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Introduction
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SLAM - Introduction

AUTONOMOUS ROBOTS NEED

@ To localize itself
e.g., GPS give us the coordinate

@ To build the environment map
e.g., know the plant of a building

— without any prior information
— in real time

WHAT 1s SLAM?

@ Simultaneous
@ Localization
o And

o Mapping
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Introduction
[e] Jelele]e]e]

Let's start from ...

TwWO COMMON PROBLEMS

In mobile robotics, but not solely mobile robotics!

LOCALIZATION MAPPING
@ Given a map of the environment @ Given the robot position
@ Given sensor measurements @ Given sensor measurements

e.g. images from cameras,

laser range finder scans, ...

o Estimate the robot position @ Build the map of the environment
; & \hE N
& % T
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Introduction
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Localization

LOCALIZATION - A SIMULATED EXAMPLE

Video localization.flv

@ The position of the coloured box is known (i.e. the map is known)
@ The robot sense and distinguish the map elements

Video from http://www.youtube.com/watch?v=MELYZ5r5V1c o7
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Mapping

MAPPING - A SIMULATED EXAMPLE

Video mapping.flv

@ The map is initially unknown (gray window)
@ The map is incrementally builded by measurements

Video from http://www.youtube.com/watch?v=ZfqLnZSAhZw 73



Introduction
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What happens in the real world?

KNOWLEDGE OF THE MAP KNOWLEDGE OF THE POSITION
@ Impossible in a lot of applications @ Usually unavailable or noisy/uncertain
e.g.: exploration of buildings, e.g.: lack of GPS signal in indoor, ...
underwater operations, ... L .
@ Thus, mapping is not applicable

@ Thus, localization is not applicable

SLAM - Simultaneous Localization And Mapping

@ The holy grail of the robotics, but not solely mobile robotics!

o Mapping requires localization < localization requires map
@ Answer to this question:

“Is it possible for a mobile robot to be placed in an
unknown /ocation in an unknow environment and for the
robot to incrementally build a consistent map of this
environment while simultaneously determining its location

within this map?”
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SLAM

ROBOT PATH AND MAP ARE BOTH UNKNOWN

A

Y
o A

! i
@
]
I

Robot path error correlates errors in the map

7
&
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Introduction
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On-line and Full SLAM

ON-LINE SLAM FuLL SLAM p(xi:¢, m|z1:¢, U1:t)

p(xe, m|zue, un:e) @ x1.:: entire path or trajectory

@ X¢: pose at time t o m: map (static)

® m: map (static) @ z1.:: measurements

@ Zz1.+. measurements @ up;: controls

@ uy+: controls

@ On-line: estimate the current pose

@ Most online-SLAM are incremental,

they discard zy.t—1, U1:t—1
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EKF-SLAM
[ Jolele]e]e]

EKF-SLAM Introduction

EKF-SLAM
@ Use a EKF as engine for the solution of SLAM problem
The earliest and perhaps most influential SLAM algorithm
Map is static and feature based, i.e., composed of points, m = {psw)}
For computational reason number of points small, e.g. < 1000

All noises are assumed to be Gaussian

© 6 6 o o

Needs of relatively small uncertainty to reduce linearization effects

EKF-SLAM STATE

[x¢, m]: both pose and map are in the state

(]

Motion model: only the robot moves, features are static
Map is initially empty
Map grows when new landmarks are perceived

Measures are sensor readings of map landmarks

e 6 6 o o

Updates refine current robot pose and map structure simultaneously
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EKF-SLAM
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EKF State Details

STATE

@ x: = [x,y,0]" robot complete pose in world reference frame T%)

o m=[p, pM) p™) p) ™) pIT cartesian coordinates of points

in world reference frame

- - 2 ux X w > w > (w T w ]
X Py Xpy Xp3 XPn
p pu > > p
ﬂW) Xp(W) JMJW) AM;W) AM(W) Amﬁm
T
ng) ZXP(W) z,,(W),,(W) Zpgw)p(w) > (W)p(W) ZP(W)',("W)
X = p(3W) Y = 5 5 1 T 5 " 5 o
ngVV) gVV) gVV) ngv)ngv) (W) (W) Pg )pg )
p” by by P by by
L n -
xp(W) (W)p(W) ng)pEW) gW)p(W) pS,W)pﬁW’_
z _ Z;(—)( me
im  Lmm
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EKF-SLAM
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Prediction Step - Robot motion

STATE PREDICTION

[x;l" mT]T = g(xt*h ug, m, 6)

Xe+1 = cos(0:)&x — sin(6:) Ay + x:
Ye+1 = sin(0:)Ax + cos(0:)Ay + y:
Oes1 = 6.+ A0

(W) _ (W)

Pa 11 = Pxo (Re) t+1
(W (W) ()
Pyi 141 Py: "¢ e A

. I

w w e I
Pi,, )t+1 P)((n )t N 1
p(W p(W) ~ T/'V
Yn  t+1 Yn t TRt

@ Motion is the standard motion in 2D

@ Map points are static,
i.e., the prediction left them unchanged

@ €= [Exve}ME@] NN(O7Z€)

i.e., noise is only on motion

14/73



EKF-SLAM
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Prediction Step - Robot motion - Jacobians - 1

STATE PREDICTION - JACOBIANS WRT STATE

[xZa mT]T = g(xt*h Us, m, E)
G, = fetramo)

X=fbp_1,U=Ut,M=Lme=0

Ogi(x,u,me)  Ogi(x,u,me)  dgi(xu,mee)  dgi(x,u.me)  dgi(xu,me) o Ogi(xu,me)
Ox oy o6 apg(r/) ap,(nW) ap(an)
Oga(x,u,me)  Ogi(x,u,me)  Igp(xu,me)  Oga(x,u,me)  Ogo(xu,me) o Oga(x,u,me)
_ x dy a0 3qu) apfvg\/) 3p(y:V)
Oga(xume)  Og(xume)  Ogalxume)  Oga(xume)  Ogalxume) | Ogalxume)
Ox Ay a0 Bpirv) ap%V) BPEV,,W)
1 0 —sin(6)Ax—cos(6)ay O 0 0
0 1 cos(0)Ax—sin(6)Ay 0 0 0
BT e e g
0 | diagonal =1
0 0 0 0 0
0 0 0 0 0 1
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EKF-SLAM
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Prediction Step - Robot motion - Jacobians - 2

STATE PREDICTION - JACOBIANS WRT NOISE

cos(f) —sin(d) O
sin(f) cos(f) O
1
0

Nt _ dg(x,u,m,e) 0 0 — |:Nm6tiont:|

9 Doy umuem=jum,e=0 0 0

0 0 0

16/73



EKF-SLAM
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Prediction Step - Robot motion - Jacobians - 2

STATE PREDICTION - JACOBIANS WRT NOISE
cos(d) —sin(f) O
sin(@)  cos(d) O
__ 9g(x,u,m,e) o 0 0 1
N, = 28lume) :

¢ X=y_1,U=Ut,M=[im,e=0 0 0

_ N motion;
N 0

PREDICTION STEP

e = g(p,_1,ue,0)
ft = Gtztflc;r Jr NthNtT ==

— Gmotionr 0 Zxx me ;otiont 0 Nmotiont T
- [ 0 I:| |:Z;-m me:| |: 0 | + 0 R: [Nmotiont 0}

T T
_ [G motion; zxx G motion; + N motion; Rt N motion; G motion; zxm:|

T T
me motion; me

= Only top-left block and two band are changed, most remains unchanged

this allow to speed up computation = O(n)
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EKF-SLAM
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Initial state

(]

EKF STATE
@ uo = [0,0,0]
0 00
@¥=1|0 0 O
0 0 0
@ Robot is in the origin -
@ No uncertainty on its initial position and

orientation

Trajectory and map are reconstructed up to a

rototranslation

The map is empty at initial step
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Landmark Addition
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Landmark Addition
#000000

The sensor

THE SENSOR

@ Measure points in polar coordinates

i.e., p, 0 values

@ w.r.t. robot reference frame
@ It recognize the ID of the landmark
o i.e., Landmarks uniquely identifiable
@ Correspondences are known
@ No data association issues
@ Physical limits:
@ Min and max distance
@ Min and max angle
@ Additive zero mean noise on measures
both for distance and angle
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Landmark Addition
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New Feature Addition - 1

SENSOR MEASUREMENT

@ Suppose the point i is perceived and is not
currently in the map
@ pj, Bi: the point in polar coordinate,
perceived by the sensor
o p{® = [pi cos(6y), pisin(6y)]
“INVERSE” MEASUREMENT
)

@ P/ TWR P,R
CONSIDER NOISE

o 1= [np,m6]" ~ N(0, %)

° pi=pi+n

o 0i=0;+mn

eﬁm:me»ﬂmmn

@ f TWR P,

'UZ
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Landmark Addition
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New Feature Addition - 2

CURRENT STATE

X = [x pgw) .. pgw) ]

INCREASE THE STATE DIMENSION
w w w

X:[x pg ). pg ) p£1ew)i|

ASSIGN THE PROPER VALUES

State modification:

X = IC(X7 m, [pnew> 0"9W17 77) =

X = X
w w
" = p{"”
_ pW) = pw
p) = pi”
w W) ~(R
pla) = T Bk,
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Landmark Addition
[e]e] Ielele]e]

New Feature Addition - 2

CURRENT STATE JACOBIANS
w) W) F=2=
X — [x p oopl ] )
[ o4() () () () Ofi(+) T
INCREASE THE STATE DIMENSION ox ap{™) apl"") apl") apllr)
mo Gy oy oy G
— (W) (W) (W) Ox 6pW 8pW 8pW Bpm\{,,
X= [X P1 Pa p"‘*w} o6()  Oh()  9B() .. 0h()  0h()
Ox (") opy") o) oper)
ASSIGN THE PROPER VALUES
- 3 Bfn(') Bf,,(-) 8fn(‘) e 861(') afn(')
State modification: Ox op) op0") op 2p0)
Ofpi1()  Ofpi1()  Ofpya() . Ofaa(l)  Ofnia(l)
X = £(x,m, [prew; Onew], ) = L o opl"  opy™) S
X = X
w w
" = p{"”
w w
) =l
w w
p) = pi”
w W) ~(R
pe) = T B
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Landmark Addition
[e]e] Ielele]e]

New Feature Addition - 2

CURRENT STATE JACOBIANS
w w F= 90 =
X — [x pg ) W) ] X
[ o4() () () () Ofi(+) T
INCREASE THE STATE DIMENSION Ox ap{™) opi™) apW W)
9fi() Bfl(&/)) aﬁ(% o af}\(/v)) 8f1((»)
X = [ wm o pW) g‘é‘\f‘l)] ox op op dpn OPhew
* P P P o) oB()  9B() ... O0B()  9H()
ox (") opy") o) oper)
ASSIGN THE PROPER VALUES
ofa(0) Ofn(+) ofn(-) - ofn(-) Ofn(+)
State modification: Ox op) op0") op 2p0)
Ofpi1()  Ofpi1()  Ofpya() . Ofaa(l)  Ofnia(l)
X = f(X, m, [pnew, 0new]7 77) = L ox ap(lw) anW) apgw) 39%) _
X = X — -
w)  _(w) | o0 --- 00
P1 = P
p(W) o p(vv) 0 1 0 0 o0
2 - 2
= 0 I 00
.. F =
(W) (W)
P = p
p?vv) _ Trzvv) BiR) 0 00 1 0
" |20 0 0 0 o
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Landmark Addition
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New Feature Addition - 3

JACOBIANS
| 0 o0
(-
F=20 - 8fo , 10
sl 000
0
of (-
8fn+1(')
on

matrices are sparse
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Landmark Addition
[e]e]e] Iele]e]

New Feature Addition - 3

JACOBIANS
| 0 o0
(-
F=20 - 8fo , 10
w0 00
0
of (-
8fn+1(')
on

matrices are sparse

THE NEW STATE
@ pu= f(ﬂhﬂ‘"ﬁ [pnew, 9neW]7 0)
o Y =FX*F" + N, N’

@ X" is the covariance with the

increased size

@ Products are simple due to sparsity
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Landmark Addition
[e]e]e] Iele]e]

New Feature Addition - 3

JACOBIANS
| 0 o0
of (-
F=20 - 8fo , 10
"gi 0 o0

0 NOTES

N = 20 — 0 .

an @ A new feature is added to the state
5962;1(')

n

@ Measure uncertainty is taken into

matrices are sparse account (thanks to 7)
THE NEW STATE @ Robot position uncertainty is taken

into account (thanks to T
° lu = f(:uh lum7 [pnew, enewL 0) ( WR)

o Y =FX*F" + N, N’
@ X" is the covariance with the

increased size

@ Products are simple due to sparsity
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Landmark Addition
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Qualitative example - 1

SENSOR READINGS

CEZERVATIONS st step 1° 8

-0.5 -

!

23/73



Landmark Addition
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Qualitative example - 2

ADDITION TO THE STATE

MAF i Slep 1, featuses: B, algoribim:

D&f /;_
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Landmark Addition
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Qualitative example - 3

PREDITION - MOTION MODEL

MAF al Siep 2, festures 3, algenthm
0EF
i /

02

v >
o3} ~—
~

06

44 I 02 I [al og 1 1.4
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Measurement & Update
000000

Measurement & Update Step - The equation

MEASUREMENT

@ Measure: hi(x,m,d)
@ It express what we expect from the sensor

@ Given the estimate robot pose x — T(W) p
( )
@ Given a single estimated map point p;
that is in the EKF state too!
o ie, p® in pol di
.e., p; 7 In polar coordinates wrt

w
iR

w

MEASUREMENT MEASUREMENT WITH NOISE

_ (TW)y—1_(W)
4 p (T ) P; D — ) R)
R)2 o hi(x,m,6;)=¢ "V Pl + O
e pi= ‘/p:x —|— p 0; = atan2(p, ,p,X ) + 69,

° 0= atanz(p“),pfx ) ® & = [3,,00]" ~ N (0,Q)

i

s}
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Measurement & Update
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Measurement & Update Step - Jacobians

MEASUREMENT EQUATION

hi(X, m, (51) = \% p’x + P’y + 6p’

atan2(pf ),p,X ) + g,

o) = (T4 5
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Measurement & Update
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Measurement & Update Step - Jacobians

MEASUREMENT EQUATION EKF JACOBIANS
__ Ohij(x,m,d;)
/' Ky e H; = ===
hi(x, m, d;) = P,X ;’—)P’y + pi ' ox x=1E;_1,p=p{"),8;=0
atan2(piy , p,X ) + dg; derivate of the measurement function
® w W) w.r.t. state variables
R W)y —1_(W
P, =(Tuwe) 'P; _ Ohi(x,m,5;)
o M; = =270
i X=[, —p") 5,=0
t—1,P=P; 7,0

derivate of the measurement function
w.r.t. noise variables
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Measurement & Update
O@0000

Measurement & Update Step - Jacobians

MEASUREMENT EQUATION EKF JACOBIANS
__ Ohij(x,m,d;)
/' Ky e H; = ===
hi(x,m, 6;) = P’X ;’—)P’y + pi ' ox x=1E;_1,p=p{"),8;=0
atan2(piy , p,X ) + dg; derivate of the measurement function
® w W) w.r.t. state variables
R W)y —1_(W
P, =(Tuwe) 'P; _ Ohi(x,m,5;)
o M; = =270
i X=[, —p") 5,=0
t—1,P=P; 7,0

derivate of the measurement function
w.r.t. noise variables

JACOBIANS
H B Oh;(X,m,é) Oh;(x,m,5) Ah;(x,m,5) . Oh;(x,m,5) L dh;(x,m,d)
i = |: Ox apgw) 3P(W) Bp,(.W) BPE'W) ]
Oh;i(X,m,é) . Ohi(x,m,é) .
- [7& 00 0 2 0 o]

1 0

M, =
0 1

Very sparse, useful to speed up calculation.
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Measurement & Update
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Measurement & Update Step - Measurement Details

MEASUREMENT IN ROBOT FRAME

Tk ksl vyl e i g

@ Blue: the predicted measure, h;(-) @ Ellipses: given by covariance
S: = H:Z:H/ + M:Q:M]

@ Innovation: z; — h;(-)

@ Red: the real map point in robot coordinates

@ Green: the noisy sensor measurement z;
29/73



Measurement & Update
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Measurement & Update Step - Unique Update - 1

THE MEASUREMENTS

o hi(-), zi(-), Hi, Mi("), Qi(")
feasible measurements and Jacobians

@ How to update?

THE COMPLETE MEASUREMENTS

h (X7 p§W)7 51)

(W)
o h(x,m,é) — h2(X7 P2 762)
w
hm(x7 pg" )7 6[71)
ed5=1[6 & - 5;]7
o (x,pf" 61) oo™ 61)
87)(“/ 86‘1”
(x5 62) Oha(xpy ") 52)
H= |7 ax M= 855
Ox Om
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Measurement & Update

[e]e]e] Iole]

Measurement & Update Step - Unique Update - 1

THE MEASUREMENTS

e hi(:), zi(-), Hi, Mi(+), Qi(:)

feasible measurements and Jacobians

@ How to update?

THE COMPLETE MEASUREMENTS

h (X7 p§W)7 51)

(W)
° h(X, m, 5) _ h2(x7 P2 5 62)
hm(X7 pgnW)v 6’")
o 5=1[6] o] onl’
ohy (x,p{") 51) om (e 61)
Ix 961
Oy (x,p5"),62) Oha(x,p8""),55)

ox M= 96,

w
(.05 ,m)
Ox A0m

Ohm(x,pN ,51m)

THE UPDATE

h=[h] K hn]"
H=[H] HJ] HL]T
z=[4 =z N
M, 0 0
0 M, 0
M=10 Mn1 O
0 0 M,
Q: O 0
0 Q 0
Q=1 0
Qm—l
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Measurement & Update Step - Unique Update - 2

Notice that
H;
H»

H=| :
H;
Hn

is very sparse, it has two non zero blocks for each row

Measurement & Update
[e]e]e]e] T}

[ Oh1(X,m,5) dhi(X,m,8) 0
Ox (W)
op;
dhy(X,m,5) 0 Ohy(X,m,5)
Ox ang)
Oh;(X,m,8)
ox 0
dh;(X,m,8)
ox 0

This is very useful for real time implementations

0
0
Oh;(X,m,d) 0 0
8pEW)
0--- Ohn(X,m,d)
GPEW)




Measurement & Update
[e]e]e]e]e] ]

EKF-SLAM, the Algorithm

Algoriihom 1 SLAH

x = 0 PF — 0 { Map initinlization)

[y, Rgl = get messurements

[x5. Pyl = add_new features(xy, Py, 26, Ry)

for & =1 to steps do

xﬂ:‘ Yo Q) = get odometor

x4, PE 1 = EKF predictionix? ,, P? , xi', Qu)
[zi. By] = et measnreanents

My = dataassociation(xT, . PH . 2. Ry)

[xy', Pi'1 = EEF npdate(xd;, . P, 26 R, Hed
[x', P}1 = added new Tentures(xy’, PP, 2, B, Hy)

end for
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SLAM example

Outline

© SLAM example
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Some iterations - 1

SLAM example
#000000

SECOND STEP
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Some iterations - 2

SLAM example
[e] Jelele]e]e)

47 sTEP

B o T 47, Ferarens O, o by ale NSECT D DSDONE

35/73



SLAM example
[e]e] Iele]e]e]

Some iterations - 3

108" sTEP

N g T L Fmpsew 01, o by v NS N ISR

S,
; =
[2g X "W .
) - . ' =
- - T
s
L.
R
. :
i
wy
e
- b
,.
L
. i
. . i 4 H
H : } 1 . o
P
i ¥ i 1 i
} i
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SLAM example
[e]e]e] Iele]e]

Some iterations - 4

137" sTEP

B g T L. Perewn 0. o by il WSS N ISR

#
W

Ll
G - s
. -
sl . e
L)

; A
e

s
Wk

LR

. L

.
; i
: H i H ak
P
;. i
; 3 k : !
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SLAM example
[e]e]e]e] Tele)

Some iterations - 5

141" sTEP - AFTER A LooP CLOSURE

B o By M. Feutmrm 01, ok ais NN OBSIELIMARD

a - = - = =
- - 3 " s Lo
aa -
a = = - .
- - = b ~
e un
s ay
FE LT
L #a b
£
] an
an g ™
v N
1]
s as
. . " . q
H r '
2
' a 1
" ¥ a F
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SLAM example
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The role of loop closure

UNCERTAINTY

@ Grows continuously also in SLAM
@ The loop closure reduces uncertainties of

@ the current robot pose
@ the map landmark

@ The loop closure propagates corrections
LOOP CLOSURE
@ A landmark i that is already in the map is
perceived “after a while”
@ Its uncertainty is lower than current, it gives a
good information for localization
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SLAM example
[e]e]e]e]lo]e] )

The role of loop closure - 2

UNCERTAINTY ON ROBOT POSE

Wahicls srrar in & i) Wahiclhe srrar in y (m]
1 1

os| = : Bs
| "'- ’
[} e “'ﬂ-- B - =

0.5 B A5 -
-1 . |
] 20 a0 ] ] 20 A L]
Wahizle arrar in heta [dog) i syrifdea (P
i, E i
5 & 5 i
PR g,
1 [ L 4
-5, 3 2
«HE
o 20 40 &0 o 20 a0 60
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Correspondences
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Correspondences

CORRESPONDENCES

@ Correspondences are known — this is uncommon in real environments

@ If correspondences are unknown we have to perform the data association

DATA ASSOCIATION

@ Given a set of measurements {z;},i=1:m
@ Given a set of measurements prediction {h;},j =1:w
@ We have to select correspondences c;

@ Or to add measurements as new landmarks

MAHALANOBIS DISTANCE NEAREST NEIGHBOURS APPROACH
G k=1

@ Select w such that z,, closest to hy in D*(zw, hy)

© Remove z, from {z;}
© Repeat from 2

@ Incompatible measures are added as new landmarks
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Correspondences

O@0000000000
Data association errors

WRONG ASSOCIATIONS = BAD RESULTS

B i e B fmparean H1 abye i M RS
- I ]
e BOw o omr Mg
wow oW WR
'
s
ain
i
FE
L
u} i
T
e
[Te
P -
% T
i
i | _ b
P
b W m i
m n™ B W -

[Matlab: RUN1]
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Correspondences

[e]e] Ielelelelelele]e]e]

When data association is difficult - 1

LOw SENSOR ERROR

HIGH SENSOR ERROR

ra
&

()

B
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When data association is difficult - 2

Correspondences
000800000000

LOw ODOMETRY ERROR

LED

HIGH ODOMETRY ERROR

oG]

&
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HIGH LANDMARK DENSITY

LOwW LANDMARK DENSITY

o

1
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Correspondences
000008000000

Nearest Neighbour Data association pitfall

MAHALANOBIS DISTANCE

JOINT COMPATIBILITY

o Evaluate Individual Compatibility
@ Evaluate Mahalanobis distance on a
subset of associations

@ To reduce computational complexity
| use Branch & Bound technique

. o This performs better than Individual
Compatibility
@ This could result in wrong associations
WHa [ a1 G
o A
"
- v - y
|-.3} .". L':"_b. k¥
..-"'-I A
= Wieny PCH g A o o |
{"' e | |I_-r-'l |
& ) & 1)
I'\u"ll = |'\-\.-"I|
|._-_.-' '
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Correspondences
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Joint Compatibility Branch And Bound (JCBB)

UsiING JCBB DATA ASSOCIATION

B i oy T, P W1, alyer ddmi MUN] COPSIEILITI D & 0
i 5 - - D
= 3 ps H b al
im Vil
b - b | » Y
b nll =1 e i
TR i
o] L
LE o il
L e LE
L LS
Ry T
s ¥
Filnd, a
(2] R
r rH 1
T L Bl *h +
et e
[ 53] y i I +
L B b 4] il b

[Matlab: RUN2]
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Non-static environment - 1

PEOPLE WALKING IN THE CLOISTER

B . T . Feparsns B1. s by s BSSCT] OSSN

@ Using Nearest Neighbour

[Matlab: RUN3]
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Non-static environment - 2

PEOPLE WALKING IN THE CLOISTER

B . T . Feparsrs Z01. abpe sl BOSECT! G SSIIN

@ Using Nearest Neighbour

@ Delete landmarks that have a
measurement prediction but are not
matched for a while

[Matlab: RUN4]
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Non-static environment - 3

PEOPLE WALKING IN THE CLOISTER

B g e B Pesisresi W1 ahpeddei NS OSSTELIT DG D

@ Using JCBB

[Matlab: RUN5]
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Non-static environment - 4

PEOPLE WALKING IN THE CLOISTER

B o oy . Fesarmd B abyedimi M OB IELITI O KD

v i
. a .

v ".. d-:: h‘-r'_'_ )

_ e Using JCBB
o ') i - @ Delete landmarks that have a
# ] . .
A - measurement prediction but are not
- f matched for a while
X i - : H

[Matlab: RUNSG]
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A note on motion model

MoTiON MODEL

@ We have always used odometry as
input

@ This controls the robot motion in the
prediction step

@ Absolutely necessary? NO!

STEADY STATE MOTION MODEL

@ Xtr1 = Xt + Mx
@ Vi1 =Y+ 1y
@ 01 =60+ Mo

@ The noise “code” the (unknown)
motion

[Matlab: RUN7]

CONSTANT VELOCITY MOTION MODEL

o

]

(]

]

Xe41 = Xe + ve cos(6:) At

Yer1 = Ye + vesin(0:) At

Orr1 = 0: + we At

Virl = Ve + Ny

Wepl = We + Nw

Suppose speed is constant in At

The noise “code” the (unknown)
speed change

Measurements change position and
speed thanks to correlations
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Visual SLAM
Outline

@ Visual SLAM
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Visual SLAM

VISUuAL SLAM PROPERTIES

@ Rely only on camera(s)
solution with one camera easily

extends on multi camera systems

@ Extensible with measures

motion, GPS position, ...
@ Smart and cheap

@ Challenging

lack of depth with one camera

@ Could be solved in Real Time

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Visual SLAM
VisuaL SLAM PROPERTIES EKF-BASED SLAM
@ Rely only on camera(s) @ The most consolidated methodology
solution with one camera easily @ Use an Extended Kalman Filter as engine
extends on multi camera systems @ State vector (multivariate gaussian variable):
@ Extensible with measures o robot pose
motion, GPS position, ... @ map points
@ Smart and cheap @ Predict robot motion
@ Challenging @ Observe features in image

lack of depth with one camera

@ Could be solved in Real Time

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Visual SLAM
VisuaL SLAM PROPERTIES EKF-BASED SLAM
@ Rely only on camera(s) @ The most consolidated methodology

solution with one camera easily

©

Use an Extended Kalman Filter as engine

tend Iti t — . .
extends on multi camera systems @ State vector (multivariate gaussian variable):

@ Extensible with measures o robot pose
motion, GPS position, ... @ map points

@ Smart and cheap @ Predict robot motion

@ Challenging @ Observe features in image
lack of depth with one camera PRO:

@ Could be solved in Real Time

@ Could run in Real-Time on standard PC
@ Well known approach

@ Scalability to large scale
through sub-mapping techniques

CONS:

@ Needs a specific parametrization of points

@ Suffer of approximation

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Landmarks & Features

LANDMARKS FEATURES
@ Elements of the map @ The measurable quantity of a
@ They code a 3D point landmark

notice: we consider 3D environment @ Good features to track in image
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Good Features to Track

CHARACTERISTICS OF GOOD FEATURES

@ Repeatability
The same feature can be found in several images
despite geometric and photometric transformations

@ Saliency

Each feature has a distinctive description
@ Compactness and efficiency

Many fewer features than image pixels
@ Locality

A feature occupies a relatively small area of the image
robust to clutter and occlusion
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Detector, descriptor, matching, tracking

DETECTOR:

Algorithm that extracts image locations which are easily found in other images of the
same scene (repeatability) = Corner detector

DESCRIPTOR:

Algorithm used to convert a region around a detected keypoint into a more compact
and stable (invariant) form that can be successfully matched against other descriptors
(saliency) = Patch around the corner

FEATURE MATCHING:

An algorithm that efficiently searches for likely matching candidates in other images
even when large amount of motion or appearance change has ocurred

FEATURE TRACKING:

Similar to the previous one but more suitable when images are taken from nearby

viewpoints or in rapid succession = Template matching with patches
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Monocular SLAM key problem - 1

Camera is a bearing-only sensor
Depth is unknown from a single image

Depth can be estimated with triangulation after camera motion

59/73
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Monocular SLAM key problem - 2

ﬁ/ PARALLAX |
| ANGLE @cg

tl:tl‘.'&

C1
Depth can be estimated with triangulation after camera motion

Parallax angle cover a key role
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization '\

@ Uniform distribution from 0 to oo LY
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization

@ Uniform distribution from 0 to oo

SOLUTION 1: DELAYED INITIALIZATION

For each feature

@ Use a set of 3D hypotesis on view ray
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization h

@ Uniform distribution from 0 to oo \i

SOLUTION 1: DELAYED INITIALIZATION %

For each feature L

. - ‘
@ Use a set of 3D hypotesis on view ray \ F} {.SD.}
@ Choose the right depth hypothesis b
o Add it to the filter L
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Monocular SLAM key problem - 3

FEATURE DEPTH

@ Unknown at initialization

@ Uniform distribution from 0 to oo

SOLUTION 1: DELAYED INITIALIZATION

For each feature
@ Use a set of 3D hypotesis on view ray F} {NDJ}

@ Choose the right depth hypothesis
o Add it to the filter

SOLUTION 2: UNDELAYED INITIALIZATION

For each feature

@ Add one n-dimensional element that code
@ The viewing ray
@ The unknown depth

o following a specific Parametrization
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Real Time Monocular SLAM

REAL TIME MONOCULAR SLAM - SINCE 2003

videos/monoRT .flv

Video from http://www.youtube.com/watch?v=mimAWVm-0qA

Davison “Real-time Simultaneous Localization And Mapping with a Single Camera”, 2003
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Which parametrization?

UID FHP
Unified Inverse Depth Framed Homogeneous Point
v=[t 0 e oo ]T yviP=[t o u v wi]T
3D _ 1 3D 1 qi ’ ’ T
P —t,-—l——'m(ﬂ,-,cp,-) P =t;+ —R -[u,- v; 1]
Oi wi ||ql||

Ceriani et al. “On Feature Parameterization for EKF-Based Monocular SLAM”, 2010

Montiel, Civera, Davison “Unified inverse depth parametrization for monocular slam”, 2006
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Large Scale SLAM Issues

COMPUTATIONAL COST CONSISTENCY
Grows with # features Due to linearizations of EKF

| i, | f:_,_q ip. i .
i ' g | 1
1 / 4 4
Py ! 1 -
F: AR W o BPCPTO Y o O
] i "
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Large Scale SLAM Issues

COMPUTATIONAL COST CONSISTENCY
Grows with # features Due to linearizations of EKF
| Lo
. T ! L
I / i HH“" I.E:f:-'_—,..ﬂ:-’ﬁtr
1| .--. i Sy . -|-|: - |
P / . L .
e . i A
s L W W5 o o LA
] r i =
— 1

SOME SOLUTION
@ Conditional Independent Submapping SLAM

@ Explicit Loop Detection & Loop closure recovery methods

Pinies, Tardos “Large Scale SLAM Building Conditionally Independent Local Maps: Application to
Monocular Vision”, 2008

Pinies, Paz, Tardos “CIl-Graph: An efficient approach for Large Scale SLAM”, 2009
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Example in a Real Environment - Monocular Vision

Visual SLAM
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videos/mono.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location

Theoretically
reconstruction is up to a
single scale factor

Practically there is a
scale drift
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Example in a Real Environment - Stereo Vision

Visual SLAM
0000000000000 0

videos/stereo.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location

The stereo vision
eliminate the scale
factor ambiguity
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Example in a Real Environment - Trinocular Vision

videos/tri.flv

Visual SLAM

0000000000 000

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is represented
by points location
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Example in a Real Environment - Omnidirectional Camera - 1

o 360-degree field of view

@ Camera

@ Lower Mirror

© Aperture

@ Glass Housing

© Cover and Upper Mirror (hidden)
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Example in a Real Environment - Omnidirectional Camera - 2

videos/omni.flv

The path is estimated
without any external
information, using a
constant velocity
motion model

The map is not shown
in this case
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Conclusion

Outline

© Conclusion
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Only EKF-SLAM?

PTAM EXAMPLE
Not oNLy EKF-SLAM

o Particle Filters — FastSLAM &
FastSLAM 2.0

@ Extended Information Filter

@ Parallel Tracking and Mapping
(PTAM)

@ Junction tree filters
@ Incremental Smoothing and Mapping
(ISAM)
@ Local Sparse Bundle Adjustment videos/ptam.webm

o ... from
http : / /www.youtube.com/watch?v = Y9HMn6bd — v8
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Only EKF-SLAM?

Laser Range Scanner based SLAM
2D SLAM 3D SLAM

videos/slam2dlaser.webm videos/slam3dlaser.webm
from http : / /www.youtube.com/watch?v = fIINOXHxBKY from http : / /www.youtube.com/watch?v = QQeJlxds OU

other sensors: Microsoft Kinect, etc...
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