
Robotics - Localization & Bayesian Filtering

Simone Ceriani

ceriani@elet.polimi.it

Dipartimento di Elettronica e Informazione
Politecnico di Milano

10 May 2012



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Outline

1 Introduction

2 Taxonomy

3 Probability Recall

4 Bayes Rule

5 Bayesian Filtering

6 Markov Localization

2/58



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Outline

1 Introduction

2 Taxonomy

3 Probability Recall

4 Bayes Rule

5 Bayesian Filtering

6 Markov Localization

3/58



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Mobile Robot Localization - Introduction

The problem

Determining pose of robot

Relative to a given map of the environment

a.k.a. position estimation

Notes

It’s an instance of the general localization

i.e., localize objects in the workspace of a manipulator
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Localization - The problem

Localization Input

Known map in a reference system

Perception of the environment

Motion of the robot

Localization Goal

Determine robot position w.r.t. the map

i.e. the relative transformation T
(W )
WR

Problem of coordinate transformation

T
(W )
WR allow to express objects position (maps)

in a local frame (w.r.t. the robot)

W

T(W )
WR

R

p1
p2

p3

p(R)
1p(W )

1

p(W )
2

p(W )
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p(W )
i : the map

p(R)
1 : robot perception

T(W )
WR : localization
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Localization - Issues

Direct pose sensing

Usually impossible

Noise corruption

Pose estimation

Inferred from data

Usually a single sensor measure is insufficient

Robot need to integrate information over time

e.g. map with two identical corridors

Map

Various representations are possible

according to the problem

Key concept: localization needs a precise map
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Localization - Graphical model

Graphical model of mobile robot localization

X·: robot pose

m: the map

z·: measurements

u: inputs (e.g. speed of wheels, ...)

Values of shaded nodes are known
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Localization - Maps
Hand-made metric map Occupancy grid map

Graph-like topological map Image mosaic of ceiling

8/58
Images from Probabilistic Robotics - S. Thrun, W. Burgard, D. Fox



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Outline

1 Introduction

2 Taxonomy

3 Probability Recall

4 Bayes Rule

5 Bayesian Filtering

6 Markov Localization

9/58



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Taxonomy - Local vs Global - 1

Local vs Global localization

Depends on information available initially and at run-time

Three types of localization problems, with increasing degree of difficulty

1. Pose Tracking

Assume initial position is known

Localization achieved by accommodating the noise in robot motion

Pose uncertainty often approximated by a unimodal distribution

It is a local problem, uncertainty is confined near robot true pose

2. Global Localization

Initial pose unknown

The robot knows that it does not know where it is

Approaches cannot assume bound on (initial) pose error

It is not a local problem, estimation could be very far from true pose

More complicated than pose tracking
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Taxonomy - Local vs Global - 2

3. Kidnapped robot problem

Variant of the global localization problem

The robot can get kidnapped and teleported to some other location

The robot might believe it knows where it is while it does not

Even more difficult

Robot are not really kidnapped in practice

Practical importance: recover from failures in localization

In these lessons

Markov Localization: general framework

Pose Tracking: Extended Kalman Filtering

Global Localization: Particle Filtering / Monte Carlo approaches
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Taxonomy - Static vs Dynamic Environment

Static Environment

Only the robot pose change during operation

Environment (the map) is static

Dynamic Environment

Environment changes over time

Environment changes affects sensor measurements

Environment changes: temporary or permanent

e.g.: doors, furniture, walking people, daylight

Localization more difficult than in a static environment
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Taxonomy - Passive vs Active Approaches

Passive approach

Localization module observes the robot operating

Robot motion is not aimed in facilitating localization

Active approach

Localization module controls the robot so as to

minimize the localization error

avoid hazardous movement of a poorly localized robot

e.g., coastal navigation, symmetric corridors

Trade-off: localization performance vs ability to performs operations
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Taxonomy - Single vs Multirobot

Single Robot Localization

Most commonly studied

All data is collected on the robot, no communication issue

Multirobot approach

Arises in team of robot

Could be treated as n−single robot localization problem

If robots are able to detect each other, there is opportunity to do better
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Uncertainty in Robotics & Probabilistic Robotics

Robotics systems

Situated in the physical world

Perceive information through sensors

manipulate through physical forces

Have to be able to accommodate uncertainties that exists in the physical world

Factors that contribute to robot’s uncertainty

Real environments are inherently unpredictable

Sensors are limited in range, resolution, subject to noise

Actuation involves motors; uncertainty arises from control noise, wear and tear.

Mathematical models are approximation of real phenomenal

Level of uncertainty

Depends on the application domain

in well known environments, like assembly lines, could be bounded

in the open world plays a key role

Managing uncertainty is a key step towards robust real-world robot systems
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Discrete Random Variables

Discrete Random Variables

X : a random variables

e.g., consider a die rolling experiment, X is the variable representing the outcome

Pr(X = x) represent the probability that X has value x

e.g., X assume one of {1, 2, 3, 4, 5, 6}

x : a specific values that X might assume (on a discrete set)

e.g., Pr(X = 1) = Pr(X = 2) = · · ·Pr(X = 6) = 1
6

Properties - 1∑
∀x Pr(X = x) = 1: discrete probability sum to 1

Pr(X = x) ≥ 0: probability is non negative

e.g., Pr(X = 0) = Pr(X = 7) = 0, impossible event

Pr(X = x) ≤ 1: probability is bounded to 1

e.g., Pr(X = {1 or 2 or 3 or 4 or 5 or 6}), sure event

Common abbreviation: Pr(x) instead of Pr(X = x)
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Discrete Random Variables - Properties

Properties - 2

Consider two event A and B

e.g., A is “die outcome is 2 or 3 ”, B is “die outcome is even”

Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A ∧ B)

e.g., A ∨ B is “die outcome is 2 or 3 or 4 or 6”, Pr(A ∨ B) = 2
3

= 1
3

+ 1
2
− 1

6

If A ∧ B = Ø → Pr(A ∨ B) = Pr(A) + Pr(B)

Pr(A) = 1− Pr(A)

Pr(A ∨ A) = Pr(A) + Pr(A)− Pr(A ∧ A) = 1

Remarks

Relative-frequency (i.e., outcome of

experiments) are alternative (not

rigorous) ways of introduce the

concept of probability.
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Continuous Random Variables

Continuous Random Variables

Allow to address continuous space

Possess a Probability Density Function (p.d.f.)

fX (x), x ∈ R

Pr(X = x) = 0, even though it is not impossible

The integral is the Cumulative Density Function (c.d.f.)

FX (x) = Pr(x ≤ x) =
∫ x
−∞ fX (x)dx

limx→∞ FX (x) = Pr(X ≤ ∞) = 1

Pr(x ∈ (a, b)) =
∫ b

a
fX (x)dx = FX (b)− FX (a)
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Uniformly Distributed Continuous Random Variable

Uniformly Distributed Continuous

Random Variable

Uniformly Distributed in [a, b]

p.d.f.: f (x) =

{
1

b−a
x ∈ [a, b]

0 elsewhere

c.d.f.: FX (x) =


0 x < a
x−a
b−a

x ∈ [a, b]

1 x > b

p.d.f.

c.d.f.
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Normal Distributed Random Variable

Normal Distributed Random Variable

a.k.a. Gaussian Random Variable

N (µ, σ2)

mean: µ

variance: σ2

p.d.f.:

f (x) = (2πσ2)−
1
2 exp

{
− 1

2
(x−µ)2

σ2

}
c.d.f.: @ explicit formula,

tabulated for G(η), c.d.f. of N (0, 1)

F (x) = G( x−µ
σ

)
x−µ
σ

: number of σ away from the mean

p.d.f.

c.d.f.
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Multivariate Distributions

Multivariate

x is a vector

N (µ,Σ), with

µ: n × 1, mean vector

Σ: n × n, covariance matrix

f (x) =

(2π det(Σ))−
1
2 exp {− 1

2
(x−µ)T Σ−1(x−µ)}

µ =


µ1

µ2

...
µn

 Σ =


Σ11 Σ12 · · · Σ1n

Σ21 Σ22 · · · Σ2n

... · · ·
. . .

...
Σn1 Σn2 · · · Σnn


diagonal elements are the variances of

the single components

off diagonals elements are the

covariances between elements

Σ is symmetric and positive definite,

(non singular)

if ∃ linear relation among components, Σ

is positive semi-definite, (singular)

p.d.f. - n = 2

c.d.f. - n = 2
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Mean, Variance, Moments

Discrete case

Expected value: E [X ] =
∑

x xp(x) = x

n-th moment: E [X n] =
∑

x x
np(x)

Variance: VAR(x) = E [(x − x)2]

=
∑

x(x − x)2p(x) = σ2

= E [X 2]− E [X ]2

a.k.a. second central moment

Continuous case

Expected value: E [X ] =
∫
x
xf (x)dx

n-th moment: E [X n] =
∫
x
xnp(x)

Variance: VAR(x) = E [(x − x)2]

=
∫
x
(x − x)2p(x) = σ2

= E [X 2]− E [X ]2

a.k.a. second central moment

Properties

consider Y = aX + b, X random variable, a, b scalar quantities

E [Y ] = aE [X ] + b

VAR(Y ) = a2VAR(Y )
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Joint Probability, Independence, Conditioning

Joint Probability

Consider two random variables X and Y

or a random vector Z =
[
X ,Y

]T

Pr(X = x ∧ Y = y) = Pr(x , y) = Pr(z)

with z =
[
x , y

]T

Independence

X and Y are independent if and only if

Pr(x , y) = Pr(x) Pr(y)

or with p.d.f. fxy (x , y) = fx(x)fy (y)

Conditioning

Pr(x |y) is the probability of x given y

Pr(x , y) = Pr(x |y) Pr(y)

Pr(x |y) = Pr(x) if x and y are independent

if X and Y are independent, Y tell us nothing about the value of X ,

there is no advantage of knowing the value of Y if we are interested in X
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Conditional Independence

Conditional Independence

X and Y are conditional independent on Z if Pr(x , y |z) = Pr(x |z) Pr(y |z)

This is equivalent to Pr(x , y |z) = Pr(x,y,z)
p(z)

= Pr(x |y , z) Pr(y |z) = Pr(x|y,z) Pr(y,z)
Pr(z)

Thus, X and Y are conditional independent on Z if Pr(x |z) = Pr(x |y , z)

i.e., knowledge on y does not add any information to x if z is known

25/58



Introduction Taxonomy Probability Recall Bayes Rule Bayesian Filtering Markov Localization

Total probability, marginals

Total probability:∫∞
x1=−∞ · · ·

∫∞
xn=−∞ fx1...xn (x1, . . . , xn)dx1 . . . dxn = 1

Marginal distribution:∫∞
−∞ fx,y (x , y)dx = fy (y)∫∞
−∞ fx,y (x , y)dy = fx(x)

Marginal distribution with conditioning:∫∞
−∞ fy|x(y |x)fx(x)dx = fy (y)∫∞
−∞ fx|y (x |y)fy (y)dy = fx(x)
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Bayes Formula

From conditioning

Pr(x , y) = Pr(x |y) Pr(y)

Pr(x , y) = Pr(y |x) Pr(x)

Bayes formula

Pr(x |y) =
Pr(y |x) Pr(x)

Pr(y)
=

Pr(y |x) Pr(x)∫∞
−∞ fy|x(y |x ′)fx(x ′)dx ′

Pr(x) is the prior, the belief about x

y is the data, e.g., a sensor measure

Pr(y |x) is the likelihood, i.e., how much is probable to have measure y in state x

Pr(x |y) is the posterior, i.e., the belief x state given the measurement y

Bayes formula allow to infer a quantity x from data y through inverse probability

i.e., through the probability of data y assuming that the state is x
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Bayes Example - 1

Problem

A robot “observe” a door
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Bayes Example - 2

Problem

A robot “observe” a door

The door could be open or close

The sensor measure a distance as far or near

The probability that the door is open is 0.4

The probability that the sensor measure far when the door is open is 0.8

The probability that the sensor measure far when the door is close is 0.1

What is the probability that the door is open if the sensor measurement is near?

What is the probability that the door is open if the sensor measurement is far?

What is the probability that the door is close if the sensor measurement is near?

What is the probability that the door is close if the sensor measurement is far?
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Bayes Example - 3

Variable definition

X : door state, {open, close}

Y : sensor measure, {open, close}

p.d.f
Pr(X=open)=0.4

Pr(X=close)=0.6

Pr(Y=far|X=open)=0.8

Pr(Y=near|X=open)=0.2

Pr(Y=far|X=close)=0.1

Pr(Y=near|X=close)=0.9

Solution

Pr(X = open|Y = near) = Pr(Y=near|X=open) Pr(X=open)
Pr(Y=near|X=open) Pr(X=open)+Pr(Y=near|X=close) Pr(X=close)

= 0.2·0.4
0.2·0.4+0.9·0.6 = 0.13

Pr(X = open|Y = far) = Pr(far|open) Pr(open)
Pr(far|open) Pr(open)+Pr(far|close) Pr(close)

= 0.8·0.4
0.8·0.4+0.1·0.6 = 0.84

Pr(X = close|Y = near) = Pr(near|close) Pr(close)
Pr(near)

= 0.9·0.6
0.62

= 0.87

Pr(X = close|Y = far) = Pr(far|close) Pr(close)
Pr(far)

= 0.1·0.6
0.9+0.2

= 0.16
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Bayes Recursive Updating - 1

New measurements

Suppose that we get the first measurement: near

Thus, Pr(X = open|Y1 = far) = 0.84, and Pr(X = close|Y1 = far) = 0.16

A second measure Y2 arrives: it is far

Pr(X = open|Y1 = far,Y2 = far)?

More generally, how to estimate Pr(X = open|Y1 = y1,Y2 = y2, . . .Yn = yn)?

Extend the Bayes rule

Pr(X |Y1,Y2) =
Pr(Y2|X ,Y1) Pr(X |Y1)

Pr(Y2|Y1)
=

Pr(Y2|X ,Y1) Pr(X |Y1)∫∞
−∞ fY2|Y1,x′(Y2|Y1, x ′)fX |Y1

(x ′|Y1)dx ′

Pr(X |Y1,Y2, . . . ,Yn) =
Pr(Yn|X ,Y1, , . . . ,Yn−1) Pr(X |Y1,Y2, . . . ,Yn−1)

Pr(Yn|Y1, . . . ,Yn−1)
= . . .
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Bayes Recursive Updating - 2

Markov Assumption

Markov assumption: Y2 independent of Y1 if we know X

Then Pr(Y2|X ,Y1) = Pr(Y2|X ) (see Conditional Independence formulas)

Bayes rule

Pr(X |Y1,Y2) = Pr(Y2|X ,Y1) Pr(X |Y1)
Pr(Y2|Y1)

= Pr(Y2|X ) Pr(X |Y1)
Pr(Y2|Y1)

Pr(X |Y1,Y2, . . . ,Yn) =
Pr(Yn|X ,Y1,,...,Yn−1) Pr(X |Y1,...,Yn−1)

Pr(Yn|Y1,...,Yn−1)
=

Pr(Yn|X ) Pr(X |Y1,...,Yn−1)

Pr(Yn|Y1,...,Yn−1)

with

Pr(Y2|Y1) =
∫∞
−∞ fY2|Y1,x′(Y2|Y1, x

′)fX |Y1
(x ′|Y1)dx ′

=
∫∞
−∞ fY2|x′(Y2|x ′)fX |Y1

(x ′|Y1)dx ′

similar with n measurement

note: use
∑

in discrete case
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Bayes Recursive Updating - 3

The example

Pr(X = open|Y1 = far) = 0.84, and Pr(X = close|Y1 = far) = 0.16 ,Y2 = far

Pr(Y2|Y1) = Pr(Y2|Y1, open) Pr(open|Y1) + Pr(Y2|Y1, close) Pr(close|Y1)

= Pr(Y2|open) Pr(open|Y1) + Pr(Y2|close) Pr(close|Y1)

= Pr(far|open) Pr(open|far) + Pr(far|close) Pr(close|far)

Pr(far|far) = 0.8 · 0.84 + 0.1 · 0.16 = 0.688

Pr(X = open|Y1 = far,Y2 = far) = Pr(far|open) Pr(open|far)
Pr(far|far)

= 0.8·0.84
0.688

= 0.977
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Robot environment interaction - 1

The environment

a.k.a. World

generally it’s a dynamic system:

Robot can act on it
Changes due to time passing by

A robot

Can act on environment

i.e., change the environment state

Can sense environment through sensor

Has an internal belief on state

State

Collection of all aspects of the robot and the environment

Generally, changes over time, some part could be static

We will refer it with xt
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Robot environment interaction - 2

Control Actions

Change the state of the world

(robot and/or environment)

ut1:tn = ut1 , ut2 , . . . utn

Measurements

Information about the environment

(distances, images, . . .)

zt1:tn = zt1 , zt2 , . . . ztn

Complete State and Markov Chain

xt will be called complete if it is the best predictor of the future

All past states, measurements and inputs carry no additional information

to predict the future more accurately

No variables prior to xt may influence the stochastic evolution of future state

This a Markov Chain
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Evolution of state - 1

Evolution of state

xt is stochastically generated by xt−1

xt p.d.f is conditioned on past states, inputs and measurement

p(xt |x0:t−1, z1:t−1, u1:t)

Under Markov Chain hypothesis (or Complete State),

thanks to conditional independence

p(xt |x0:t−1, z1:t−1, u1:t) = p(xt |xt−1, ut)

p(xt |xt−1, ut) is the state transition probability

State evolution is stochastic, not deterministic (i.e., is a p.d.f.)

Measurement process

p(zt |x0:t , z0:t−1, u1:t) = p(zt |xt) under Complete State

the state xt is sufficient to predict the (potentially noisy) measurement zt

p(zt |xt) is the measurement probability

Specify the probabilistic low of according to which measurement are generated
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Evolution of state - 2

Evolution of state and measurements

Describe the dynamical stochastic system of the robot and its environment

a.k.a. as Hidden Markov Model (HMM) or Dynamic Bayes Network (DBN)
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Belief Distributions

Belief

Reflects the robot’s internal knowledge about the state

Usually, the state cannot be measure directly

The state need to be inferred from data

Posterior Belief distribution

Conditional probability

Is a posterior probability

Conditioned on available data

bel(xt) = p(xt |z1:t , u1:t)

Prior Belief distribution

Conditional probability

Is a prior probability

Conditioned on available data before incorporating zt measure

bel(xt) = p(xt |z1:t−1, u1:t)

Often referred as a predition
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Bayes Filter Algorithm
The Algorithm

Calculate the belief bel(xt)
Recursive: use bel(xt−1) as input
Use most recent measure (zt) and input (yt)

Algorithm

Step 1

Calculate the prior belief bel(xt)

Integral of the product of
The prior on xt
The probability of the state
evolution

It is a prediction

Step 2

Calculate the posterior belief bel(xt)

Product of
Prior distribution
Measurement probability
η: normalization factor
η :

∑
∀xt bel(xt) = 1

It is a measurement update
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Bayes Filter Algorithm Example - 1

The Robot And The Door - v2
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Bayes Filter Algorithm Example - 2

The door

Can be open or close

initial state is unknown

The robot

Can act (stochastically) on the door:

push: try to open the door

nop: no operation

Sense (noisly) the door presence

near: read by sensor when door is

close

far: read by sensor when door is

open

Initial Belief

bel(x0 = open) = 0.5

bel(x0 = close) = 0.5

Measurement Probability

bel(zt = far|xt = open) = 0.6

bel(zt = near|xt = open) = 0.4

bel(zt = far|xt = close) = 0.2

bel(zt = near|xt = close) = 0.8
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Bayes Filter Algorithm Example - 3

State Transition Probability

bel(xt = open|ut = push, xt−1 = open) = 1

bel(xt = close|ut = push, xt−1 = open) = 0

bel(xt = open|ut = push, xt−1 = close) = 0.8

bel(xt = close|ut = push, xt−1 = close) = 0.2

bel(xt = open|ut = nop, xt−1 = open) = 1

bel(xt = close|ut = nop, xt−1 = open) = 0

bel(xt = open|ut = nop, xt−1 = close) = 0

bel(xt = close|ut = nop, xt−1 = close) = 1

open close

0.8

1

0

0.2 open close

0

1

0

1
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Bayes Filter Algorithm Example - 4

Time t = 1, act

u1 = nop, no operation performed

bel(x1) =
∑

x0
p(x1|u1, x0)bel(x0), prediction

bel(x1) = p(x1|u1 = nop, x0 = open)bel(x0 = open) +

+ p(x1|u1 = nop, x0 = close)bel(x0 = close)

bel(x1 = open) = p(x1 = open|u1 = nop, x0 = open)bel(x0 = open) +

+ p(x1 = open|u1 = nop, x0 = close)bel(x0 = close) =

= 1 · 0.5 + 0 · 0.5 = 0.5

bel(x1 = close) = p(x1 = close|u1 = nop, x0 = open)bel(x0 = open) +

+ p(x1 = close|u1 = nop, x0 = close)bel(x0 = close) =

= 0 · 0.5 + 1 · 0.5 = 0.5
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Bayes Filter Algorithm Example - 5

Time t = 1, sense

z1 = far, sense open door

bel(x1) = ηp(z1 = far|x1)bel(x1), measurement update

bel(x1 = open) = ηp(z1 = far|x1 = open)bel(x1 = open)

= η0.6 · 0.5 = η 0.3

bel(x1 = close) = ηp(z1 = far|x1 = close)bel(x1 = close)

= η0.2 · 0.5 = η 0.1

bel(x1 = open) + bel(x1 = close) = 1

η 0.3 + η 0.1 = 1

η = (0.3 + 0.1)−1 = 2.5

bel(x1 = open) = 0.75

bel(x1 = close) = 0.25
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Bayes Filter Algorithm Example - 6

Time t = 2, act

u2 = push, perform push action

bel(x2) =
∑

x1
p(x2|u2, x1)bel(x1), prediction

bel(x2) = p(x2|u2 = push, x1 = open)bel(x1 = open) +

+ p(x2|u2 = push, x1 = close)bel(x1 = close)

bel(x2 = open) = p(x2 = open|u2 = push, x1 = open)bel(x1 = open) +

+ p(x2 = open|u2 = push, x1 = close)bel(x1 = close) =

= 1 · 0.75 + 0.8 · 0.25 = 0.95

bel(x2 = close) = p(x2 = close|u2 = push, x1 = open)bel(x1 = open) +

+ p(x2 = close|u1 = push, x1 = close)bel(x1 = close) =

= 0 · 0.75 + 0.2 · 0.25 = 0.05
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Bayes Filter Algorithm Example - 7

Time t = 2, sense

z2 = far, sense open door

bel(x2) = ηp(z2 = far|x2)bel(x2), measurement update

bel(x2 = open) = ηp(z2 = far|x2 = open)bel(x2 = open)

= η0.6 · 0.95 = η 0.57

bel(x2 = close) = ηp(z2 = far|x2 = close)bel(x2 = close)

= η0.2 · 0.05 = η 0.01

bel(x2 = open) + bel(x2 = close) = 1

η 0.57 + η 0.01 = 1

η = (0.57 + 0.01)−1 = 1.724

bel(x1 = open) = 0.983

bel(x1 = close) = 0.017
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Markov Localization

Markov Localization Algorithm

The state xt is the robot pose

Require also a map m as input

Map m plays a key role in the measurement model

p(zt |xt ,m)

measure the relative pose w.r.t. the map

Can be integrated in the motion model (the prediction step)

p(xt |ut , xt−1,m)

avoid prediction of impossible movement, like through a wall
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Markov Localization - Initial belief

Pose Tracking - case 1

The initial pose is known: x0

The initial belief is bel(x0) =

{
1 ifx0 = x0

0 otherwise

Pose Tracking - case 2

The initial pose is known with some uncertainty

e.g. Gaussian x0 = (N)(x0,Σ0)

The initial belief is bel(x0) = (2π det(Σ))−
1
2 exp {− 1

2
(x−µ)T Σ−1(x−µ)}

Global Localization

The initial pose is unknown, uniform distribution over all the map

The initial belief is bel(x0) = 1
|X | , where |X | is the volume of the space
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Markov Localization - Illustration - 1

Environment setup

A one-dimensional hallway

Three indistinguishable doors

remember that we know the map

The robot sense (noisly) a door presence

The robot known its direction and the relative motion performed in a time step

The state xt is the x robot position
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Markov Localization - Illustration - 2

Initial Belief

Initial position is unknown, bel(x0) is uniformly distributed
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Markov Localization - Illustration - 3

Sense

The robot sense a door presence

bel(x1) is higher on door locations
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Markov Localization - Illustration - 4

Motion model - prediction step

Robot knows its movement (u, the control variable)

bel(x2) is shifted as result of motion

bel(x2) is flattened as result of uncertainty on motion
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Markov Localization - Illustration - 5

Sense

The robot sense a door presence

bel(x2) is focused on the correct pose
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Markov Localization - Illustration - 6

Motion model - prediction step

bel(x3) is focused on the correct pose

bel(x3) is flattened
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