all possible choices, P (x,y) is the probability of
the interface selecting the choice y when the user intended to select x,
Czy is the benefit of the interface selecting the choice y when the user
intended to select x, and t,, is the expected time the interface takes to
select the choice y when the user intended to select x.
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To simplify the exposition, we assume that any correct choice has a
utility of +1, while a wrong choice has a utility of —1, i.e.,

-1 ifx#y
cwy—{+1 ifr=y (7.31)

We assume also that all the possible choices are selected by the user with
equal probability, i.e., P (x) = i for every x. Under these assumptions
the interface is symmetric with respect to the choice desired by the user,
so we can use the model to find the expected utility for one choice (e.g.,
x=‘A") and substitute the result for all the other choices. So, the (7.30)

becomes:

S aes P (@) X,es P () cay
Y ees P(0) s P (y]7) tay
A Y s P (e = A)cay
CAX Yo Pyl = A)tay
dyesPllr=A)cay D csP(ylr=A)cay

_ — . (7.32
> ,es P (Wlr = A) fay » (7.:32)

where we define o = ¢ P (ylz = A)tay.

In order to evaluate Equation (7.32), we need to compute P (y|z = A)
and tp. We can do this by modeling the application as a Markov
chain [132]. The state of the chain represents the number of times
each choice has been selected. Every possible state can be identified
by a 4-tuple of numbers of selections, a number for each possible choice:
(na,np,nc,np), 0 < nx < 3. The states where a choice has been
selected three times, i.e, the states corresponding to an actual selection
of a choice, are modeled as four absorbing states, because reaching any
of these states terminates a run; for absorbing states, the number of
selections for all the choices is not important, the only thing that counts
is which choice has reached 3 selections. All other states are transient.
The initial state is the state (0,0,0,0), where all selections are zero.

We can express transition probabilities as a function of the recall for
targets, rr, and the recall for non-targets, ry. If the intended selection is
‘A’, the probability of transitioning from state (na,np,nc,np) to state
(na + 1,np,nc,np) is equal to %TT; the probability of transitioning to
states (na,np+1,nc,np), (na,np,nc+1,np), and (na, n,nc,np+1)
is %(1 — rN); finally, the probability of remaining in the same state is
%(1 — TT) + %TN.

In our model, P (y|A) and ta, represent the probability of ending
in the absorbing states y and the expected time before that happens,
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respectively. There are formulas to compute them for an absorbing
Markov chain [133]. If P is the transition matrix, when there are
absorbing states, the matrix can be partitioned in this fashion:

p— (Cg ?) , (7.33)

where @) is the transition matrix for transient states, and R is the
transition matrix from transient to absorbing states. The average time
spent in the transient state j when starting from the state ¢ before
reaching any absorbing state is given by the element 4,5 of the matrix
T = (I — Q)~!'. The probability of ending in the absorbing state j
when starting from the state 7 is given by the element 7,5 of the matrix
G=(I-Q) 'R

We can now compute all the elements in Equation (7.32). ta is the
expected time before reaching any absorbing state; this can be computed
as the sum of the expected time spent in all transient states when
starting from the initial state. Let us say that the initial state is the
number 1 in the transition matrix, then

tA = Z Ty . (7.34)
J

P (y|z = A) is simply an element in the matrix G:
P(ylr =A) =Gyy. (7.35)

Given the symmetry assumptions above, G, can only assume two
different values, depending on whether y is the target (intended) choice
or not. Let us call those values g7 = G1a when y is target, and gnT =
G1B = G1c = G1p when it is not.

Putting everything together, we get

Zyes P(ylz =A) CAy
ta

U=

_ ZyES GlyCay g1 — 3gNT

Zj Ty B Zj T3,

The Markov chain has 85 states, 4 absorbing states plus 3* = 81
transient states (where each of the four choices may have been selected
0, 1, or 2 times); hence, its transition matrix has 852 = 7225 elements,
and, although it is sparse, doing symbolic computation on such a big
matrix is cumbersome. Yet, it is quite easy to numerically compute
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Figure 7.8: Comparison between utility and ITR to measure
performance in a BCI

the elements of P, and hence T, given the values of r1 and ry, and we
can study how the utility varies as r1 and ry vary by evaluating the
utility for a few values of r1 and ry, and interpolating for intermediate
values. This can be used for example to decide to bias the classifier
toward targets or non-targets so as to improve the expected utility.

We can compare the utility with the theoretical bit rate (the channel
capacity) of the P300 classifier. The theoretical bit rate for the classifier
can be computed by applying the definition of mutual information to
the confusion matrix; for a classifier with recalls rt and ry, as defined
above, and probability of target presentation equal to 1/N, the confusion

matrix is
= T
((1—TN><N—1> rN<N—1>> : (7.37)
N N

Figure 7.8.a shows how utility and theoretical bit rate vary with rp
and rn (theoretical bit rate has not been plotted when the classifier is
worse than random). Although — not surprisingly — they both grow
as rp and N grow, the two measures show a different bias toward non-
target recall. This is more clear in Figure 7.8.b, which shows the two
measures when rr = 1 or ry = 1 for different values of the other recall.
Low values of ry penalize utility much more than the channel capacity,
because utility takes into account the asymmetry between targets and
non-targets: A non-target classified wrongly may cause damage, while
misclassified target only slows the interface. So, utility gives better
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information about which is the best classifier when more than one is
available.

Monte Carlo simulations, where 1 million runs have been simulated for
different values of 1 and ry, agree with the results of the Markov model
to the third or fourth significant digit. The results of the simulations
are not reported, as they have been used only to confirm the predictions
of the Markov model.

7.6 Utility and Comparisons

In this chapter the utility of different BCIs has been derived. In all the
cases, the formulas and the computations have been done by putting
the performance of a classifier (for P300s, ErrPs, or motor imagery)
in a model. This is a very powerful characteristic of the utility idea:
It is possible to evaluate different classifiers on the same interface by
simply plugging the classifier accuracy figure in a suitable model of the
interface. An advantage of this approach is that it is possible to give a
realistic estimation of the performance of a BCI, and also predict the
performance of many different BCIs when they use a given classifier. In
this way it is possible to give a fairer evaluation of different classifiers,
an idea very similar to the one proposed in [134].

So, the concept of utility can be used for two different purposes: A
first one is the one showed in this chapter, i.e., the optimization of a
particular BCI, by computing the expected performance for different
values of tuning parameters (in the cases shown above the introduction
or not of an ErrP-based correction mechanism). A second purpose is
the comparison of different classifiers, by comparing the utility of one or
more predetermined BCls.
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Where many paths and errands meet.
And whither then? T cannot say.
J.R.R. TOLKIEN — The Lord Of The Rings

This thesis has presented methods, validated by experiments, to
automatically identify event-related potentials in EEG activity for use
in BCI; two particular potentials, P300 and ErrP, have been the focus
of the work.

For P300 detection, we first applied a method based on ARX models,
already used in the literature to study event-related potentials, to filter
EEG signals, and used some standard classifiers to classify the filtered
signals. The results were not satisfying; in particular, we tried the
method on a data set from a BCI competition (recorded with a P300
speller), and there was a significant difference between the performances
of our method and of the winning entries.

We tried to understand if the performance of our method on the
competition data set depended on the ARX filtering or on the feature
extraction and classification steps. Thus, we replicated a method from
the winners of the BCI competition, and used it to classify the output of
the ARX filtering. The results obtained on the components discarded by
the ARX model convinced us that the problem lied in the ARX filtering.

We explored then the path of automatic extraction of features from
raw EEG recordings. To this aim, we developed a genetic algorithm
that, together with a standard logistic classifier, was able to achieve
100% correct classification on the competition data set we used before.
The same algorithm performed well also on the EEG data we recorded
specifically for this work with a P300-based speller, even when compared
to standard algorithms from the literature.

The genetic algorithm was applied also to recognize P300s in EEG
data recorded from subjects affected by ALS, with some success.
Preliminary online tests showed that the classifier found by the genetic
algorithm can be applied in real time in an actual P300 speller and also
to drive a wheelchair, in a very noisy environment.

We found an interesting interpretation of the features extracted by the
genetic algorithm combined with the classifier trained on them. This
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interpretation shows how the parts of an EEG signal that are most
useful for the detection of P300 are not always those expected from the
information found in the literature. In fact, the genetic algorithm is
blind, and it is not tailored for a particular potential: Results indicate
that it can be effective not only for P300, but also for ErrP detection.

We explored a way to improve BCI performance by using ErrPs to
identify BCI mistakes. We first made experiments to detect ErrPs in
settings different from a BCI, with subjects performing tasks where
the knowledge about ErrPs seemed more firm in the literature. We
developed and tested new techniques to automatically detect ErrPs
and they proved to be effective. We moved then to a task more
similar to the typical interaction between a user and a BCI, and at
last we experimented with a BCI task: the P300 speller. Even in this
case, automatic detection of ErrP was possible and effective. Online
experiments were also carried on and confirmed the viability of online
ErrP detection.

We analyzed the performance gain that ErrP detection may give to
a BCI. We pointed out some limitations of a metric widely used in the
literature to measure BCI performance, the information transfer rate,
and then introduced a metric based on the concept of utility, which is
measured in a way related to the task performed by the BCI. Utility
measures the performance of a BCI from the point of view of its user,
and hence it can be used to tune and optimize the parameters of the BCI.
For the P300 speller, we chose the expected number of correct letters per
time unit as the measure of utility. Using this task-oriented approach,
we determined the constraints on the accuracy of an ErrP detector in
order to be helpful for a subject, and the performance gain achieved. We
think that a more widespread use of a task-based approach to measuring
BCI performance could be useful to the whole BCI community.

The utility for a BCI can be computed by modeling the BCI behavior
as a function of classical performance measures for classifiers, like
accuracy, recall, and confusion matrix. So, it is not too far fetched
to envision a fixed set of standard BCI applications that could work
as a test bed to compare different classification and signal processing
techniques.

The major part of the experimental work has been done offline.
This partly depends on the fact that we developed new classification
algorithms, which is better done offline; also, some limitations of the
EEG hardware we have been using have slowed the port of the algorithm
to an online settings. The development of new software components
to interface the hardware have permitted the to begin the work online.
While we are making further experiments, the performance of the online
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experiments done so far seems to be comparable to what we obtained in
offline experiments.

8.1 Future Work

More online experiments would permit also to validate the predictions
of the formulas in Chapter 6 about the possible improvements to a BCI
by means of ErrP detection and to assess the validity of the utility as a
way to optimize project parameters.

We are moving forward in developing the system described in
Chapter 3, with menus controlled by a P300-based BCI, and its
integration with an autonomous wheelchair. The completion of this
system will help in gathering more experimental data in a more realistic
setting.

The genetic algorithm presented in Section 5.4 seems to be effective
also for ErrP detection, but experiments with more data are needed to
confirm this impression. A possible extension of the application of the
genetic algorithm is to channel selection: It should be possible to extract
a measure of the importance of an EEG channel from the resulting
template, e.g., the energy of the template, and use it to choose the best
subset of channels. No work has been done on this aspect yet, because
we concentrated our efforts on other topics.

The final output of our genetic algorithm is a set of templates; this is
not necessarily the best approach. For potentials that are less stable in
time, maybe it would be useful to use features more complex than those
we used, associated with a classifier faster to train than the logistic one
in order limit the running time of the algorithm.

We have analyzed the gain in the performance of a BCI by means of
ErrP detection, but in that analysis we have considered the accuracy
and the speed of the BCI as fixed parameters. This is not entirely the
case, because it is possible to vary some parameters of the BCI, e.g.,
the number of repetitions in a P300 speller, and influence speed and
accuracy. An analysis of the impact of such variations on the overall
performance of the system would be interesting.

An adaptive system could be also conceived, where parameters of the
BCI are modified in real time to maintain the best trade-off between
speed and accuracy. For example, in the P300 speller the number of
repetitions could be adjusted based on measure of the confidence of the
classification.

As usual in the research, every time one make a step, many new
possibilities open and many other paths could be taken. The possibilities
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hinted above are just a small fraction of the ideas that come to the
mind, and, sadly, it is not possible to explore every single path. But the
fascination and the wonder of new discoveries lie also in this: There is
ever more to discover.

Still round the corner there may wait
A new road or a secret gate,
And though we pass them by today,
Tomorrow we may come this way
And take the hidden paths that run
Towards the Moon or to the Sun.
J.R.R. TOLKIEN — The Lord Of The Rings
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We shouldn’t be here at all, if we’d known more about
it before we started. But I suppose it’s often that
way.

J.R.R. TOLKIEN — The Lord Of The Rings

And it is all too likely that some will say at this point:
“Shut the book now, dad; we don’t want to read any
more.”

J.R.R. TOLKIEN — The Lord Of The Rings
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