
Tagonto Project

Tagonto

• Tagonto Project is an attempt of nearing two far
worlds

• Tag based systems
• Almost completely unstructured and semantically

empty

• Ontologies
• Strongly structured and semantically significant

• Taking the best of both worlds

Tagonto Project

Tags and Folksonomies /1

• We all know what a TAG is...

• ...but what about a Folksonomy?
• A little more than tagging: a user-based classification

mechanism

• Sort of a Community Powered taxonomy

• The new age of TAGs, apart from personal use!

Tagonto Project

TAGs and Folksonomies /2

• What are they good for?
• Relationships on unstructured data
• Crossing the textual barrier
• Merril Lynch: more than 85% of all business

information is unstructured data
• Tags lead to... more tags!

A tag-cloud for a Flickr user

Serendipity!

Tagonto Project

Ontologies

• What are they good for?
• ...actually, a lot of stuff!
• Narrowing down a little: what are they good for in

the context of folksonomies?
• Providing semantic and structural information where

needed

• An Ontology-powered tag-based Search Engine

?!

Tagonto Project

Tagonto /2

• An ontology-powered tag-based meta search
engine

• What does Tagonto do?
• Associating tags to ontology concepts

• Using algorithms or user defined mappings
• Retrieving internet resources for a given TAG
• Surfing the ontology and the associated tags

Tagonto Project

How does Tagonto work?

• Tagonto's architecture is divided into three main
parts

• Tagonto LIB
• The core of the mapping system

• Tagonto NET
• The meta search engine

• Tagonto Interface
• The mean to put them together

Tagonto Project

Tagonto NET

• A plugin based system for the interaction with
tag based systems

• Written in PHP, can be used as a PHPLibrary or
as a REST webservice – thus with any
application and language

• Why PHP? Because it's the language of the net and
it's best suited to interact with Web2.0 systems

• Minimal setup and configuration

• 7 plugins are already available

Tagonto Project

Tagonto NET /2

• 2 main services offered
• Retrieval of tagged resources given a tag
• Retrieval of “Friends tags”, that is tag occurring often

on the same resources with the given tag

• Plugins can be developed with ease
• Copy-paste deployment
• No strict requirement, just follow the contract and

write the code

Tagonto Project

TagontoLib /1

• Stand-alone Java library

• Main task:
• Given an ontology and a tag, finding the most

significative matches between the tag and a concept
of the ontology

• Developed as a part of the Tagonto project
• Many of the non functional requirements

(performance in particular) were imposed by its
online-use

Tagonto Project

TagontoLib /2

• During development we took inspiration from
the XSom project

• We couldn't use the Xsom project directly since
it works between ontologies

• Structural checks wouldn't have worked
• Tagonto works between a flat structure (the tag) and

a rich one (the ontology).

Tagonto Project

What is a Mapping /1

• It's a bidirectional relationship between
• A vector of charachters (the tag)
• A concept in a specific ontology

• TagontoLib considers in the analysis only named
concepts

• Some of the mapping heuristics are based only on
syntactic checks.

• A significance value included in [0,1]

Tagonto Project

What is a Mapping 2

Tagonto Project

What is a Mapping 3

• How do we distinguish between differente
mappings?

• We can use the significance value

Tagonto Project

Mapping Heuristics : classification 1

• Mappings are generated using some heuristics
• They can be classified in bidimensional space

• First Dimension (Task)
• Generative Heuristics : generating new mappings
• Choosing Heuristics : modifying significance of pre

existent mappings
• Second Dimension (Informations Used)

• Syntactic Heuristics : only syntactic informations
• Semantic Heuristics : both syntactic and semantic

informations

Tagonto Project

Mapping Heuristics :
classification 2

Syntactic Semantic

Generative Wordnet Similarity

Choosing

Exact Match
Levenshtein Match
Jaccard Match
Google Noise Match

Max Chooser
Threshold Chooser

Links Chooser
Google Chooser
Friends Chooser

Tagonto Project

Mapping Strategies 1

• Heuristics are put together using mapping
strategies

• They define
• which heuristics are used
• which is the order they are used in
• how results from different heuristics are merged

• In other words they define the complete
mapping algorithm

Tagonto Project

Mapping Strategies 2

• TagontoLib provides 3 mapping strategies by
default :

• Greedy Strategy :
• Uses only syntactic checks and Wordnet Similarity

• Instance Strategy
• Uses only syntactic checks against concept instances

• Standard Strategy
• Uses both the greedy and the instace strategy and

semantic heuristics to disambiguate mappings

Tagonto Project

Mapping Heuristics :
Exact, Levenstein, Jaccard

• These heuristics generates new mapping using
string comparison metrics to calculate
significance

• Exact
• The usual string comparison avaible in java

• Levenshtein
• Levenshtein string similarity

• Jaccard
• Jaccard string similarity

Tagonto Project

Mapping Heuristics :
Google Noise

• Analyzes the tag for misspellings using google
• A search for the specified tag is issued and the result

page is analyzed in search for a maybe did you mean
suggestion

• A noisyness measure is calculated calculating string
similarity between the original tag and the suggested
tag

• If the similarity exceeds a threshold specified by the
mapping strategy, new mappings are generated using
a greedy strategy (to avoid performance problems).

Tagonto Project

Mapping Heuristics :
Wordnet Similarity

• This heuristics uses a component taken directly
from the Xsom project

• For every named concept in the ontology
• The tag and the concept name are tokenized if

possible
• Tokens are searched in the wordnet dictionary and

related words (hyponims, hypernims and synonims)
are extracted

• Tag's related words and concept's related words are
compared using string metrics to calculate similarity of
mappings.

Tagonto Project

Mapping Heuristics :
Max and Threshold Chooser

• These heurisics modify a list of mappings
analyzing only significance.

• Their main usage is aggregating results
obtained from other heuristics

• Max chooser
• First the maximum mapping significance in the list is

found, then the list is modified removing all the
mappings having lower significance

• Threshold chooser
• The list is modified removing all the mappings having

significance lower that the threshold

Tagonto Project

Mapping Heuristics :
Link Chooser 1

• This heuristics uses the tag context and
information that can be inferred from the
ontology to modify the significance of pre-
existing mappings.

• Basically, its task is trying to disambiguate
different mappings for the same tag.

Tagonto Project

Mapping Heuristics :
Link Chooser 2

• Theoretical backgroud
• If a mapping is correct (i.e. we match the tag against

it the correct concept) then the concept should be
connected to concepts mapping the tag context (i.e.
there should exist ontology properties having as
range the original concept and as domain the
correlated concepts).

Tagonto Project

Mapping Heuristics :
Link Chooser 3

Tagonto Project

Mapping Heuristics :
Link Chooser 4

Tagonto Project

Mapping Heuristics :
Link Chooser 5

• How does it works ?
• First we need to generate mappings for the original

tag an retrieve tags specifying the context (i.e.
correlated tags).

• Then we map correlated tags using a Greedy
strategy (to avoid performace problems)

• Finally we increment the significance of the original
mappins by an amount depending on the linkness of
the original concept with correlated concepts.

Tagonto Project

Mapping Heuristics :
Google Chooser

• This heuristics uses Google to retrieve the list of
correlated words and then uses that list to
invoke the Link Chooser

• A search for the tag is issued and the first N results
(html pages) returned by google are analyzed

• If the meta tag keyword is present, the list of keyword
is used as the list of correlated tags

• Otherwise html tags are stripped off and correlated
tags are extracted using text mining techniques
(stemming, vector of counts...)

Tagonto Project

Mapping Heuristics :
Friends Chooser

• This heuristics uses a TagontoNet service to
retrieve tags correlated to the original tag, then
uses this list to invoke the List Chooser.

Tagonto Project

TagontoLib :
Architecture

• TagontoLib uses 3 main component to
accomplish its task

Tagonto Project

The mapping Component 1

• Implements the mapping heuristics and
strategies exposed before

Tagonto Project

The Mapping Component :
Greedy Mapper

• The Greedy Mapper has been developed to
efficiently obtain a list of mappings for a tag

• Extensive use of cached informations
• Only syntactic heuristics and Wordnet Similarity
• Mapping may not be precise, especially in presence

of similar tags and concept names.

Tagonto Project

The Mapping Component :
Instance Strategy

• The Instance Mapper has been developed to
include in the analysis also instances of
concept.

• This strategy does only syntactic checks between the
name of an individual of a concept and the tag.

• If matches with high significance are found, new
mappings of the tag on the class of the individual are
generated

Tagonto Project

The Mapping Component :
Standard Mapper

• The Standard Mapper implements the most
complete strategy avaible.

• It uses the Greedy Mapper to obtain an intial set of
mappings

• Then uses the Instance Mapper to enlarge the initial
set

• Finally uses the Google Chooser and the Friends
Chooser to accomplish disambiguation of mappings.

Tagonto Project

The Caching Component 1

• This component was developed to satisfy the
strict performance requirements imposed by an
online use of TagontoLib.

• Since plugins implementing heuristics do an
extensive use of knowledge inferred from the
ontology and reasoning can be pretty slow, this
component caches also knowledge inferred
from the ontology with the use of a reasoner.

Tagonto Project

The Caching Component 2

Tagonto Project

The Communication Component

• This component was developed to provide a
facility to communicate with the lib without
using java.

• It implements an HTTP REST interface (running
on an embedded lightweight web server) to
invoke the main functionalities of the library.

