

Robotics - Localization & Bayesian Filtering

Simone Ceriani

ceriani@elet.polimi.it

Dipartimento di Elettronica e Informazione Politecnico di Milano

10 May 2012

Mahila Dal	and the setting	منام منتقبا المتعام	at a la		
0000	00000	0000000000	0000000	0000000000000	0000000
Introduction		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization

Mobile Robot Localization - Introduction

The problem

- Determining *pose* of robot
- Relative to a given map of the environment
- a.k.a. position estimation

Notes

- It's an instance of the general localization
 - i.e., localize objects in the workspace of a manipulator

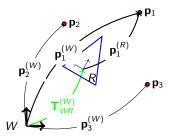
Introduction		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	0000000000000	0000000
Localizatio	n - The pr	oblem			

LOCALIZATION INPUT

- Known map in a reference system
- Perception of the environment
- Motion of the robot

LOCALIZATION GOAL

- Determine robot position w.r.t. the map i.e. the relative transformation $T^{(W)}_{WR}$
- Problem of coordinate transformation
 T^(W)_{WR} allow to express objects position (maps) in a local frame (w.r.t. the robot)



- $\mathbf{p}_i^{(W)}$: the map
- **p**₁^(R): robot perception
- $\mathbf{T}_{WR}^{(W)}$: localization

Introduction		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	00000000000	0000000	000000000000	0000000
Localizatio	n - Issues				

Direct pose sensing

- Usually impossible
- Noise corruption

Pose estimation

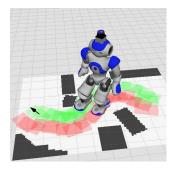
Inferred from data

Usually a single sensor measure is insufficient

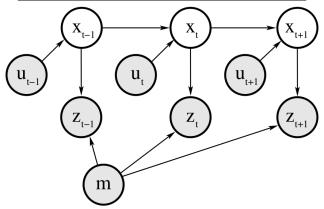
- Robot need to integrate information over time
 - e.g. map with two identical corridors

Map

- Various representations are possible according to the problem
- Key concept: localization needs a precise map



GRAPHICAL MODEL OF MOBILE ROBOT LOCALIZATION



- X.: robot pose z.: measurements
- m: the map u: inputs (e.g. speed of wheels, ...)
 - Values of shaded nodes are known

Introduction 0000●	Taxonomy 00000	Probability Recall 00000000000	Bayes Rule 0000000	Bayesian Filtering 0000000000000	Markov Localizatior 00000000
Localizati	on - Maps				
HA	ND-MADE M	ETRIC MAP	<u>(</u>	OCCUPANCY GRID	MAP

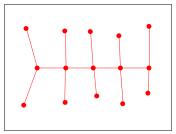
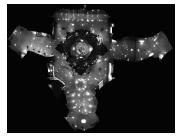
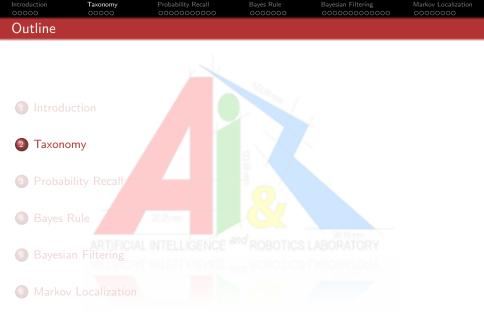


IMAGE MOSAIC OF CEILING



Images from Probabilistic Robotics - S. Thrun, W. Burgard, D. Fox



	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	000000000000	0000000
Taxonomy -	- Local vs (Global - 1			

LOCAL VS GLOBAL LOCALIZATION

- Depends on information available initially and at run-time
- Three types of localization problems, with increasing degree of difficulty

1. Pose Tracking

- Assume initial position is known
- Localization achieved by accommodating the noise in robot motion
- Pose uncertainty often approximated by a unimodal distribution
- It is a *local* problem, uncertainty is confined near robot true pose

2. GLOBAL LOCALIZATION

- Initial pose unknown
- The robot knows that it does not know where it is
- Approaches cannot assume bound on (initial) pose error
- It is not a local problem, estimation could be very far from true pose
- More complicated than pose tracking

	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	00000000000	0000000	0000000000000	0000000
Taxonomy	- Local vs (Global - 2			

3. KIDNAPPED ROBOT PROBLEM

- Variant of the global localization problem
- The robot can get kidnapped and teleported to some other location
- The robot might believe it knows where it is while it does not
- Even more difficult
- Robot are not really kidnapped in practice
- Practical importance: recover from failures in localization

IN THESE LESSONS

- Markov Localization: general framework
- Pose Tracking: Extended Kalman Filtering
- Global Localization: Particle Filtering / Monte Carlo approaches

	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	0000000000000	00000000
Taxonomy -	- Static vs I	Dynamic Enviro	onment		

STATIC ENVIRONMENT

- Only the robot pose change during operation
- Environment (the map) is static

Dynamic Environment

- Environment changes over time
- Environment changes affects sensor measurements
- Environment changes: temporary or permanent
- e.g.: doors, furniture, walking people, daylight
- Localization more difficult than in a static environment

	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	0000000000000	0000000
Taxonomy -	- Passive vs	Active Appro	aches		

PASSIVE APPROACH

- Localization module observes the robot operating
- Robot motion is not aimed in facilitating localization

ACTIVE APPROACH

- Localization module controls the robot so as to
 - minimize the localization error
 - avoid hazardous movement of a poorly localized robot
- e.g., coastal navigation, symmetric corridors
- Trade-off: localization performance vs ability to performs operations

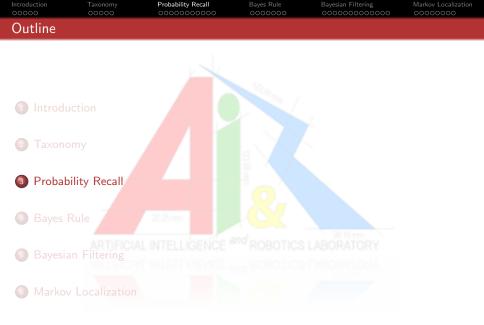
	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	000000000000	0000000
Taxonomy -	- Single vs	5 Multirobot			

SINGLE ROBOT LOCALIZATION

- Most commonly studied
- All data is collected on the robot, no communication issue

Multirobot Approach

- Arises in team of robot
- Could be treated as n-single robot localization problem
- If robots are able to detect each other, there is opportunity to do better



Uncertain	ity in Robot	tics & Probabilis	stic Robotic	s	
00000	00000	••••••	0000000	0000000000000	0000000
		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization

ROBOTICS SYSTEMS

- Situated in the physical world
- Perceive information through sensors
- manipulate through physical forces
- Have to be able to accommodate uncertainties that exists in the physical world

FACTORS THAT CONTRIBUTE TO ROBOT'S UNCERTAINTY

- Real environments are inherently unpredictable
- Sensors are limited in range, resolution, subject to noise
- Actuation involves motors; uncertainty arises from control noise, wear and tear.
- Mathematical models are approximation of real phenomenal

LEVEL OF UNCERTAINTY

• Depends on the application domain

in well known environments, like assembly lines, could be bounded

in the open world plays a key role

Managing uncertainty is a key step towards robust real-world robot systems

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	000000000000	0000000
Discrete R	andom Va	riables			

DISCRETE RANDOM VARIABLES

• X: a random variables

e.g., consider a die rolling experiment, X is the variable representing the outcome

• Pr(X = x) represent the probability that X has value x

e.g., X assume one of $\{1, 2, 3, 4, 5, 6\}$

x: a specific values that X might assume (on a discrete set)
 e.g., Pr(X = 1) = Pr(X = 2) = · · · Pr(X = 6) = ¹/₆

PROPERTIES - 1

• $\sum_{\forall x} \Pr(X = x) = 1$: discrete probability sum to 1

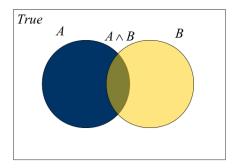
• $Pr(X = x) \ge 0$: probability is non negative e.g., Pr(X = 0) = Pr(X = 7) = 0, impossible event

- $Pr(X = x) \le 1$: probability is bounded to 1 e.g., $Pr(X = \{1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6\})$, sure event
- Common abbreviation: Pr(x) instead of Pr(X = x)

PROPERTIES - 2

• Consider two event A and B

e.g., A is "die outcome is 2 or 3 ", B is "die outcome is even"



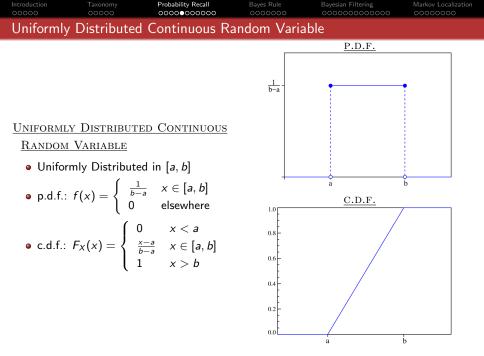
Remarks

• *Relative-frequency* (i.e., outcome of experiments) are alternative (not rigorous) ways of introduce the concept of probability.

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
		0000000000			
Continuous	s Random	Variables			

CONTINUOUS RANDOM VARIABLES

- Allow to address continuous space
- Possess a Probability Density Function (p.d.f.) $f_X(x), x \in \mathbb{R}$
- Pr(X = x) = 0, even though it is not impossible
- The integral is the Cumulative Density Function (c.d.f.) $F_X(x) = \Pr(x \le x) = \int_{-\infty}^x f_X(x) dx$
- $\lim_{x\to\infty} F_X(x) = \Pr(X \le \infty) = 1$
- $\Pr(x \in (a, b)) = \int_{a}^{b} f_{X}(x) dx = F_{X}(b) F_{X}(a)$

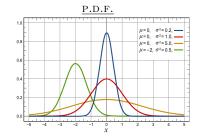


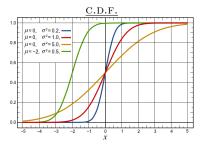
NORMAL DISTRIBUTED RANDOM VARIABLE

- a.k.a. Gaussian Random Variable
- *N*(μ, σ²)
 - mean: μ
 - variance: σ^2
- p.d.f.:

$$f(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right\}$$

- c.d.f.: \nexists explicit formula, tabulated for $\mathcal{G}(\eta)$, c.d.f. of $\mathcal{N}(0,1)$
- $F(x) = \mathcal{G}(\frac{x-\mu}{\sigma})$ $\frac{x-\mu}{\sigma}$: number of σ away from the mean

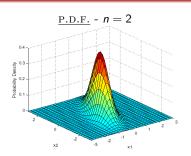


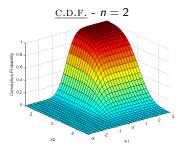


Multivariat	to Dictribu	tions			
00000	00000	00000000000	0000000	0000000000000	0000000
		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization

Multivariate

- x is a vector
- $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$, with
 - μ : n imes 1, mean vector
 - Σ : $n \times n$, covariance matrix
- $f(\mathbf{x}) =$ $(2\pi \operatorname{det}(\Sigma))^{-\frac{1}{2}} \exp \{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)\}$ • $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} \Sigma = \begin{bmatrix} \Sigma_{11} \quad \Sigma_{12} \quad \cdots \quad \Sigma_{1n} \\ \Sigma_{21} \quad \Sigma_{22} \quad \cdots \quad \Sigma_{2n} \\ \vdots \quad \cdots \quad \ddots \quad \vdots \\ \Sigma_{n1} \quad \Sigma_{n2} \quad \cdots \quad \Sigma_{nn} \end{bmatrix}$
 - diagonal elements are the variances of the single components
 - off diagonals elements are the covariances between elements
 - Σ is symmetric and positive definite, (non singular)
 - if ∃ linear relation among components, Σ is positive semi-definite, (singular)





		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	00000000000	0000000	0000000000000	0000000
Mean, Va	riance, Mo	ments			

DISCRETE CASE

- Expected value: $E[X] = \sum_{x} xp(x) = \overline{x}$
- *n*-th moment: $E[X^n] = \sum_x x^n p(x)$
- Variance: $VAR(x) = E[(x \overline{x})^2]$ = $\sum_x (x - \overline{x})^2 p(x) = \sigma^2$ = $E[X^2] - E[X]^2$
 - a.k.a. second central moment

Continuous case

- Expected value: $E[X] = \int_x xf(x)dx$
- *n*-th moment: $E[X^n] = \int_x x^n p(x)$
- Variance: $VAR(x) = E[(x \overline{x})^2]$ = $\int_x (x - \overline{x})^2 p(x) = \sigma^2$ = $E[X^2] - E[X]^2$

a.k.a. second central moment

PROPERTIES

• consider Y = aX + b, X random variable, a, b scalar quantities

•
$$E[Y] = aE[X] + b$$

• $VAR(Y) = a^2 VAR(Y)$

JOINT PROBABILITY

• Consider two random variables X and Y or a random vector $\mathbf{Z} = \begin{bmatrix} X, Y \end{bmatrix}^{T}$

•
$$\Pr(X = x \land Y = y) = \Pr(x, y) = \Pr(z)$$

with $\mathbf{z} = \begin{bmatrix} x, y \end{bmatrix}^T$

INDEPENDENCE

• X and Y are independent if and only if

CONDITIONING

- Pr(x|y) is the probability of x given y
- $\Pr(x, y) = \Pr(x|y) \Pr(y)$

Х

Introduction		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	0000000000000	00000000
Condition	al Independ	lence			

CONDITIONAL INDEPENDENCE

- X and Y are conditional independent on Z if Pr(x, y|z) = Pr(x|z)Pr(y|z)
- This is equivalent to $\Pr(x, y|z) = \frac{\Pr(x, y, z)}{p(z)} = \Pr(x|y, z) \Pr(y|z) = \frac{\Pr(x|y, z) \Pr(y, z)}{\Pr(z)}$
- Thus, X and Y are conditional independent on Z if Pr(x|z) = Pr(x|y, z)
 i.e., knowledge on y does not add any information to x if z is known

Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering 0000000000000	Markov Localization
Total prob	ability, mai	rginals			

• Total probability:

$$\int_{x_1=-\infty}^{\infty}\cdots\int_{x_n=-\infty}^{\infty}f_{x_1\ldots x_n}(x_1,\ldots,x_n)dx_1\ldots dx_n=1$$

• Marginal distribution:

$$\int_{-\infty}^{\infty} f_{x,y}(x,y) dx = f_y(y)$$
$$\int_{-\infty}^{\infty} f_{x,y}(x,y) dy = f_x(x)$$

• Marginal distribution with conditioning:

$$\int_{-\infty}^{\infty} f_{y|x}(y|x) f_x(x) dx = f_y(y)$$
$$\int_{-\infty}^{\infty} f_{x|y}(x|y) f_y(y) dy = f_x(x)$$



		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	000000	000000000000	0000000
Bayes Forr	nula				

FROM CONDITIONING

- $\Pr(x, y) = \Pr(x|y)\Pr(y)$
- $\Pr(x, y) = \Pr(y|x) \Pr(x)$

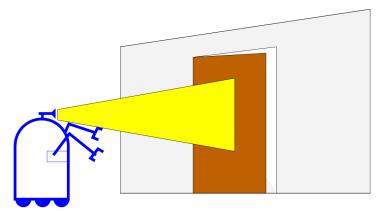
BAYES FORMULA

- $\Pr(x|y) = \frac{\Pr(y|x)\Pr(x)}{\Pr(y)} = \frac{\Pr(y|x)\Pr(x)}{\int_{-\infty}^{\infty} f_{y|x}(y|x')f_x(x')dx'}$
- Pr(x) is the *prior*, the belief about x
- y is the data, e.g., a sensor measure
- Pr(y|x) is the *likelihood*, i.e., how much is probable to have measure y in state x
- Pr(x|y) is the *posterior*, i.e., the belief x state given the measurement y
- Bayes formula allow to infer a quantity x from data y through *inverse probability* i.e., through the probability of data y assuming that the state is x

		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	000000000000	0000000
Bayes Exa	mple - 1				

PROBLEM

• A robot "observe" a door



		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	000000000000	0000000
Bayes Exa	ample - 2				

PROBLEM

- A robot "observe" a door
- The door could be *open* or *close*
- The sensor measure a distance as far or near
- The probability that the door is open is 0.4
- The probability that the sensor measure far when the door is open is 0.8
- The probability that the sensor measure far when the door is close is 0.1
- What is the probability that the door is open if the sensor measurement is near?
- What is the probability that the door is open if the sensor measurement is far?
- What is the probability that the door is *close* if the sensor measurement is *near*?
- What is the probability that the door is *close* if the sensor measurement is *far*?

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	0000000000000	0000000
Bayes Exa	mple - 3				

VARIABLE DEFINITION

- X: door state, {open, close}
- *Y*: sensor measure, {open, close}

P.D.FPr(X=open)=0.4
$$\Pr(Y=far|X=open)=0.8$$
 $\Pr(Y=far|X=close)=0.1$ Pr(X=close)=0.6 $\Pr(Y=near|X=open)=0.2$ $\Pr(Y=near|X=close)=0.9$

SOLUTION

•
$$\Pr(X = \operatorname{open}|Y = \operatorname{near}) = \frac{\Pr(Y = \operatorname{near}|X = \operatorname{open})\Pr(X = \operatorname{open})}{\Pr(Y = \operatorname{near}|X = \operatorname{open})\Pr(X = \operatorname{open})+\Pr(Y = \operatorname{near}|X = \operatorname{close})\Pr(X = \operatorname{close})}$$
$$= \frac{0.2 \cdot 0.4}{0.2 \cdot 0.4 + 0.9 \cdot 0.6} = 0.13$$

• $\Pr(X = \operatorname{open}|Y = \operatorname{far}) = \frac{\Pr(\operatorname{far}|\operatorname{open})\Pr(\operatorname{open})}{\Pr(\operatorname{far}|\operatorname{open})\Pr(\operatorname{far}|\operatorname{close})\Pr(\operatorname{close})} = \frac{0.8 \cdot 0.4}{0.8 \cdot 0.4 + 0.1 \cdot 0.6} = 0.84$

•
$$\Pr(X = \text{close}|Y = \text{near}) = \frac{\Pr(\text{near}|\text{close}) \Pr(\text{close})}{\Pr(\text{near})} = \frac{0.9 \cdot 0.6}{0.62} = 0.87$$

•
$$\Pr(X = \text{close}|Y = \text{far}) = \frac{\Pr(\text{far}|\text{close})\Pr(\text{close})}{\Pr(\text{far})} = \frac{0.1 \cdot 0.6}{0.9 + 0.2} = 0.16$$

Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000●00	Bayesian Filtering	Markov Localization
	ursive Upd				

NEW MEASUREMENTS

- Suppose that we get the first measurement: near
- Thus, $Pr(X = open|Y_1 = far) = 0.84$, and $Pr(X = close|Y_1 = far) = 0.16$
- A second measure Y_2 arrives: it is far

•
$$\Pr(X = \operatorname{open}|Y_1 = \operatorname{far}, Y_2 = \operatorname{far})?$$

• More generally, how to estimate $Pr(X = open | Y_1 = y_1, Y_2 = y_2, \dots, Y_n = y_n)$?

EXTEND THE BAYES RULE

•
$$\Pr(X|Y_1, Y_2) = \frac{\Pr(Y_2|X, Y_1) \Pr(X|Y_1)}{\Pr(Y_2|Y_1)} = \frac{\Pr(Y_2|X, Y_1) \Pr(X|Y_1)}{\int_{-\infty}^{\infty} f_{Y_2|Y_1, x'}(Y_2|Y_1, x') f_{X|Y_1}(x'|Y_1) dx'}$$

•
$$\Pr(X|Y_1, Y_2, ..., Y_n) = \frac{\Pr(Y_n|X, Y_1, ..., Y_{n-1})\Pr(X|Y_1, Y_2, ..., Y_{n-1})}{\Pr(Y_n|Y_1, ..., Y_{n-1})} = ...$$

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000		00000●0	0000000000000	00000000
Bayes Rec	ursive Upd	lating - 2			

MARKOV ASSUMPTION

- Markov assumption: Y_2 independent of Y_1 if we know X
- Then $\Pr(Y_2|X, Y_1) = \Pr(Y_2|X)$ (see Conditional Independence formulas)
- Bayes rule

$$\Pr(X|Y_1, Y_2) = \frac{\Pr(Y_2|X, Y_1) \Pr(X|Y_1)}{\Pr(Y_2|Y_1)} = \frac{\Pr(Y_2|X) \Pr(X|Y_1)}{\Pr(Y_2|Y_1)}$$

$$\Pr(X|Y_1, Y_2, \dots, Y_n) = \frac{\Pr(Y_n|X, Y_1, \dots, Y_{n-1}) \Pr(X|Y_1, \dots, Y_{n-1})}{\Pr(Y_n|Y_1, \dots, Y_{n-1})} = \frac{\Pr(Y_n|X) \Pr(X|Y_1, \dots, Y_{n-1})}{\Pr(Y_n|Y_1, \dots, Y_{n-1})}$$

with

$$\begin{aligned} \Pr(Y_2|Y_1) &= \int_{-\infty}^{\infty} f_{Y_2|Y_1,x'}(Y_2|Y_1,x') f_{X|Y_1}(x'|Y_1) dx' \\ &= \int_{-\infty}^{\infty} f_{Y_2|x'}(Y_2|x') f_{X|Y_1}(x'|Y_1) dx' \end{aligned}$$

similar with n measurement

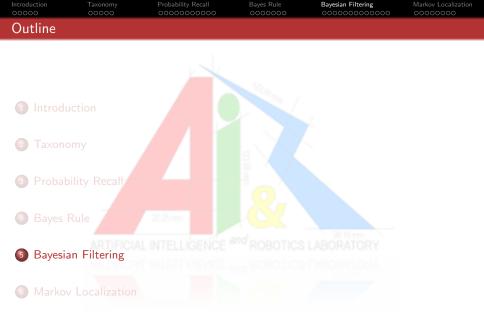
note: use \sum in discrete case

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	000000000000	0000000
Bayes Rec	ursive Upd	ating - 3			

The example

- $\Pr(X = \operatorname{open}|Y_1 = \operatorname{far}) = 0.84$, and $\Pr(X = \operatorname{close}|Y_1 = \operatorname{far}) = 0.16$, $Y_2 = \operatorname{far}$
 - $Pr(Y_2|Y_1) = Pr(Y_2|Y_1, \text{open}) Pr(\text{open}|Y_1) + Pr(Y_2|Y_1, \text{close}) Pr(\text{close}|Y_1)$ = $Pr(Y_2|\text{open}) Pr(\text{open}|Y_1) + Pr(Y_2|\text{close}) Pr(\text{close}|Y_1)$
 - = Pr(far|open) Pr(open|far) + Pr(far|close) Pr(close|far)
 - $Pr(far|far) = 0.8 \cdot 0.84 + 0.1 \cdot 0.16 = 0.688$

•
$$\Pr(X = \operatorname{open}|Y_1 = \operatorname{far}, Y_2 = \operatorname{far}) = \frac{\Pr(\operatorname{far}|\operatorname{open})\Pr(\operatorname{open}|\operatorname{far})}{\Pr(\operatorname{far}|\operatorname{far})} = \frac{0.8 \cdot 0.84}{0.688} = 0.977$$



		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	•000000000000	0000000
Robot env	vironment i	nteraction - 1			

The environment

- a.k.a. World
- generally it's a *dynamic system*:
 - Robot can act on it
 - Changes due to time passing by

A ROBOT

- Can act on environment
 - i.e., change the environment state
- Can sense environment through sensor
- Has an internal *belief* on state

<u>State</u>

- Collection of all aspects of the robot and the environment
- Generally, changes over time, some part could be static
- We will refer it with x_t

Introduction	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering	Markov Localization
Robot en	vironment i	nteraction - 2			

CONTROL ACTIONS

- Change the state of the world (robot and/or environment)
- $u_{t_1:t_n} = u_{t_1}, u_{t_2}, \dots u_{t_n}$

MEASUREMENTS

- Information about the environment (distances, images, ...)
- $z_{t_1:t_n} = z_{t_1}, z_{t_2}, \dots z_{t_n}$

Complete State and Markov Chain

- x_t will be called *complete* if it is the best predictor of the future
- All past states, measurements and inputs carry no additional information to predict the future more accurately
- No variables prior to x_t may influence the stochastic evolution of future state
- This a Markov Chain

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	00●0000000000	
Evolution o	of state - 1				

EVOLUTION OF STATE

- x_t is stochastically generated by x_{t-1}
- xt p.d.f is conditioned on past states, inputs and measurement
- $p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t})$
- Under Markov Chain hypothesis (or Complete State), thanks to conditional independence p(x_t|x_{0:t-1}, z_{1:t-1}, u_{1:t}) = p(x_t|x_{t-1}, u_t)
- $p(x_t|x_{t-1}, u_t)$ is the state transition probability
- State evolution is stochastic, not deterministic (i.e., is a p.d.f.)

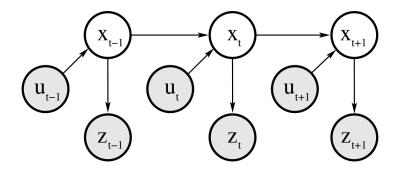
MEASUREMENT PROCESS

- $p(z_t|x_{0:t}, z_{0:t-1}, u_{1:t}) = p(z_t|x_t)$ under Complete State
- the state x_t is sufficient to predict the (potentially noisy) measurement z_t
- $p(z_t|x_t)$ is the measurement probability
- Specify the probabilistic low of according to which measurement are generated

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	000€000000000	
Evolution of	of state - 2				

EVOLUTION OF STATE AND MEASUREMENTS

- Describe the dynamical stochastic system of the robot and its environment
- a.k.a. as Hidden Markov Model (HMM) or Dynamic Bayes Network (DBN)



		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	0000000000	0000000	0000000000000	0000000
Belief Dist	ributions				

Belief

- Reflects the robot's internal knowledge about the state
- Usually, the state cannot be measure directly
- The state need to be inferred from data

POSTERIOR BELIEF DISTRIBUTION

- Conditional probability
- Is a *posterior* probability
- Conditioned on available data
- $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

PRIOR BELIEF DISTRIBUTION

- Conditional probability
- Is a *prior* probability
- Conditioned on available data before incorporating zt measure
- $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$
- Often referred as a predition

Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering	Markov Localization
			0000000		0000000
Bayes FI	ter Algorith	m			
The Alg	GORITHM				
 Calci 	ulate the belie	of $bel(x_t)$			
Recu	irsive: use <i>bel</i>	(x_{t-1}) as input			

• Use most recent measure (z_t) and input (y_t)

Algorithm

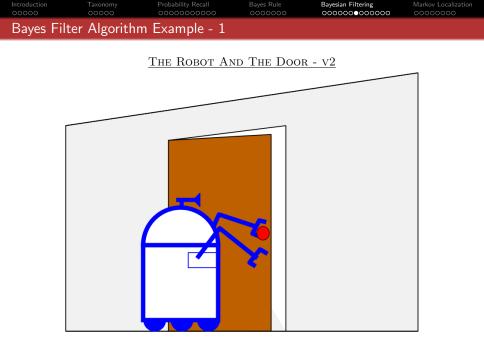
Algorithm Bayes_filter($bel(x_{t-1}), u_t, z_t$): for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx$ $bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$ endfor return $bel(x_t)$

Step 1

- Calculate the prior belief $\overline{bel}(x_t)$
- Integral of the product of
 - The prior on x_t
 - The probability of the state evolution
- It is a prediction

Step 2

- Calculate the posterior belief *bel*(*x_t*)
- Product of
 - Prior distribution
 - Measurement probability
 - η: normalization factor
 n: Σ... hel(x_i) = 1
 - $\eta:\sum_{orall x_t} \mathit{bel}(x_t) = 1$
- It is a measurement update



		Probability Recall	Bayes Rule	Bayesian Filtering	
00000	00000	00000000000	0000000	0000000000000	0000000
Bayes Filter	r Algorithm	Example - 2			

The door

- Can be open or close
- initial state is unknown

The robot

- Can act (stochastically) on the door:
 - push: try to open the door
 - nop: no operation
- Sense (noisly) the door presence
 - *near*: read by sensor when door is close
 - far: read by sensor when door is open

INITIAL BELIEF

- *bel*(*x*₀ = open) = 0.5
- $bel(x_0 = close) = 0.5$

MEASUREMENT PROBABILITY

- $bel(z_t = far|x_t = open) = 0.6$
- $bel(z_t = near|x_t = open) = 0.4$
- $bel(z_t = far|x_t = close) = 0.2$
- $bel(z_t = near|x_t = close) = 0.8$

	r Algorithi	m Example - 3			
Introduction 00000	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering 000000000000000000000000000000000000	Markov Localization

STATE TRANSITION PROBABILITY

$$bel(x_t = open | u_t = push, x_{t-1} = open) = 1$$

$$bel(x_t = close | u_t = push, x_{t-1} = open) = 0$$

•
$$bel(x_t = open | u_t = nop, x_{t-1} = open) = 1$$

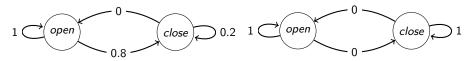
•
$$bel(x_t = close|u_t = nop, x_{t-1} = open) = 0$$

•
$$bel(x_t = open|u_t = nop, x_{t-1} = close) = 0$$

•
$$bel(x_t = close | u_t = nop, x_{t-1} = close) = 1$$

$$bel(x_t = open|u_t = push, x_{t-1} = close) = 0.8$$

$$bel(x_t = close|u_t = push, x_{t-1} = close) = 0.2$$



Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	0000000000000000	
Bayes Filter	Algorithm	Example - 4			

Time t = 1, act

• $u_1 = nop$, no operation performed

•
$$\overline{bel}(x_1) = \sum_{x_0} p(x_1|u_1, x_0) bel(x_0)$$
, prediction

$$\overline{bel}(x_1) = p(x_1|u_1 = nop, x_0 = open)bel(x_0 = open) + + p(x_1|u_1 = nop, x_0 = close)bel(x_0 = close)\overline{bel}(x_1 = open) = p(x_1 = open|u_1 = nop, x_0 = open)bel(x_0 = open) + + p(x_1 = open|u_1 = nop, x_0 = close)bel(x_0 = close) = = 1 \cdot 0.5 + 0 \cdot 0.5 = 0.5$$

$$\overline{bel}(x_1 = close) = p(x_1 = close|u_1 = nop, x_0 = open)bel(x_0 = open) + p(x_1 = close|u_1 = nop, x_0 = close)bel(x_0 = close) = 0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$$

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	000000000000000	0000000
Bayes Filter	r Algorithm	n Example - 5			

Time t = 1, sense

• $z_1 = far$, sense open door

•
$$bel(x_1) = \eta p(z_1 = far|x_1)\overline{bel}(x_1)$$
, measurement update

$$bel(x_1 = open) = \eta p(z_1 = far|x_1 = open)\overline{bel}(x_1 = open)$$
$$= \eta 0.6 \cdot 0.5 = \eta 0.3$$

$$bel(x_1 = close) = \eta p(z_1 = far|x_1 = close)\overline{bel}(x_1 = close)$$
$$= \eta 0.2 \cdot 0.5 = \eta 0.1$$

•
$$bel(x_1 = open) + bel(x_1 = close) = 1$$

- $\eta 0.3 + \eta 0.1 = 1$
- $\eta = (0.3 + 0.1)^{-1} = 2.5$

- $bel(x_1 = open) = 0.75$
- $bel(x_1 = close) = 0.25$

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	00000000000●0	
Bayes Filter	r Algorithm	Example - 6			

Time t = 2, act

• $u_2 = push$, perform *push* action

•
$$\overline{bel}(x_2) = \sum_{x_1} p(x_2|u_2, x_1) bel(x_1)$$
, prediction

$$\overline{bel}(x_2) = p(x_2|u_2 = push, x_1 = open)bel(x_1 = open) +$$

$$+ p(x_2|u_2 = push, x_1 = close)bel(x_1 = close)$$

$$\overline{bel}(x_2 = open) = p(x_2 = open|u_2 = push, x_1 = open)bel(x_1 = open) +$$

$$+ p(x_2 = open|u_2 = push, x_1 = close)bel(x_1 = close) =$$

$$= 1 \cdot 0.75 + 0.8 \cdot 0.25 = 0.95$$

$$\overline{bel}(x_2 = close) = p(x_2 = close|u_2 = push, x_1 = open)bel(x_1 = open) + p(x_2 = close|u_1 = push, x_1 = close)bel(x_1 = close) = 0 \cdot 0.75 + 0.2 \cdot 0.25 = 0.05$$

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	000000000000	0000000
Bayes Filter	r Algorithm	Example - 7			

Time t = 2, sense

• $z_2 = far$, sense open door

•
$$bel(x_2) = \eta p(z_2 = far|x_2)\overline{bel}(x_2)$$
, measurement update

$$bel(x_2 = open) = \eta p(z_2 = far|x_2 = open)\overline{bel}(x_2 = open)$$

= $\eta 0.6 \cdot 0.95 = \eta 0.57$

$$bel(x_2 = close) = \eta p(z_2 = far|x_2 = close)\overline{bel}(x_2 = close)$$
$$= \eta 0.2 \cdot 0.05 = \eta 0.01$$

• $\eta 0.57 + \eta 0.01 = 1$

•
$$\eta = (0.57 + 0.01)^{-1} = 1.724$$

- $bel(x_1 = open) = 0.983$
- $bel(x_1 = close) = 0.017$

6 Markov Localization

Introduction	Taxonomy 00000	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
Markov Lo			000000		

MARKOV LOCALIZATION ALGORITHM

- The state x_t is the robot pose
- Require also a map *m* as input
- Map *m* plays a key role in the measurement model *p*(*z_t*|*x_t*, *m*) measure the relative pose w.r.t. the map
- Can be integrated in the motion model (the prediction step)
 p(x_t|u_t, x_{t-1}, m)

avoid prediction of impossible movement, like through a wall

Algorithm Markov_localization($bel(x_{t-1}), u_t, z_t, m$): for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}, m) \ bel(x_{t-1}) \ dx$ $bel(x_t) = \eta \ p(z_t \mid x_t, m) \ \overline{bel}(x_t)$ endfor return $bel(x_t)$

Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering 0000000000000	Markov Localization
Markov Lo	calization -	- Initial belief			

Pose Tracking - case 1

• The initial pose is known: \overline{x}_0

• The initial belief is
$$bel(x_0) = \begin{cases} 1 & \text{if } x_0 = \overline{x}_0 \\ 0 & \text{otherwise} \end{cases}$$

Pose Tracking - case 2

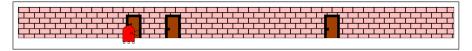
- The initial pose is known with some uncertainty e.g. Gaussian x
 ₀ = (N)(x
 ₀, Σ₀)
- The initial belief is $bel(x_0) = (2\pi \det(\Sigma))^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right\}$

GLOBAL LOCALIZATION

- The initial pose is unknown, uniform distribution over all the map
- The initial belief is $bel(x_0) = \frac{1}{|X|}$, where |X| is the volume of the space

Introduction	Taxonomy	Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	00000000000	0000000	0000000000000	
Markov Lo	calization -	Illustration - 1			

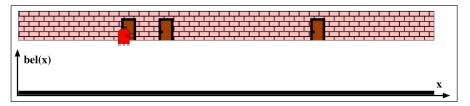
Environment setup



- A one-dimensional hallway
- Three indistinguishable doors remember that we know the map
- The robot sense (noisly) a door presence
- The robot known its direction and the relative motion performed in a time step
- The state x_t is the x robot position

Introduction 00000	Taxonomy 00000	Probability Recall 00000000000	Bayes Rule 0000000	Bayesian Filtering 0000000000000	Markov Localization 00000000			
Markov Localization - Illustration - 2								

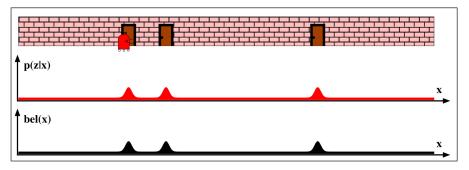
INITIAL BELIEF



• Initial position is unknown, $bel(x_0)$ is uniformly distributed

		Probability Recall	Bayes Rule	Bayesian Filtering	Markov Localization
00000	00000	0000000000	0000000	0000000000000	0000000
Markov Lo	ocalization	- Illustration - 3			

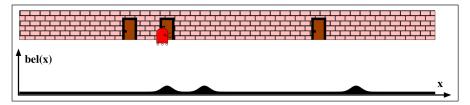
Sense



- The robot sense a door presence
- *bel*(*x*₁) is higher on door locations

Markov Lo	calization	- Illustration - 4	ļ		
Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering 00000000000000	Markov Localization

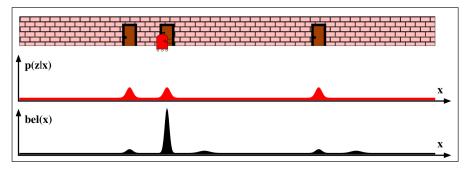
MOTION MODEL - PREDICTION STEP



- Robot knows its movement (u, the control variable)
- $\overline{bel}(x_2)$ is shifted as result of motion
- $\overline{bel}(x_2)$ is flattened as result of uncertainty on motion

Introduction 00000	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering	Markov Localization
Markov Lo	calization -	Illustration - 5			

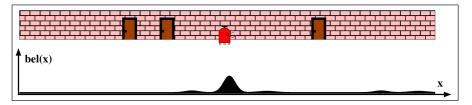
Sense



- The robot sense a door presence
- *bel*(*x*₂) is focused on the correct pose

Introduction	Taxonomy 00000	Probability Recall	Bayes Rule 0000000	Bayesian Filtering	Markov Localization
Markov Lo	calization	- Illustration - 6			

MOTION MODEL - PREDICTION STEP



- $\overline{bel}(x_3)$ is focused on the correct pose
- $\overline{bel}(x_3)$ is flattened

