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Sommario

Questa tesi si colloca nel contesto della robotica mobile, piti precisamente
affronta il problema denominato Simultaneous Localization and Mapping
(SLAM), ovvero quello di stimare contemporaneamente la posizione del
robot, (z,y,6), e la mappa dell’ambiente utilizzando i dati rumorosi for-
niti da sensori, quali encoder, laser e sistemi di visione.

Questo problema si rivela essere di fondamentale importanza per la
creazione di agenti fisici realmente autonomi. Il risultato degli algoritmi
potra essere infatti utilizzato come base per algoritmi decisionali di nav-
igazione quali path planning e obstacle avoidance.

Il lavoro si concentra su un particolare algoritmo di SLAM, scanSLAM
basato sulla tecnica di filtraggio denominata Extended Kalman Filter e
sull’utilizzo di algoritmi di scan matching.

11 modello di scanSLAM ¢ stato scelto poiché si rivela essere una inter-
essante alternativa a metodi come il Rao-Blackwellized Particle Filter, per
la creazione di mappe basate su dati provenienti da scansioni laser. Questo
tipo di sensore, comune in molte applicazioni robotiche, ¢ anche uno dei
principali sensori utilizzati dell’ambito del progetto LURCH, riguardante lo
sviluppo di una carrozzina autonoma. Essendo ancora sprovvista di sistemi
di navigazione SLAM, la carrozzina e stata considerata come principale tar-
get per questo lavoro di tesi.

Lo scopo della tesi ¢ quello di proporre estensioni al modello scanSLAM,
nuovi o tratti da differenti algoritmi di SLAM, con particolare interesse
alle tematiche di self calibration e dell’utilizzo di laser multipli, nonché la
loro implementazione e testing. Questo lavoro puo essere considerato il
primo caso di testing dell’algoritmo con dataset reali, ottenuti dai progetti
Rawseeds e LURCH, e per il quale sono analizzate sperimentalmente le
tecniche per la stima della covarianza relativa all’errore della famiglia di
scan matcher denominata Iterative Closest Points, ICP.

La scelta di estendere il modello al problema della self calibration deriva,
dall’esigenza di stimare in modo accurato i parametri di rototraslazione tra



il sistema di riferimento laser e il centro odometrico della carrozzina del
progetto LURCH e di aggiornare on-line tali parametri per assicurare la ro-
bustezza dell’algoritmo di SLAM. Pochi articoli scientifici hanno trattato la
calibrazione on-line di questi parametri estrinseci stimando simultaneamente
la mappa dell’ambiente.

L’interesse verso un approccio multi sensore deriva dalla opportunita
di impiegare piu laser range finder di fascia medio bassa al fine di ot-
tenere una mappa piu accurata dell’ambiente e limitare i problemi derivanti
dall’ambiguita delle scansioni laser.

Con l'obiettivo di implementare la versione pit corretta possibile per
il modello di scanSLAM, & stata condotta un’analisi dei piu promettenti
metodi di scan matching (ICP) e degli algoritmi che permettono di stimare
la covarianza dell’errore di minimizzazione. Una approfondita serie di test
ha permesso di individuare la soluzione migliore.

Si e infine realizzata una libreria generica e riusabile per la manipolazione
dei dati acquisiti da laser range finders, per algoritmi di EKF e scanSLAM
che potra essere utilizzata nel progetto LURCH per la progettazione futura
di alcune varianti proposte in seguito.

Benché nella fase di testing i risultati ottenuti in relazione alla self cali-
bration non siano ottimali e malgrado ’algoritmo non converga alla soluzione
esatta, le possibili fonti di errore sono state indagate e sono state proposte
alternative al fine di migliorare 1’algoritmo.

Il lavoro di tesi, corredato dall’analisi dei risultati di testing, rappresenta
il primo vero approfondimento delle tematiche legate al modello scanSLAM
che si rivela costituirsi una interessante alternativa alla soluzione del prob-
lema di SLAM mediante scansioni laser.
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Chapter 1
Introduction

“Bverything is theoretically impossible, until it is done. One could
write a history of science in reverse by assembling the solemn
pronouncements of highest authority about what could not be done and
could never happen.”

Heinlein, Waldo & Magic, Inc. (1950)

This final dissertation deals with a specific area of the mobile robotics named
probabilistic robotics. Mobile robotics is a specific field of robotics which
concerns the problems associated with the movement of an autonomous
physical agent, namely a robot, which interacts with the environment. Prob-
abilistic robotics employs robust techniques derived from statistics to solve
the problems of localization, mapping, path planning and more in general
navigation and exploration of an environment.

Among these topics, a very fundamental one is named Simultaneous
Localization and Mapping (SLAM) which concerns the problem of correctly
estimating the location of the robot (the pose of the robot) and the map of
the environment given the noisy data acquired by robot sensors, e.g., wheel
encoders, laser range finders and digital cameras.

This work is focused on a particular SLAM algorithm, named scanSLAM,
which uses raw laser sensor scans and scan matching algorithms in an Ex-
tended Kalman Filter (EKF) framework. This model is chosen because it
constitutes an interesting alternative to common approaches for laser-based
SLAM such as Rao-Blackwellized Particle Filter.

The laser range finder is a common sensor employed in contexts of au-
tonomous robotics, and it is also one of the main sensors in use in the
LURCH project, which regards the development of an autonomous wheelchair.
This wheelchair, lacking of a proper software for SLAM, configures itself as
the ideal target application for this work.
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The aim of this thesis is to extend the scanSLAM model, using novel
methods and techniques already employed in similar contexts, with partic-
ular interest to the themes of self calibration and multiple lasers. To the
modelling phase follows the implementation and testing of the proposed
models. In order to estimate the covariances needed for the Gaussian mod-
els of the EKF, a family of scan matching algorithms, which purpose is to
align a pair of laser scans, is considered. Moreover, an extensive research
and analysis of the state of the art algorithm in ICP covariance estimation
is conducted.

The results of the testing phase shows that the scanSLAM algorithm,
implemented with the proposed modifications, gives optimal results both
using very accurate laser range finders such as SICK, and with lower ac-
curate ones (e.g., Hokuyo). From visual inspection it can be observed that
the maps of the environment are consistent and that can be employed, in
principle, as input to algorithm for path planning. Moreover, an analysis of
the outcomes is performed to investigate the sources of errors for the self
calibration extension proposed, which does not retrieve the optimal solution.

ScanSLAM is first conceptualized as an example of Pose Snapshot Kalman
Filter (PSKF) by Nieto et al. [59, 60]. Other authors such as Diosi and
Kleeman [25] and Bosse [14] proposed the same model and extended it.To
the author’s knowledge, no researcher has extensively tested the standard
scanSLAM algorithm with a real dataset. Moreover, the scientific paper by
Bosse [14] is based on an extension and uses it for building local maps only.

One of the main components of the scanSLAM filter, beside EKF itself,
is the scan matcher. This kind of algorithm retrieves the optimal geometric
alignment between two laser scans (or between one scan and a reference
shape), which are defined as a cloud of 2D or 3D points. Among the different
scan matching techniques, the Iterative Closest Points family is the most
used for its robustness and speed. In particular, three ICP algorithms are
taken into consideration: the Classic ICP, the Metric Based ICP and the
Point-to-Line ICP. The first method is derived from the works by Lu and
Milios [45], Eggert [28] and Rusinkiewicz et al.[63], and it is based on the
simplest distance metric, the Euclidean distance between points of the two
scans. The second method is based on the scientific paper by Minguez et al.
[52, 53] and considers a particular distance norm which takes into account
the rotational components between the two scans. The last method is based
on Censi’s PLICP [19] and it is interesting for the speed of convergence and
the minimization procedure in use.

As mentioned before, the estimation of the uncertainty associated to scan
matching is needed to correctly implement the Extended Kalman Filter. In



the literature, few methods have been proposed. The most representative
ones are: [44] by Lu and Milios, [5, 6] by Bengtsson and [19] by Censi. In
particular, a good covariance estimation is needed also in peculiar under-
constrained conditions such as corridors where the scan matching algorithm
is very uncertain along one specific direction.

The three scan matchers have been realized and implemented in C++
together with the main algorithms for the estimation of the ICP covariance
to create a generic software library for the manipulation of laser scans . A
detailed and extensive analysis is performed to test the best combination
of scan matcher and covariance estimation algorithm. The resulting best
couple has been used to implement a generalized scanSLAM algorithm em-
ploying a novel generic, template-based, Extended Kalman Filter for SLAM.
The results obtained are encouraging and promising. The scanSLAM algo-
rithm is tested both with high cost, precise, laser range finders (SICK) and
with low cost, low-ranged ones (Hokuyo). The generalized algorithm is then
extended to deal with the issue of self calibration. The problem is to estimate
the correct rototranslation between the laser and the robot reference frames.
This problem is particularly interesting in relation to LURCH project for
which the extrinsic calibration is manually performed through ad hoc meth-
ods. In this case, the scanSLAM algorithm could improve the robustness of
the resulting map thanks to the on-line estimation of the extrinsic parame-
ters. In this case, the results are less promising but an analysis is conducted
to find the possible sources of error. This can be considered as the first work
in the literature which regards to extensively test the scanSLAM and which
shows the results obtained with a real dataset using the recent advancements
in the estimation of ICP covariance.

Many improvements can be the subject for future research and devel-
opments. In particular, the implementation of the extension described in
this work to deal with multiple lasers can successfully developed for enhanc-
ing the scanSLAM performance in relation to the autonomous wheelchair
built by the AIRLab, Artificial Intelligence and Robotics Laboratory, of Po-
litecnico di Milano under the LURCH project also. The procedure of self
calibration can be improved by testing different probabilistic robot motion
models and combine the information gathered by other localization algo-
rithm in the EKF filter. Lastly, an algorithm to collapse the dimension of
the EKF state variables by merging multiple landmarks constituted by scans
is interesting to deal with very large maps, such as Rawseeds datasets [23].

The thesis has the following structure:

e In Chapter 2, the state of the art is reviewed in order to make the
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reader familiar with the best results in scan matching, filtering, SLAM
and self calibration procedures

In Chapter 3, some implementations of the scan matching algorithms
are described. The algorithms for estimating the ICP covariance are
also shown together with the algorithm in pseudocode and the proce-
dure for scan preprocessing and outlier rejection

In Chapter 4, the Extended Kalman Filter for SLAM is reviewed and
the motion model used for the implementation is described as well

In Chapter 5, the main generalizations and extensions, novel or derived
from other SLAM models, of the scanSLAM algorithm are explained.
In particular, the model is generalized to take into account the uncer-
tainty in the rototranslation between the laser and the robot reference
frames. A self calibration method based on the EKF state augmenta-
tion is derived together with an extension to deal with multiple lasers
and the policies for improving the step of data association

In Chapter 6, the two dataset used and the related projects, Rawseeds
and LURCH, are described. The two laser range finders used for the
testing, Hokuyo and SICK, are also presented

In Chapter 7, the software library is described from an architectural
point of view. An analysis of the ICP covariance is performed, followed
by the description of the results for scanSLAM and the extension of
self calibration

Chapter 8 is dedicated to the conclusions and suggestions for future
research

Four appendix are included in this work. Appendix A shows the com-
mon mathematical notation used in this work.Appendix B describes
how to compute numerically the Hessian matrix associated with the
ICP error, which can be used to estimate the covariance. Appendix
C shows a simple implementation of the Kalman Filter, which is used
to validate the generic software implementation. Appendix D defines
the Mahalanobis distance and shows a simple example of usage.



Chapter 2

State of the Art

“There’s no limit to what he can do. He could destroy the earth... If anything
should happen to me you must go to Gort, you must say these words, “Klaatu
barada nikto”, please repeat that.”

The Day the Earth Stood Still (1951)

The present thesis deals with different themes that are pervasive in mobile
robotics, in particular it refers to the topics of scan matching, SLAM and
autocalibration. In this chapter, the scientific progresses in the various fields
are shown with the aim of making the reader aware of the most recent tech-
niques and explaining how this work could be placed within the accademic
literature.

2.1 Scan Matching

2.1.1 Iterative Closest Points

The term scan matching refers to a family of algorithms that solve the
problem of misalignment of two lasers scans, or of a scan and its parametric
model. The scan matcher uses the two scans as inputs and returns the
rototranslation allowing to superimpose the second scan to the first. The
present dissertation is focused on particular algorithms of this family named
ICP, Iterative Closest/Corresponding Points.

Besl and Mc Kay [7], in 1992, created the ICP algorithm for the registra-
tion of 3D images, demonstrating the monotonic convergence to the nearest
local minimum. In the article, they examined the case of a 3D cloud of
points with respect to a parametric model which is given as polylines, set of
triangles or curves.
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In 1997, an article by Lu and Milios [45], showed one of the first ap-
plications of the ICP method for mobile robotics. The authors applied a
2D adapted method to solve the problem of localization with laser range
scans. In fact,it is difficult to use landmarks techniques, e.g., detection of
corners, for laser scans because the algorithm would need to solve an object
recognition problem.

Two frequently cited algorithms were shown in that article. The first
one exploited the tangent directions and it is regarded to be fast, while the
second, slower but more stable, is the classic ICP point-to-point solved by
least square technique. Both the methods could be employed in sequence
and constituted the core of IDC, the Iterative Dual Correspondences.

Rusinkiewicz et al. [63] classified the most common variants of ICP algo-
rithm, verifying the difference in the speed of convergence. They concluded
that the point-to-plane metric, together with a projection-based correspond-
ing points research, assured the most reliable result and a faster convergence
than the classic point-to-point ICP metric. Furthermore, Eggert et al. [28]
explained how it is possible to compute the rototranslation that alignes two
set of corresponding points thanks to closed-form methods. Among the oth-
ers, the method based on singular value decomposition (SVD) achieved the
best overall results in terms of stability and accuracy.

Because of the intrinsic noise in the measures and robot motion, the
laser scans could not be completely superimposed and, for this reasons,
particular techniques are needed in order to eliminate outliers in the set
of correspondences and so reduce the bias in the rototranslation. To this
extent, two articles can be cited: the one by Chetverikov et al. [24] who
proposed a robust version of ICP named Trimmed ICP and the one by Zhang
[81], who showed an adaptive method for outlier rejection.

Since its first appearance, many variants of ICP algorithm have been pro-
posed in the literature, with the aim to improve its robustness and speed.
Censi (PLICP) [19], demonstrated that it is possible to obtain a method
based on a point-to-line metric, which uses the information provided by
the normal to the surface, which converged quadratically in a finite number
of steps with a closed-form minimization. Minguez et al. (Metric Based
ICP) [52, 53] considered a minimization metric - different from the common
euclidean norm - which permits to take into consideration both the trans-
lational and rotational components ensuring higher robustness. Conversely,
Diosi and Kleeman [25, 26], tried to increase the speed of convergence mini-
mizing the time spent in the search of correspondences. To obtain this result,
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the authors used the polar coordinates! proposing the Polar Scan Matching
(PSM) algorithm, which resulted faster in comparison to the classic ICP and
ensured a larger basin of attraction.

Other approaches have been successfully proposed in the literature: His-
togram Matching (Bosse et al. [13]), which exploited two histograms, one for
the orientation and one for the translational component; the scan matching
methods, often named correlation-based, based on the use of one or more
grids (look-up tables) as in Konolige et al. [42] and Olson [61]. Other authors
have investigated evolutive techniques, such as genetic algorithms: Lenac et
al. [43] (GLASM) used a binary look-up table and the Gray code to com-
pute the chromosome distance, while Ze-Su et al. [78] (GPSM) exploited the
genetic algorithms to refine the solution obtained with Polar Scan Matching.
It is worth to highlight the existance of methods such as Yoshitaka et al.’s
[77], which exploits other information acquired by the laser sensors such as
the intensity of laser reflection with the aim of improving the result of scan
matchers based on to geometric properties only.

Finally, particular attention must be drawn to the efforts in formulating
the scan matching algorithm under the probabilistic framework carried on by
Biber et al. [8], Montesano et al. [54], Censi [16],Nieto et al. [60] , Burguera
et al. [15], Segal et al. [66]. In these papers the authors approximated the
scans using sum of gaussians (SoG) or other probability density functions
or, in some cases, they modelled probabilistically a step of ICP algorithm.

2.1.2 Error Covariance Estimation

In this thesis, the information obtained by the scan matching algorithm is
used to create a consistent map of the environment and determine the correct
pose of the robot. For this reason, an important step in order to include
the scan matcher in a probabilistic filtering framework is constituted by the
correct estimation of the error made by the algorithm. In particular, the
estimate of the covariance matrix is needed in the SLAM (Simultaneous
Localization and Mapping) algorithm to fuse the estimate with the other
sensor ones, to obtain a proposal distribution for particle filters, or to weight
constraints in a pose-graph [17]. Apparently, few researcher have dealt with
this issue since the introduction of the ICP algorithm.

Bengtsson et al. [5, 6] examined the seminal works by Lu [44] and
proposed two new methods to estimate the covariance matrix related to the
position estimate (the examples are based on the IDC algorithm). Similarly
to Bengtsson, Bosse et al. [13] derived another form of ICP covariance for

!see also Censi’s contribution in [19] appendix
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their own scan matching algorithm (that has the same error metric of Censi’s
one [19]).

Censi studied in detail the problem of the achievable accuracy for range-
finder localization and pose tracking [18, 20] and the limits of ICP covariance
estimation methods. In [17], he employed a general formula already used in
statistics and computer vision to estimate the covariance matrix.

All these methods are considered in Chapter 3, while and sperimental
analysis is conducted in Chapter 7.

It should be noted that in every scientific paper holds the assumption
that the ICP algorithm is not trapped in a local minimum. This means that
if the scan matcher converges to a wrong relative position, the covariance
matrix could be very optimistic.

2.2 Simultaneous Localization and Mapping

The expression Simultaneous Localization and Mapping refers to the collec-
tion of techniques and methods that can be successfully employed to solve
the problem of using the information acquired by the robot, odometry and
sensor readings, to estimate consistently both the pose? of the robot and
the map of the environment. These techniques combine two fundamental
problems of autonomous robotics: localization and mapping. Namely, the
first problem deals with the estimation of the robot pose given an almost
perfect map, while the second problem is dual to the first one and consists
in retrieving the map of the environment taking the exact robot pose for
granted at every time step.

2.2.1 Incremental Mapping

In incremental mapping the local maps, e.g., the laser range finders readings,
are incorporated into the global map using a greedy approach. When the
laser scan is acquired, the algorithm computes an expectation maximization
step retrieving the most probable pose. After this step, the current scan is
included permanently in the map using that estimate. Once in the map,
the scans are indistinguishable and no other probabilistic mechanism can be
used to move or delete the scan if something wrong occurrs.

Thrun et al. [69] presented a probabilistic method for mapping com-
bining an Expectation Maximization (EM) approach with the Maximum

2The term pose in contrast with the term position comprises the whole set of variables
that define the location of the robot in the environment. For a 2D autonomous robot, this
has 3 degree of freedom (z,y, 0)
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Likelihood estimators of incremental mapping. In order to cope with the
possible inconsistence they used also a backward correction procedure.
Gutmann et al. [35] took another approach to incremental mapping:
the last n-scans were correlated to check the consistency of the map in two
phases. At the beginning, the latest scans are aligned, then, after few scan
acquisitions, a loop detection procedure is used to align the local maps.
Héhnel et al. in [37], and extensively in [36], elaborated a probabilistic
algorithm to deal with populated environment. The approach is based on
the determination of the most likely robot pose by the use of scan matching
technique together with a filter to detect and track people in the vicinity.

2.2.2 Constraint Network Optimization - GraphSLAM

A different approach towards the SLAM problem is given by relation-based
SLAM. In this family of algorithms the pose and map are internally rep-
resented as a graph where the edges are built from particular constraints
between each vertex.

The work by Biber et al. [9] can be easily classified under this frame-
work. The authors proposed a technique to perform multiple scan matches
simultaneously and how that method could be employed in a relation-based
SLAM similarly to Lu et al. [44]. The scan matching procedure is based on
the minimization of an energy function and the resulting pose estimate is
employed in a graph where the nodes are the laser scans and the edges are
the pairwise relations between them.

Bosse et al. [11, 12] developed Atlas, a hybrid metrical/topological ap-
proach to SLAM designed for large-scale environments. In this case, the
graph was defined as following: the nodes represented the local frames and
the edges the transformations between them. Within each frame a local map
was attached and a map matching algorithm was implemented in order to
close the loops. The framework could be used both with local maps based
on features or laser scan matching.

Iser el al. [39] described another scan matching application to topological
mapping. The scan matcher used employed a sampling approach followed by
an ICP refinement step. While the covariance was computed thanks to the
resulting sampling distribution. Moreover, a RANSAC approach for loop
closure was implemented as well.

Grisetti et al. [33, 34] developed TORO (Tree-based netwORk Opti-
mizer), an efficient on-line optimization algorithm that fixes the issues in
graphSLAM by means of a stochastic gradient descent and by the use of
a tree-based parametrization of the network. Since it is assumed that the
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constraints to the graph are given, it can be effectively used in couple with
the Atlas framework for obtaining such data associations. Extensions to this
methods also permitted the solution of the problem of 3D SLAM as well.

2.2.3 EKF-SLAM and ScanSLAM

EKF-SLAM is an acronym for Extended Kalman Filter SLAM, an approach
to the SLAM problem that uses the well established mathematical frame-
work given by Kalman filtering techniques. Kalman filter [75], was invented
by Swerling and Kalman [41] as a technique for filtering and prediction in lin-
ear Gaussian systems [70]. The methods employed by Kalman were extended
to non linear system using different techniques such as Taylor linearization
or unscented transform and adapted for autonomous robots. The seminal
work by Smith et al. [67] in 1990, gave input to further pubblications on
this subject. For a good introduction to the state of the art in SLAM with
particular emphasis to EKF-SLAM and particle filtering see Durrant-Whyte
and Bailey’s reviews [27, 4]. Another good introduction is given by Sasiadek
et al. [65, 64], while a detailed example of 3D feature-based EKF SLAM
algorithm is described by Blanco [10].

ScanSLAM is a generalization of EKF SLAM that deals directly with
laser scans, without relying on geometric models (Feature based EKF). This
approach can be seen as an example of Pose Snapshot Kalman Filter, PSKF
[14]. Nieto et al. [59, 60] proposed under the name of scanSLAM the gen-
eral algorithm in which landmarks (features) are directly defined by the raw
sensed data and the robot pose when these data were acquired whereas, the
result of the scan matching algorithm was used as a measurement in EKF.
The authors showed also a sampling technique to compute the ICP covari-
ance matrix and a scan segmentation procedure to augment the landmark
templates. In the paper published in 2005, [59], the scan matcher was based
on a probabilistic representation of the scans as Sum of Gaussian (SoG)
which was explained in details in Bailey’s PHD dissertation [3].

In the same period also Diosi and Kleeman worked on the same subject
[25]. In their technical report, they explained the scanSLAM approach for
their Polar Scan Matcher drawing inspiration from the Atlas work by Bosse
et al.[12]. The implementation details are essentially the same as in Nieto
et al.’s work where a landmark was updated only if the predicted robot
pose was sufficiently close to it. Extension to multiple laser scanSLAM
was also presented for simulated environment fusing the informations of the
lasers before incorporating the scan in the landmark [71]. In this case, the
rototraslation between the reference frames of the robot and the laser sensor
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was not considered in the filtering phase.

The authors do not show a complete example of the their results using
real datasets. Thus, estensive tests are performed in Chapter 7 for the
standard scanSLAM algorithm, putting in evidence the strenghts and the
limitations associated to the use of this approach. Moreover, the works
written by Nieto [59], and Diosi et al. [25] do not consider the case of the
generic rototranslation between laser and robot reference frames, which is
examinated in this work in order to develop a model for the self calibration
of the extrinsic parameters.

Recently, Bosse and Zlot in 2008 [14], presented an extension to plain
scanSLAM algorithm. In their implementation, local maps are computed
using EKF scanSLAM while at a global scale they exploited a fast map
matching algorithm which was able to align overlapping local maps without

an initial guess.

2.3 Self Calibration

The calibration process is a necessary step in order to correctly identify
and tune the different parameters that affect the motion of the robot and
the correspondences between different reference frames. In the literature
it is possible to distinguish two types of calibration: intrinsic calibration,
which regards the odometry motion models and some sensor parameters,
and the extrinsic one, which refers to the transformations between differ-
ent reference frames. In particular, “the odometry calibration consists of
the identification of a set of kinematic parameters that allow reconstructing
the vehicle’s absolute position and orientation starting from wheels’ encoder
measurements” [2]. A procedure for on-line tuning of the parameters can
also be called autocalibration while when it is performed together with a lo-
calization or SLAM algorithm it is defined also as Simultaneous Localization
and Auto Calibration (SLAC).

Eliazar et al. [30] defined a generic motion model that takes into account
a lateral translation term. In this way, they were able to model shifts in the
orthogonal direction to the major axis, while the parameters are estimated
using a particle filtering SLAM implementation, namely DP-SLAM3. An-
tonelli et al. in [2], described a systematic method for odometry calibration
of differential drive robots. The unknown parameters in the kinematic equa-
tion (the wheelbase that connects the two lateral wheels and the two radii
of the wheels) were linear and, in this case, a least-squares method could be

S3http://www.cs.duke.edu/ parr/dpslam/
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applied. The main advantage of the formulation is the possibility to assign
a quality measure to test trajectories.

Martinelli et al. [50] investigated the theoretical results that can be
achieved by on-line odometry self-calibration and tried to define the best
trajectory that maximizes calibration accuracy. In [49, 51], they proposed
the use of two coupled Kalman Filters in order to perform SLAM and simul-
taneously estimate the odometry parameters. The first Augmented Kalman
Filter accomplished the estimation of the systematic component of odome-
try error while a second KF estimated the non-systematic component. In
[48, 47], Martinelli considered the particular problem of self calibration by
using a single point of feature, determining the extrinsic parameter of a
bearing sensor and of the odometry.

Another approach to autocalibration is studied by Censi et al. in [21].
In the paper, they described a method based on the solution of a constraint
least-square problem to simultaneously calibrate the odometry parameters
(wheelbase and radii) and the extrinsic parameters that described the roto-
translation between a laser sensor with respect to the robot frame.

A more specific method is described in [80, 79] where Zhang et al. de-
scribed a procedure to calibrate together a digital camera and a laser sensor
in order to determine the transformation between two sensor frames. The
solution is given by a non linear minimization problem applied on an epipo-
lar constraint between the two sensors. The experiments are carried on
using both an apriori known environment (e.g., a chessboard) and an indoor
unknown one.



Chapter 3
Scan Matching

“I visualize a time when we will be to robots what dogs are to humans.
And I am rooting for the machines.”

Claude Elwood Shannon, Omni Magazine 1987

In this chapter, the Scan Matching algorithms, which have been imple-
mented in the software library, are thoroughly explained in order to de-
scribe their main characteristics and weaknesses. As mentioned in the pre-
vious chapter, the problem of scan matching consists in finding the optimal
geometric alignment between two laser scans (or one scan and a reference
shape), which are defined as a cloud of 2D or 3D points. As a necessary
condition, the two scans must be matchable, that is, they must partially
represent a common shape.

A lot of scan matchers have been described in the scientific literature:
many are grid-based, that is based on discrete maps, while others, ICP,
Iterative Closest Point, are based on the iterative alignment of corresponding
points. In this chapter, ICP algorithms will be taken into consideration
because they are commonly preferred for their efficiency, precision and large
use. In particular, the ICP scan matchers implemented in the software
library are: Classic Iterative Closest Point [63, 28], Metric-Based ICP [52,
53], Point-to-Line ICP [19].

3.1 General Model

Despite the apparent diversity, every scan matching algorithm can be rep-
resented in a uniform way since it solves the same problem, see Figure 3.1,
3.2. The black box model can be thought as follows:

[RT, Cov] = scanM atch(re ferenceScan, currentScan, RTjuess)  (3.1)
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Figure 3.1: Black box model of the scan matching algorithm

Where:

referenceScan, currentScan are the laser scans obtained by a laser. The
points can be represented using Cartesian, {x;,y;}, or polar,
{range, angle};, coordinates. referenceScan is used as a fix reference
scan while currentScan will be rototranslated to be aligned to the first
one.

RT is the transformation, rototranslation, such that applied to currentScan
aligns it to referenceScan. It can be expressed in matrix or vector
form (see appendix A). In the terminology used in this document

. . referenceScan .
the transformation is referred to as RT, ;. iccon - Blguess is the

transformation used as the initial guess by the scan matcher.

Cov is the covariance matrix associated to the error in the minimization
procedure.

In order to optimally solve the problem, the algorithm minimizes a figure of

merit that models the alignment error:

l
Eiist(RT) = argmin Z distance(p;, RTq, )? (3.2)
=1

Where:

p; € referenceScan;

qi € currentScan;

(i,c;) represents the indexes of corresponding points between the two scans;

distance is a mathematical distance, typically the Euclidean one (norms).
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Figure 3.2: Geometric transformation involved in the scan matching algorithm

The fundamental role of (,¢;) in the minimization procedure explains the
reason why ICP is also called Iterative Corresponding Points. in 2001,
Rusinkiewicz [63] built an interesting schema that frames every kind of ICP
algorithm. Each iteration includes the following six steps:

Selection of interesting points in both the scans (meshes). The strategies
range from the selection of all the points to sampling procedures in
order to increase the significance of the chosen clouds of points.

Match the points in both the scans looking for corresponding pairs. This
could be done using a closest point technique or by projecting the
points on the segments constituted by points ot the reference scan.

Weight corresponding pairs. Strategies are used for error prevention since
very distant corresponding pairs can provoke a bias in the estimation
of the final transformation.

Reject certain pairs in order to minimize/eliminate outliers. The strategies
used in the implementation are explained later in this chapter.
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Algorithm 3.1.1 ICP General Model

[RT, Cov] = scanMatch(referenceScan ,currentScan , RTyyess)
RT = RTgyess
begin (Repeat till convergence)
tempScan = transform currentScan using RT
Find correspondences between referenceScan and tempScan
Delete otuliers from the set of correspondences
RT = E4ist(RT) = argmin Zi‘:l distance(p;, RTq.,)*
end
Compute the covariance Cov

Assign an error metric. A distance must be defined between correspond-
ing points or for the whole scan (see scan matchers in the probabilistic
frameworks, Chapter 2).

Minimize the error metric using a closed-form or an iterative procedure

(e.g., conjugate gradient).

Algorithm 3.1.1 shows a simplified general model of the ICP algorithm which
describes the structure of all the algorithms presented in this chapter. In
particular, the rejection of outliers is defined as a single step and the pairs of
corresponding points are evenly weighted. The selection step is performed
both in the acquisition phase, filtering the laser error codes and the out-of-
range, and in the outlier-rejection phase.

3.2 Scan Matching Algorithms

3.2.1 Classic ICP

The first algorithm implemented in the software library is the Classic Iter-
ative Closest Point. The version of the algorithm proposed in this work is
the standard version, mutuated from different scientific papers [45, 28, 63],
with some tweaks for improving stability and convergence. Using the scheme
showed in Algorithm 3.1.1, this section and the following describe only the
distinctive features of each implementation. The Classic ICP shares the

most intuitive figure of merit:

N
Egist(RT) = argmin’y_ ||pi + RT * q.,]|* (3.3)
=1
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Algorithm 3.2.1 Classic ICP: 2DRototranslationBySVD

[RT] = 2DRototranslationBySVD (Pscan, Qscan)

p = average(Pscan)

q = average(Qscan)

Pscan’ = Pscan — p

Qscan’ = Qscan — q

Hauz = Y000, ) * qf”

H=UxS*VT

R=VxU"

if (det(R) is —1)
V' =[v1,—v3], where v; € Moy
R=V'xUT

endif

T=qg—Rxp

R T
T:

This function simply computes the Euclidean distance between each couple

of corresponding points. A common improvement to this error metric is to
consider the distance between each point in the current scan and the projec-
tion of the same point on the surface built from the reference scan using a
polyline approach. This choice should reduce the bias in the estimate of the
rototranslation RT (see Figure 3.3). In order to compute the 2D rigid trans-
formation between the two set of points, the Classic ICP relies on an SVD
solution described by Eggert et al. in [28] and showed in Algorithm 3.2.1
where the two set of points are considered already ordered (p; corresponds
to ¢; where ¢, p € R?).
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Figure 3.3: These images are the result of two different scan matchers. The laser sensor

used is a SICK and the scale of the plot is in metres. Censi’s Point-to-Line method

converges to the right minimum because it is based on the computation of normals to
segment
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Figure 3.4: The red points, representing the reference surface, are obtained by applying
a rototranslation (30°deg) centred in the origin of coordinate axes to the blue ones.
The Euclidean distance for a pair of corresponding points varies between 0 and 5.5751
making difficult the process of association. In the distance metric proposed by Minguez,
all the points shares the same distances to the corresponding ones given by the formula
dist(pi,p;) = VL? 62, with 6 = 3%

3.2.2 Metric Based ICP

The second algorithm implemented is the one described by Minguez et al.
[52, 53]. The scan matcher proposed in the paper employs a peculiar distance
function that explicitly considers the rotation components (see Figure 3.4).

Given a 2D rototranslation RT expressed in vector form (see Appendix
A), the authors defined:

IRT|| = /a2 + 7 + 7 % 0
where L is a constant, typically L =3 (3.4)
distance(pi, p2) = min{||RT||s.t.RT @& p1 = p2}

The expression of the distance has been linearised and the error metric can
be defined as:

. — ; 2 2 (6iz*piy_6iy*piz)2
Edlst(RT) = argmin Zi:l(éil’ + 5z'y — W)

iz = Ciz — Ciy ¥ 0+ x — piT (3.5)
6iy :Cix*e—ciy+y_piy
The expression of Eg;q(RT) is quadratic with respect to RT and the mini-
mization could be done in closed-form RT,,;, = —A3_$13 * b3z as explained in
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[52, 53]. The adoption of this metric should improve the convergence when
the rotation error component is preponderant.

3.2.3 Point-to-Line ICP

The Point-to-Line ICP is an ICP model proposed by Censi in [19]. The
distinctive feature of PLICP is the improvement in speed given by the close
form minimization of the point to line metric in 2D. This distance metric
permits a quadratic convergency rate whereas the classic ICP has a linear
one. The explicit formula is given by:

Euist(RT) = argminy_,_,(n « (RT * qc, — pin))?
(pi1, pi2) = segment in reference scan that corresponds to g, (3.6)
n; = normal of the segment (pi1, pi2)

The closed-form solution of the error metric is explained by Censi in the
appendix of [19] and is based on the solution of the following generalized
metric through the use of Lagrange’s multipliers.

MANRT Ez ||RT * Pl — QCorrespiH%ji
where ||a||2 = aT xC *a (3.7)
andCi:wi*nggorCi:wi*ni*niT ’

with w; weight for point-to-point and point-to-line respectively

In order to get a rototraslation estimation as unbiased as possible, careful
attention must be paid to the computation of the normals to the reference
surface. In particular, two simple methods could be employed:

e 1, is the normal to the segment formed by (p;1,pi2), the two closest
points to ge;: ni = (Pyit — Pyizs Priz — Paits)* [19];

e 1, is found averaging the two normals to three sequential points, one
of which is the nearest point to ¢., [14]. In this case, the scans should
be given with points indexed in the order of polar coordinates.

3.3 Iterative Closest Point Covariance

The problem of correct estimation of the ICP covariance is critical in order
to successfully use the scan matchers into a probabilistic filtering frame-
work such as the Kalman Filter. The methods presented in the literature
often work well only with a particular scan matching error metric or under
particular circumstances. In this section, the most common procedures are
reviewed. As already mentioned, the reader should keep in mind that every
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Algorithm 3.3.1 Hessian Method

Assuming Y =MX +w with X =RT in vector form
w white noise

E(X)=(Y -MX)T(Y — MX)

then Cov(X)= (MTM) o2

2 __ Emm(X)
§7 = n—k

n = number of correspondences
k=3 number of paramters to be estimate
with s? estimator of o2

_dEX(X) _ o7
H =48 —opTy

then Cov(X) = (3H) 'o?

algorithm was created with the assumption that the scan matching algorithm
selects the global minimum, finds and retrieves the correct transformation
within an unknown error. This implies that if the scan matcher function re-
turns the incorrect transformation the relative covariance estimation could
be optimistic.

3.3.1 Bengtsson el al.’s Covariance: Hessian Method

Bengtsson el al. in [6] proposed the Hessian method hypothesizing that,
if the error function could be linearised, the linear regression theory could
be employed to solve this problem. The results reached by the authors
are showed in Algorithm 3.3.1. In their paper the Hessian matrix, H, is
numerically computed using a sampling technique: after the scan matcher
finds the minimum, the scan matching algorithm is repeated giving as initial
guess RT,csur = 6 and storing the resulting error. The computation of the
Hessian matrix given the error is shown in Appendix B. Lu and Milios in [45]
used a similar method estimating directly the matrix M by linearising the
E (X' ) for small angles. This method appears to give optimistic results and,
for this reason, should not be employed in probabilistic filtering frameworks,
as Bengtsson explained in [6].

3.3.2 Bosse et al.’s Covariance

Bosse et al. in [14] used an approach similar to Bengtsson’s one. In the
paper, they hypothesized to have a quadratic error minimization metric. In
this case, it is possible to computed the Jacobian of its square root and used
this result as the M matrix in Algorithm 3.3.1. The method differs from
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Algorithm 3.3.2 Bosse Method

Given E(X) = h(X)Th(X)
_ dh(X)
= dX
where h;(X) is referred to a single pairs of points

and H; = dh;g()

Assuming E[hh!] = 021
then Cov(X) = (HTH) '6?

Bengtsson since, in general, the Hessian matrix is different from the dot
product of Jacobian of the function square root. In particular, they showed
the results exposed in Algorithm 3.3.2.

Moreover, in their work, it is possible to read the outcome of the proposed
calculus for the point-to-line metric.

3.3.3 Censi’s Covariance

Censi in [17] proposed a different method that inherited some features of the
Hessian Method and improved the estimate of the covariance taking explic-
itly into account the uncertainty associated to the measurements cov(z).

~ 2 %
Con() = (LD

SE((X)
56X 6z

SE((X)
5X 6z

»
PEELD T )

Jeov(2)(

Some hints for the correct implementation can be found in Censi’s The
C(anonical) Scan Matcher! and presented in Algorithm 3.3.3.

3.3.4 ICP Covariance by Sampling

The ICP covariance can be also estimated using sampling techniques. Olson
[61] explained how to exploit the probabilistic motion model and the cor-
relative scan matching to robustly compute the covariance matrix. A more
naive approach could be applied also; after having estimated the rototrans-
lation, other scan matching instances could be run by sampling the initial
guess in the solution neighbourhood. Standard statistical techniques can be
then used to retrieve the average and compute the covariance given the set
of rototranslation vectors.

"http:/ /www.cds.caltech.edu/ andrea/research/sw/csm.html
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>

Figure 3.5: The robot in blue is moving in a corridor

Figure 3.6: The robot in blue is moving in a circular environment

3.3.5 ICP Covariance Critical Situations

Environments, in particular artificial ones, can present characteristics that
challenge the best scan matching algorithms. While performing indoor ac-
quisitions, many scans can be affected by ambiguities arising from the sim-
metry of the rooms. Two critical situations can be studied: the corridor
and the circular environment. This two under-constrained situation are in
some way dual: in the corridors, Figure 3.5, there is an unobservable direc-
tion related to a translational movement, while in the circular environment,
Figure 3.3, if the laser is in the middle, all the angles are equiprobable. In
both the cases only the projections of the errors on the observable manifold
are significant.
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Algorithm 3.3.3 Censi Method

for all correspondences

indexes: 1,751,352

where scans are expressed in polar coordinates
and the errors affects only the reading
component p, not the angle

(Eg)iz1 is the error metric for the

considered corresponding pair

(VER)321 = SER((X)

0 5X
(e
di = (%«j))&m wrt p;
djl = (éf;((s(]f))sm wrt pj1
dj2 = (M)Szl wrt pjo

5X652
Eiot = Eor + B}
Giot = Giot + VE}

2010
G20t = G240t + 6E(5§((2X)

dgdEdi(:,1) = dgdEdi(:,i) + di

dgdEdj(:, 1) = dgdEdj(:, j1) + dj1

dgdEdj(:, j2) = dgdEdj(:, j2) + dj2

where dngdi?)xcount(currentScan) > dngdj13xcount(refe7"ence$can)
endfor

if Covscanmatching

(%)3xcount(referenceScan)+count(curr6ntScan) = G2_1 [dl7 djl’ d]2]
R = 0'2Icount(referenceScan)+count(currentScan)

Cov = (5)R(5)T

if Coviocatization

( % ) 3zcount(currentScan) — G2~ 'di

_ 2
R=o¢ Icount(currentScan)
where o2 is chosen

Cov = (#)R(3)"
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Figure 3.7: Median Filtering in polar coordinates for Hokuyo laser range finder. On x
axis is displayed the angle while y axis shows the sensor readings. This figure shows the
unprocessed scan

3.4 Scan Preprocessing

Many procedures are described in the literature with the aim of improving
the robustness of the scan matcher or as a preliminary phase for scan seg-
mentation. In the present work, the two simplest techniques are employed
to develop a first stage outlier rejection and, in this way, deal with possible
misalignment due to the wrong estimation of the normal vectors, n;.

In the implementation, a 1D Median Filter is employed to filter the range
measures in polar coordinates. This intuitive algorithm in pseudo code is
described in Algorithm 3.4.1 and the default value of the MedianWindow is
equal to 5 as suggested by many authors (e.g., [25]). In this way, in the
case of a circular environment, the readings/measurements in polar scan
are linear and the filter can replace at most 2 neighbours outliers out of 5.
Figures 3.7, 3.8, 3.9 show the results of the median filtering for subsequent

scans in polar and in Cartesian coordinates.

Whereas, a 1D (Weighted) Mobile Average filter is implemented in the
case of scans handled in cartesian coordinates. The basic algorithm is the
same as Algorithm 3.4.1, where the doMedian method is substituted by
Algorithm 3.4.2.
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Figure 3.8: Median Filtering in polar coordinates for Hokuyo laser range finder. On x
axis is displayed the angle while y axis shows the sensor readings. This figure shows the
result of the median filters. As, it can be noted, most of the points remain unchanged
while the most isolated one are filtered out

3.5 Outlier Rejection

Outlier rejection techniques aim to minimize the bias in the final transfor-
mation, RT, which is caused by the inclusion of outliers in the choice of
corresponding pairs. Even if some outliers are directly signalled and marked
by the sensors thanks to the use of out of range values or code errors, most
of them are only detectable using appropriate procedures. Moreover, ad hoc
methods are suggested in the literature to cope with typical source of errors.
In the software library implementation, the simplest yet effective techniques
are used:

Distance Threshold a maximum distance could be used as a threshold.
The corresponding pairs whose distance is above that threshold are
automatically excluded in the computation of the figure of merit. Par-
ticular attention must be paid to the problem of the correct estimation
of the threshold parameter; very low values could decrease the speed
of convergence and eventually cause an empty set of correspondences.
Conversely, a loose constraint could reduce the efficacy of outlier re-
jection. Error Metrics which are less affected by this problem have
been proposed such as [66].

Percentile Threshold as explained in Trimmed Iterative Closest Point
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Algorithm 3.4.1 1D Median Filter

[measuresRet] = MedianFilter (measures, MedianWindow)
half = | MedianWindow/2 |
for i=l:size
if i <halfVi> (size— half)
measuresRet (i) = measures (i)
else
measuresRet (i) =
doMedian (measures ,i,i—half, i+MedianWindow—half)
end

end
[median] = doMedian (measures ,i,p,k)
littleArray = sort(measures,p,k)

median = littleArray(|(k — p)/2])

Algorithm 3.4.2 1D Weighted Mobile Average Filter

[dataRet] = MobileAverageFilter (data ,MAWindow, dataWeights)

[ma] = doMobileAverage (data,i,p,k,dataWeights)
Z;?:p dataj+dataW eights;
k—p

ma =

[24], a fixed or adaptive percentile threshold can be used to obtain
an effective outlier rejection. Having selected a number N (overlap
parameter), all the distances between corresponding pairs are sorted in
ascending order. Only those that have dist < N are selected and used
in the computation of the error metric. This method is not subject
to the problem of a possible empty set. The value of the overlap
parameter could be bounded between 0.4 and 1.0, as suggested in [24].

Rejection of Boundaries is an additional strategy that could be used
successfully to eliminate a particular kind of error which is explained in
[63]. The technique consists in excluding pairs of corresponding points
that include points on mesh/scan boundaries (i.e., if the points are
acquired sequentially exclude Y; j(ps, q;) s-t. ¢ € {0,]i|} vV 5 € {0, |4}
This solves a common problem when the two scans are not complete,
that is when the scans share the same shape only partially (See Figure
3.10).
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Figure 3.9: Median Filtering in Cartesian coordinates for Hokuyo laser range finder.
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(a) Without the rejection of boundaries

(b) With the rejection of boundaries

Figure 3.10: Rejection of Boundaries: an example of outlier rejection. The first figure
shows that many points corresponds to the same one in the reference scan increasing
the probability of wrong alignment
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Chapter 4
Kalman Filter

“One of the most insidious and nefarious properties of scientific models
is their tendency to take over, and sometimes supplant, reality.”

Erwin Chargaff

The aim of this chapter is to explain how the Kalman Filter can be exploited
to successfully solve the problem of Simultaneous Localization and Mapping.
Moreover, the particular probabilistic motion model used in the implemen-
tation is shown in order to gently introduce the scanSLAM algorithm.

4.1 The Algorithm of Kalman Filter

The Kalman Filter [70] is a recursive state estimator belonging to the family
of Gaussian Filters. This filter was invented by Swerling and Kalman [41]
in 1959 for filtering and predicting the behaviour of linear systems. The
variables’ momentary estimate, which is also named belief or state, is fully
represented in the Kalman Filter, by the first and the second moments of a
Gaussian distribution in continuous space (g, 2;). Using the Kalman Filter
it is possible to estimate the Gaussian posterior, which is computed with
the following assumptions:

o p(x¢|ug—1, Y1) is linear:
Tt = Atl‘t—l + Btut + &¢, (41)
where u; is control vector, ; = is a Gaussian white noise WN~ (0, R;).

o p(z¢|ze) is linear:
zy = Cyxp_1 + 6, (4.2)
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Algorithm 4.1.1 EKF Filter

[pe, X¢] = KalmanFilter (p—1, X1, ut, 2¢)
Prediction:

fo= Agpyg—1 + By

Y= A2 AT + Ry

Update:

K; = EtC,Z‘F(CtEtCtT + Qt)fl

pe = fir + Ki(ze — Cepir)

5 = (I - K,Cy) 5,

where z; is the measurement vector, d; is a Gaussian white noise
WN~ (0, Q¢) and the belief of xg is distributed as a Gaussian N (g, Xo).

If the three assumptions hold the posterior belief is also Gaussian and it
can be computed using the Algorithm 4.1.1.

The Algorithm 4.1.1 is split into two phases: prediction and update. In
the first step the probability p(x¢|us—1, X¢—1) is computed using the control
input u¢ and the predicted i, ¥; are returned. Typically, X; > X;_; because
the prediction incorporates new noise in the state estimation process. The
second step computes p(z¢|x¢) using the information acquired using the new
measurements. The Kalman update reduces the covariance by integrating
new knowledge obtained through the sensors.

The Kalman Filter is usually employed as a non linear state estimator
by linearising the state and measurement equation using the Taylor Series
theory. The resulting algorithm is named Extended Kalman Filter (EKF).
In particular, as it is explained in the following sections concerning EKF
SLAM, the covariances matrices A, C' are substituted by the Jacobians:

_ 6stateEquati0n’ (4.3)

Oxi—1

Omeasurement Equation

C - 8$t

(4.4)

4.2 Extended Kalman Filter for SLAM

The Simultaneous Localization and Mapping problem is a fundamental prob-

lem that needs to be solved in order to create a truly autonomous robot.
As for any autonomous agent, the robot has sensors from which it can

estimate its trajectory (using odometry) and perceive the environment. In
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SLAM, the robot, using the control input history, u1.+, and the information
acquired through the sensors, z1.;, should be able to build a consistent map
of the environment and simultaneously locate itself on the map. Since the
real sensors are noisy and affected by errors, a filtering technique is needed
to robustly estimate map and robot pose.

One of the best known techniques for SLAM is the Extended Kalman
Filter. The adoption of such a filter is peculiar to feature-based maps, where
salient points, named features, can be reliably detected using robot sensors.

Compared to the general Kalman Filter implementation (see Algorithm
4.1.1), the EKF SLAM specializes in the meaning of state variables and their
maintenance. The state is represented by x;:

Ly
y1

= | (4.5)
Yi

YL

where x, = ZTyenice defines the vehicle state variables, often represented
by the robot pose (z,y,6), while y; stands for a feature (e.g., the pose of
the feature in the space). During the iterations, the state variables can be
expanded or shrunk by the addition or the elimination of features.

In the same way, the covariance matrix, X' = P,;, shares the dynamic
size and it is formed by:

an}(vxv) ny1(v><l) P:L‘yL(le)
P, ixe P P

Pysorinxoriny = | ) T yv (0 (4.6)
Byrawy Pypypxty -+ Pyryrx

where v is the size of the vehicle state! while [ is the size of one feature.
In the EKF SLAM algorithm the equation &,y = f(#4_1s—1,ut), which
represents p(z¢|ui—1, Xy—1), is named motion model/odometry equation, and
the generative model z; = h;(x,y;), which represents p(z¢|z;), is referred to
as observation or measurement model.

As already mentioned, the EKF algorithm for SLAM has a dynamic
size state vector and covariance matrix. The introduction of new landmark-
s/features into the filter, which increases the size of the first, z;;, and second
moment, P, of the Gaussian, is commonly performed as follows [10].

e.g., 3 if a 2D robot motion is represented only by its pose (z,y,6)
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Algorithm 4.2.1 EKF Filter for SLAM

[Tk, Prpe] = EKF-SLAM (24,1 )g—1, Pr1jk—1 Uk 2k )
Prediction:

Tpip—1 = f(Er_1jh—1, uk)

Prjp—1= %Pk—uk—l% + Qk

Update:

Ok = 2k — h(Zrjp—15 Prjp—1)

Sy = %Pkfukfl% + Ry,

Ky = Py -8,

T = -1 + KiYk

Py = (1 — K %2) Py

In order to add a new landmark, the state is augmented as:

T
Ty = (xt,yL) (47)
yr, = inverseSensor Model(z,, z1)

The covariance matrix is expanded in the following way:

oy, T
Pes Py oo Puy P L
ay, T
Pylm Pylyl e PylyL—l Pylfb Oy
By = (4.8)
oy, T
8PyL715E aPnylyl te aPnylnyl Pnywﬂ
YL yL yL
Oy~ TT Oy Pl’?/l Tt Oz Pﬂﬁqu A

where

0 oy’ 0 oy ™
_Oyp Oyt OyL poyr

A 0z, 0z, 0z 0z

(4.9)

4.2.1 Motion Model

The motion model refers to the probabilistic modellization of the estimate
and to the prediction of the trajectory of the robot using the control vector
u; as an input. In general, input to this model can be the robot wheel
encoders, the estimated robot pose that results from a GPS localizer or
integrated from other sensors, the robot speeds or others.

The model used in this thesis is taken from [70] and it is implemented
in the software library due to the possibility to use directly the robot pose
estimates without any particular time constraints. This aspect is particu-
larly convenient in the scanSLAM algorithm when more than one laser is
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6rot2

e

6rot1

Figure 4.1: The probabilistic motion model is defined by three consecutive

movemen ts-'(srot 1, 5trans ’ 5r0t2

employed and in which they are desynchronized one from the other. The
Odometry Motion Model can be defined as follows:

up = (w“‘l) (4.10)
Loyt

The motion of the robot is modelled as three consecutive movements: 8,1,
Otrans, Orot2. As it can be seen from Figure 4.1, the robot first performs a
rotation, then a translation and again a final rotation on its axis. The three
variables can be obtained directly from u; using the Algorithm 4.2.2.

5t7"ans

Orot1 | = FromUtoDelta (uy) (4.11)
57“0752

And the motion model prediction Z;;_1 = f(&y_1}¢—1,ur) is:

Tt Tt—1 005(0 + 6rot1) 0 0 5tr‘ans
Yt = | Yt—1 + S’L'TL(H + 57"01‘,1) 0 0 57«0,51 (4.12)
0y 01 0 11 Orot2
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Algorithm 4.2.2 From u; to ( dpot1, Otranss Orot2)

[67”0t17 Otrans, Orot2 ] = FromUtoDelta (Ut)

Tyio1 = (2,9,0)T

Tyy = (1—:/7 ﬂ/, gl)T

Srot1 = atan2(y’ — y,7' — %) — 0
5trans = \/(i'/ - ff)2 + (gl - g)Z
(5rot2 = él - é - 67“0151

Moreover, the EKF algorithm requires some Jacobian matrices in order to
compute correctly the value of the state and the covariance. The Jacobian
with respect to the state is:

1 0 —dtrans * Sln(e + 5rotl)
=10 1 +duans*cos(0+ 6ro11) (4.13)
0 0 1

Of (Zp—1jk—1,Ur)
8xv,t—l

The matrix Qf = VkMkaT is the covariance of the additional motion noise
in the state space, which is derived from two matrices: M}, which represents
the noise in the control space and Vi, which allows the mapping from the
control to the state space.

Otrans — 0535t7'ans + 044(|5rot1| + |5r0t2|)
Orotl = a1’5r0t1| + 0525t'rans (414)
Orot2 = a1’5r0t2‘ + 20¢rans

0-1527’(1715 O 0
My=| 0 o2, O (4.15)
0 0 O—gotQ

COS(Ht—l + 57"ot1) _5t7’ans * Sin(et—l + 57‘0151) 0
Vk - 7u - Sin(et—l + 57“0751) 5trans * COS(Qt_l + 57“0151) 0 (416)
0 1 1



Chapter 5

ScanSLAM

“The sciences do not try to explain, they hardly even try to interpret, they
mainly make models. By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations describes observed phe-
nomena. The justification of such a mathematical construct is solely and
precisely that it is expected to work”

John von Neumann

ScanSLAM is a SLAM algorithm based on the Extended Kalman Filter
(EKF) which is capable to deal directly with raw laser scans. As already
mentioned in Chapter 2, the method could be also seen as an example of Pose
Snapshot Kalman Filter (PSKF) because the representation of the scans as
features or landmarks in the state of the filter is the robot pose itself. The
scientific paper about scanSLAM written by Nieto et al. [59] explains the
generic observation model and the filter update mechanism. The same model
is explained at the beginning of this chapter. Diosi et al. [25] extended this
model without achieving the full generalization, which is showed in the rest
of the chapter. Variations of the general model are proposed to handle
multiple lasers and to calibrate the exstrinsic parameters. Novel strategies
to tune and improve the convergence of the filter are also explained.

5.1 ScanSLAM - Sensor Centred with One Laser

In the sensor centred approach the laser sensor is located in the odometric
centre of the robot, i.e., the rototranslation between the laser reference frame
and the robot reference frame is an identity matrix. Under this assumption,
the scanSLAM model can be reduced to Nieto et al. implementation [59].
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5.1.1 State and Landmarks

The state of the Extended Kalman Filter is given by:
Ty
Y1

=1, 5.1
! Yi ( )

yrL

where the features, from now on referred to as landmarks, consist of two
parts: the state variable y; and the associated scan scan; = {p;}. The state
variable defines the pose of the robot in the world reference frame where
that particular scan has been acquired.

The collection of scans is saved in a different data structure and does
not interfer with the EKF update mechanism. The variables that refer to
the vehicle x, are defined using the motion model presented in Chapter 4.

Moreover, one landmark is added in the state z if the robot is distant
more than a threshold from all the other landmarks.

5.1.2 Observation Model

Since the landmarks and the robot pose are expressed homogeneously, it is
straightforward to define the observation model as the rigid transformation
(rototranslation) between the robot and the landmark.

Intuitively, the measurement can be seen as the pose of the landmark
frame y; as it is observed by the robot x, (see Figure 5.1). This can be

reduced to:
zZ= h(yiaxv) = (@$v) D vi, (52)
which is equal to:
2\ [ (@ = m)cos(8:) + (yyi — yi)sin(6y)
Zy | = | —(xyi — x¢)sin(0r) + (yyi — ye)cos(0y) | - (5.3)
7:'9 eyi - 615

5.1.3 Update

Every time the robot pose is near to one of the landmarks, it is probable that
the scan associated to the landmark and the current one are representing
a common portion of the same environment. Recalling the signature of the
scan matcher function which was shown in Chapter 3:

[RT, Cov] = scanM atch(re ferenceScan, currentScan, RTjuess) — (5.4)
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Figure 5.1: The reference frames are displayed together with a couple of scans

it could be noted that the scan matcher applied to the couple of scans
(currentScan,landmarkScan;) returns exactly RT = z, where z is the
measurement of the Extended Kalman Filter. In fact, the scan matching
algorithm retrieves the rototranslation superimposing the landmarkScan;
to currentScan. Moreover Cov can be directly used in the filter as the co-
variance matrix of the additional measurement noise Ry, (see the Algorithm
4.2.1).

5.1.4 EKF Filter and Jacobians

In order to implement the Extended Kalman Filter it is useful to refer to
the Algorithm 5.1.1 which shows the signatures of the most fundamental
functions which compose the EKF. The methods covariancePrediction,
doUpdate and addLandmarks are implemented using the formulae of Algo-
rithm 4.2.1. The Jacobians needed for the implementation of the sensor
centred scanSLAM are exposed in the following.
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Algorithm 5.1.1 EKF Filter for SLAM

[Tk, Prpe] = EKF-SLAM (24,1 )g—1, Pr1jk—1 Uk 2k )

Prediction:

[Zgp—1,Qr] = predict (uk, (Bx—_1jp-1))

[ Pyjr—1] = covariancePrediction (Py_yp—1,Qk)
Update:

[2k, 2k, Re] = observe (Zyg—1, Prr—1)

[Zpjs Pe] = doUpdate (Zpp—1, Prjp—1, 2k» 2k Bi)

New Landmarks:
[Zpjks Pep] = addLandmarks (Zpk—1, Prjk—15 2k ks Bk )

The Jacobian of the observation with respect to the state x is:

Oh _ oh oh
el 0 B0 ), (5.5)
9 —cos(0;) —sin(b;) —(vy — x)sin(0;) + (yys — ye)cos(6y)
. sin(0y)  —cos(0y) —(xyi — x)cos(6r) — (yyi — yi)sin(6y) ,
! 0 0 -1
(5.6)
on cos(6y) sin(6) 0
o9, = | —sin(0;) cos(6;) 0]. (5.7)

0 0 1

The Jacobians needed for adding new landmarks according to the Equa-
tions 4.7, 4.8, 4.9:

ay 1 00
L_
e =0 10 (5.8)
0 01
P cos(0y) —sin(6;) 0
9L sin(6;) cos(By) 0. (5.9)
0zr,
0 0 1

In this last step, since the landmark has the same value of the current pose
of the robot, the matrix Ry is zero and the initial covariance submatrix

A=Pyy, = Poa.

5.1.5 Loop Closure

The most important characteristic of the use of an Extended Kalman Filter
for SLAM is related to the phenomenon of loop closure. In Figure 5.2, it is
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shown a sequence of iterations taken from a simulation of the sensor centred
scanSLAM made in Matlab. Here, the motion of the robot is supposed to
describe a circle. During the movement, at every metre, a new landmark is
added to the filter.

It could be noted that the robot pose uncertainty increases in time, as
indicated by the uncertainty ellipses of growing diametres. This is due to the
intrinsic uncertainty associated to the motion model. As direct consequence,
the uncertainty associated to landmarks increases too, since it is given by
P, at the time that new landmark is created. The amazing fact happens
when the robot senses, after long time, an old landmark. In this case, since
the covariance matrix becomes fully correlated after few iterations, the EKF
update step affects not only the robot pose uncertainty, which drastically
shrinks, but also, indirectly, the uncertainty of all the previous landmarks
which are correlated to the sensed one. The result is that the location of all
previous landmarks becomes more certain thanks to the information brought
by that single observation.
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Figure 5.2: This is a sequence generated in simulation to test scanSLAM and its loop
closure capability. The uncertainty covariance associated to the robot pose is shown
in red while the landmark one is drawn in blue. The arrows show the direction of the

vector pose (z,y,0).

When the robot senses an old landmark all the covariances are

updated and reduced. The last image is taken after a second counterclockwise round.
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Figure 5.3: The main reference frames for scanSLAM - Robot Centred with One Laser

5.2 ScanSLAM - Robot Centred with One Laser
and Exstrinsic Calibration

The scanSLAM algorithm which has just been described can be seen as a spe-
cialization of a more general framework where the transformation between
the robot reference frame and the laser reference frame is not negligible.

In this case, it is possible to add to the state x the parameters re-
lated to that rototranslation RT}°%! = (tx,ty,ta). This operation allows

laser

7}’;‘;136‘;35, if the covariance submatrix

param|param 7 U323 b the initialization step of the Extended Kalman Fil-
ter. The graphical representation of this model is shown in Figure 5.3.

to calibrate the extrinsic parameters, R
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5.2.1 State and Observation Model

The state of the Extended Kalman Filter is now defined as:
Ty
Yt

Htt.%'
ty
ta

! A ( )

Yi

YL

In this case, Tyenicle = <:nt, v, Oy, tx, ty, ta) comprises also the roto-
translation parameters which remain unchanged in the prediction step. The
landmarks y; are defined as in the previous model: the pose of the robot
in the world reference frame registered when the scan; is acquired as new
landmark.

The observation model h(Z;—1, Pyjx—1) is modified in order to be com-
patible with the measurement zj returned by the scan matcher algorithm.
Following the representation in Figure 5.3, the observation equation be-
comes:

2 1+ c2

2y = (exparam) S (@wy) Dy Lparam = gtca |,

;:«9 eyi - 9t
where:

c1 = (xyi — x¢)cos(0y + ta) + (yyi — ye)sin(0y + tor)
co = —tacos(ta) + txcos(0y; — ta — 0;) — tysin(to) — tysin(fy; — to — 6;)
—(zyi — x¢)sin(0p + ta) + (yys — ye)cos(0; + ta)
ca = —tycos(ta) + tycos(0y; — ta — 0y) + twsin(ta) + twsin(fy; — to — 6;)
(5.11)
In this way ¢ can be still defined as zp — Z; because both the scan

matcher and the observation model equation return the rototranslation
RlaserRobot

laser Landmark>

The Jacobians can be computed in Matlab or GNU/Octave using the

Algorithm 5.2.1. The matrix % changes in accordance to:

oh oh oh oh
Rl TR r— '”O'”ayi 0. (5.12)

C3

which is the rototranslation between the two laser scans.
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Algorithm 5.2.1 Jacobians Computation for Robot Centred scanSLAM

% Scan Matcher: z
syms Xsm Ysm Tsm real
SM = [Xsm Ysm Tsm]’
% Robot: x4_1,x¢
syms xtml ytml ttml xt yt tt real
XT = [xt,yt,tt]";
% Landmark Pose
syms xL yL tL real
L = [xL,yL,tL]’;
% Laser Pose
syms Xh Yh Th real
HOK = [Xh Yh Th]’
deltaX = compound(inv_compound (XT) L)
deltaSM = compound (inv_compound (HOK) , deltaX );
deltaSM = compound (deltaSM ,HOK) ;
7% W @gg—1, Prjp—1)
deltaSM1 = simplify (deltaSM)
o, Oh
oz
ALL = [XT;HOK;L];
JACH = jacobian (deltaSM1, ALL)
% Vehicle
jacHdxv = jacobian (deltaSM1, XT)
% Laser sensor (e.g., Hokuyo)
jacHdhok = jacobian (deltaSM1, HOK)
% Landmark
jacHdL = jacobian (deltaSM1, L)
disp ('Find the inverse transformation h™' to add landmark’)
deltaXRis = compound (HOK,SM);
deltaXRis = compound(deltaXRis ,inv_compound (HOK) );
deltaXRisl = simplify (deltaXRis);
LwrtWorld = simplify (compound (XT, deltaXRis))
subs (LwrtWorld ,SM, [0 ,0,0])
% Vehicle
jacLwrtWorlddxv = jacobian (LwrtWorld ,XT)
subs (jacLwrtWorlddxv ,SM,[0,0,0])
% Laser
jacLwrtWorlddHOK = jacobian (LwrtWorld ,HOK)
subs (jacLwrtWorlddHOK ,SM, [0 ,0 ,0])
%wrt z, which is not used R=zeros
jacLwrtWorlddSM = jacobian (LwrtWorld ,SM)
subs (jacLwrtWorlddSM ,SM, [0 ,0 ,0])
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5.3 ScanSLAM - Multiple Laser with Exstrinsic
Calibration

The use of cheap laser range finders, such as Hokuyo URG-04LX, makes
attractive the equipment of more than one laser on a single robot.

Few approaches can be pursuit in order to incorporate information gath-
ered by multiple sensors into the filter: sensor fusion using Covariance In-
tersection [72, 73, 38, 57, 58, 40|, decentralized sensor fusion algorithms
[62, 46, 74], or a generalization of the scanSLAM algorithm.

The scanSLAM framework offers the opportunity to deal with the prob-
lem of multiple laser using an elegant solution. In fact, it is possible to add
another laser in a seamless way and simultaneously refine its calibration
parameters, by adding the extrinsic calibration information, the rototrans-
lation RTIZ%Z‘;TJ = (tzj,tyj,ta;), in the EKF state x as it was just done for
the previous case. In the data structure that collects all the scans only an
additional variable must be set in parallel to each new landmark describ-
ing the laser sensor in use. Modifications to deal with the problem of data
association and multiple desynchronized laser acquisitions are discussed in
the following sections. Figure 5.4 shows that the observation made by one
laser with respect to the other and its related Jacobian can be computed as
follows. In addition to the Jacobians presented for the case of a single laser
range finder, it is also possible to obtain as observation the rototranslation
between the two lasers. If the currentScan is acquired by the laser k and an
associated landmark is registered by the laser A then:

% c1+co

Zy | = (©xparamy) ® (O20) ® yn ® Tparam, = c3+ ¢y ’

29 etah - etock, ayh — gt
where:

c1 = (xyn — x¢)cos(Op + toy) + (Yyn — v )sin(Oy + toy,)

ca = —tay, — 0;) — tyrsin(toy) — typsin(Oyn — tay, — 0;)

c3 = —(xyn — x1)sin(0y + tou) + (yyn — yi)cos(0y + tou,) — tyrcos(toy,)

ca = +typcos(Oyn, — toy, — 6;) + tagsin(tay) + tegsin(fyy, — tay — 0;)
(5.13)

5.4 Data Association Problem

The term data association refers to the problem of finding the correct associ-
ations between the current measurement and the corrisponding landmarks.
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Figure 5.4: Reference frames involved in Multiple Laser scanSLAM model

An incorrect procedure can easily result in unconsistency of the Extended
Kalman Filter with the consequences of a wrong estimation in the pose of
the robot and in the creation of a global map of the environment.

On the one hand, the nature of the observation in scanSLAM, which
are constituted by raw laser scans, allows some improving in the robustness
of this crucial step with respect to the bearing-range SLAM [10, 70]. On
the other hand, the assumptions made in the computation of the covariance
matrix Ry related to the additional noise in the measurement arises new
problems which must be carefully handled. In the next subsections, all the
techniques used in the implementation are described. In the final imple-
mentation the techinques are typically employed together to solve the data
association problem.

5.4.1 Selection of Landmarks Based on Distances

The selection of the landmarks which are candidates to be matchable to
the current scan is made using the information derived from the distance
between the robot pose, x, at time ¢, and each landmark. Two distance
metrics are used in this stage: the Euclidean and the Mahalanobis distance,
see Appendix D. The details for the correct implementation are described
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Algorithm 5.4.1 Selection of Landmarks

[Set] = SelectionOfLandmarks (&, Pyx)
P,=P(1:3,1:3)
for i =1:numLandmarks
disteyclidean = (xt - yacz')Q + (yt - yyi)2
diStorientation = ’975 - y9i|
distimahalanobis = (xv - yi)TPv_l(xv - yz)
if (diSteuclidean < dey N distorientation < dor)
v (diStmahalanobis < dma)
Set = Set|J{i}
endif
endfor

in the Algorithm 5.4.1.

The two distance metrics are employed as follows. A landmark [ is chosen
only if its euclidean distance along (z,y) and its orientation is sufficiently
near the robot or if it is compatible to the Gaussian representation of the
pose of the robot.

It should be noted that if the uncertainty related to the robot is rela-
tively low, the active constraint is the one given by the Euclidean distance.
Viceversa, if the robot pose is very uncertain then the constraint on the Ma-
halanobis distance permits to choose candidates in accordance to the motion
model in use.

It could happen that no candidates can be considered given the distances
thresholds. In that case, the update of the EKF will be skip for the current
iteration. This is reasonable since a very distant landmark could probably
not be matchable with the current scan and the scan matcher would returns

the wrong transformation zy.

5.4.2 ML Estimator

Once, the landmarks are selected on the basis of the distances, a stricter
method can be employed to improve the robustness of the scanSLAM algo-
rithm with the purpose of rejecting a measurement if it is not compatible
with its prediction.

The technique described in the Algorithm 5.4.2 is taken from [70] and
implements a Maximum Likelihood estimator. If there are N landmarks
which are candidate to be matchable with the current scan, the scan match-
ing procedure is repeated for all the couples producing (zx, 2k, Rk)i=1..N-
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Algorithm 5.4.2 ML Data Association

[j] = MLDataAssociation ({zx}, {2k}, {Rx}, P
for i=1:numLandmarks

Oh; om T
S =G Pur s + Ry

- Oz ox
di = (267 — 210) TSNk — 2h)
endfor

j = argmin; d;

The measurement which it will be used in the update step of the EKF it is
choosen employing for the second time the Mahalanobis distance, now com-
puted on the mearurements z and not on the robot pose and features, to
the corresponding prediction. The measurements with the lowest distance
are selected.

Intuitively, the maximum likelihood estimator chooses the measurement
that will change the state the least, in accordance to the pose estimation
performed so far. In addition to this procedure, it is possible to consider
the value of quality indexes that can be computed by the scan matcher such
as the ratio given by the number of corresponding pairs within a distance
threshold over all the corresponding pairs.

Indexes like the one just described can partially solve the problem given
by the wrong estimation of Ry, the covariance of the scan matcher. As
mentioned before, the covariance matrix estimated by the ICP covariance
algorithm can be optimistic if the scan matcher converges to the wrong

minimum.

5.4.3 Multiple Data Association

If more than one landmarks candidates are selected through the previous
processes, it is possible to perform a EKF update taking into account all
the measurements and, therefore, obtaining a faster convergence rate.

The update is done by stacking the matrix %,Rk and the vector zg, Zx
in the following way:

Ohy
ozr
H = . , (5.14)
OhpyumObservation
or
Zk,1
2z = . , (5.15)

Zk,numObservation
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Zk,1
5= - , (5.16)
ék,numObservation
Rk71 0 - 0
0 R . 0
R= 2 : (5.17)
0 0 e Rk,numObservation

and then following the Algorithm 4.2.1.

5.4.4 Dealing with Desynchronized Measures

The phenomenon of desynchronized measures commonly affects the imple-
mentation of multiple laser models. For this reason, some laser manufacters
release laser sensor with a dedicated physical input to synchronize data ac-
quired from an array of sensors. However, this solution is applicable only in
those particular cases.

The solution proposed in this work is based on the following three rules:

e If a laser scan i is acquired by a laser sensor k& and no other landmarks
made by the same sensor are present in the neighbourhood, add the
currentscan as new landmark. Otherwise, perform the update as it is
done in the case of the single sensor;

e Only if the robot is not moving, add the current scans acquired from all
the lasers in the collection of scans related to the landmark described
by y; = x,. In this step, it is possible to perform the measurement
update of one laser with respect to the other one (see Section 5.3) if
the two scans retrieved by the lasers are theoretically matchable (e.g.,
the relative location of the lasers permits the scan to share at least a
constant portion of the environment);

e In the other cases, perform only the EKF prediction step

This approach permits to reuse most of the code of the single sensor scanSLAM
and leave unchaged the structure of the state vector x and its covariance
matrix P. Even if most of the landmarks are associated to a single laser
sensor, the presence of few landmarks which are updated by multiple sen-
sors pemits to improve the estimate of all the landmarks since they remain
correlated.

Another feasible approach is fusing all the laser scans acquired by dif-
ferent sensors into a single scan. The EKF update is delayed until all the
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scans are retrieved. Once the information is gathered, all the scans should
be rototranslated by the dmotion of the robot during the acquisition phase.
Only after that, the scan can be matched against another landmark or store
as a new one.

It should be noted that in the second case, the fusion between scans is
performed without taking into consideration the uncertainty of the transfor-
mations between each laser reference frame; this can result in a wrong data
fusion process. Conversely, the first method is much more affected by the
modelization of the errors related to the extrinsic parameters of each laser

SENnsor.

5.4.5 High Speed Rotations

An often understated problem can arise when a laser range finder with low
scanning speed is mounted on a robotic platform.

This issue manifests when the scanning speed is too low in comparison
to the rotational speed of the robot w, which is considered negligible in
most of the robotic application. The correct mathematical equation for
the computation of the angle of each readings for a sensor subjected to a
rotational speed wy, expressed in the world reference frame, becomes:

Vi : real Angle; = angleSensor; + 0y + wi At i (5.18)

where angleSensor; is the i*" value of the angle of a laser beam expressed
in the laser reference frame, 6; is the robot orientation at time ¢, w; is the
rotational speed of the robot at time ¢, At is the interval of time necessary
to obtain a single laser measurement.

This problem is particularly relevant when the dataset from L.U.R.C.H
(see Chapter 6). is used. In fact, considering the worst case, on the hy-
pothesis that the Hokuyo laser is located at the centre of the robot, and
defining:

e Viar: wheel maximum speed equals to 2%
e b: the wheelchair baseline equals to 0.5m
e Hokuyo scanning speed equals to 10Hz, over 1024 motor steps

The maximum rotational speed becomes:

2Vinax rad
max — =8— 5.19
w 2 . (5.19)

and results, simulated using Matlab, are graphically shown in Figure 5.5, 5.6.

This can be considered an open problem and in the software implementation
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270

Figure 5.5: This is a polar plot representing a typical Hokuyo laser range finder acqui-
sition of a corridor. The laser is located in the origin of the axis with the orientation
of LURCH right laser, whose angles are set in the range [—1.307,2.872], [rad]. The
rotational speed w is set to zero. The laser range is 4m only, the out-of-range are set
to zero to simulate the behaviour of the real laser

it is simply choosen to discard the laser scans if the robot speed is too high.
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(c) w=+8red (d) w=—gred

Figure 5.6: This is a polar plot representing a Hokuyo laser range finder acquisition of a
corridor. The sensor is subjected to a rotational speed w while during data acquisition.
Distorsions make harder the problem of scan matching, in particular when scans taken

at different rotational speed are used as input. The value of At of Equation 5.18 is set

100ms

to 1024motorstep
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Chapter 6
Datasets

‘The Scientist must set in order. Science is built up with facts, as a house
is with stones. But a collection of facts is no more a science than a heap of
stones is a house.”

Henri Poincaré, Science and Hypothesis (1901)

This chapter describes which datasets have been selected during the testing
phase of the software library and the different kind of laser sensors that
have been taken into consideration. Two different robotic platforms have
been studied in relation to Rawseeds and LURCH projects. The choice of
testing different laser range finders, which have been selected from available
datasets of the two projects, made necessary an appropriate tuning of the
parameters of the scan matching and Extended Kalman Filter algorithms.
Particular emphasis is given to LURCH project to evaluate the possibility
of using the software library to enhance the robot with navigation features
and extend the current functionalities.

6.1 Rawseeds Project

Rawseeds! is a Specific Support Action funded under the European Union’s
Sixth Framework Programme. The project is dedicated to the generation
and publication of a high quality benchmarking toolkit for robotics.

In order to complete that suite, high quality datasets have been published
together with the description of the location and the characteristics of the
environment: static, if there are no object moving or doors being opened,
dynamic, in the opposite case, with natural or artificial lighting.

"http:/ /rawseeds.org
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Within Rawseeds terminology, the word dataset is used to identify the
“set of synchronized data streams obtained by recording the output of the
sensors mounted on a robot when it explores an environment”. Whereas, in
the same context, a single instance is called data-gathering session.

The dataset comprises data acquired by multiple sensors: low cost short-
range lasers, medium and long-range ones, sonars, digital cameras and odo-
metric data.

Moreover, the parameters of the calibration of each sensor both the ex-
trinsic, the rototranslation between the sensor and the robot reference frame,
and the intrinsic ones, the calibration matrix for digital cameras, are accu-
rately estimated and the ground truth for at least a part of each session is
provided.

6.1.1 Dataset: “Bicocca Indoor”

The dataset used to test the scanSLAM algorithm is named “Bicocca (in-
door)”?. In particular, a fragment of the session “Bicocca 2009-02-25b” is
selected? for the presence of a loop. The location is set into the building of
Universita di Milano Bicocca, Italy, and, in particular, the session is recorded
in a static environment with artificial lighting. The blueprint of the building
with the superimposed approximated robot path is shown in Figure 6.1.
The robotic platform designed for Rawseeds project is named Robocom*
which is jointly developed by POLIMI and UNIMIB. The robot is equipped

with an array of the most common sensors available in the market:

o Inertial Measurement Unit, IMU, which provides 3-axis angular orien-
tation, acceleration, rate-of-turn and Earth magnetic field data (Xsense
MTi)

e Short-Range laser range finders provided by two lasers (Hokuyo URG-
04LX)

e Medium-Range laser (SICK LMS200)
e Long-Range laser (SICK LMS291)
e Three on-board computers, PCBricks®

e Ultrasound transducers arranged to form a belt of 12 sonar (Maxbotix
EZ-2) with limited range

*http://www.rawseeds.org/rs/datasets/view/6
3http://www.rawseeds.org/rs/capture_sessions/view/5
“http://www.rawseeds.org/home/2007/12/14/robocom-robot/
®http://airwiki.elet.polimi.it /mediawiki/index.php/PCBricks
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Figure 6.1: The blueprint of the Bicocca building related to the Rawseeds session
“Bicocca 2009-02-25b"

e Stereo Vision System (Videre Design STH-DCSG-VAR) made by two
B/W, 640x480 pixel digital cameras

e Trinocular Vision System by coupling the binocular one with another
(Videre Design DCSG) camera

e Monocular Vision System provided by a colour, 640x480 pixel (Uni-
brain Fire-i 400) digital camera

e Omnidirectional Vision System obtained with a digital camera (Prosil-
ica GC1020C) and an hyperbolic mirror (Vstone).

The principal reference frames related to the robot are shown in Fig-
ure 6.2. For this case of study, it is used the data acquired by the SICK
LMS291 frontal laser in order to check the correctness of the robot centred
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Figure 6.2: The robot reference frames for the Rawseeds project. The SICK laser sensor
is on the x axis. The main reference frames involved are the same of the Figure 5.3

single laser scanSLAM implementation. The results are shown in Section
7.2.2 of the following chapter.

6.1.2 The SICK laser

The laser range finder SICK LMS291 is a very accurate long-range laser
sensor designed for indoor applications. The measurement are based on
the time-of-flight of an infrared laser beam reflecting back on a rotating
mirror. The instrument has a coverage area of 180°with a selectable angular
resolution of 0.25°, 0.50°, 1°.

The long maximum range, 80m, together with a measurement resolution
of 10mm and a 75Hz scanning speed, allows the detection of a large area
of the environment in a single scan improving the scan matching results.
Nevertheless, the long range can cause problems in the rototranslation esti-
mation because many corresponding points may have a high distance (e.g.,
while moving in corridors). The main features, which has just been elicited,
are shown in Figure 6.3.
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(a)

Coverage Area: 180°

Max Distance: 80m

Angular Resolution: 0.25° 0.50° 1°
Accuracy: 10mm

Scanning Speed: 75Hz

(b)

Figure 6.3: Technical specification for SICK LMS291

6.2 The LURCH Project

LURCH, “Let Unleashed Robots Crawl the House”, is a project developed
by AIRLab, Artificial Intelligence and Robotics Laboratory, of Politecnico
di Milano. The aim of the project is to create an autonomous wheelchair by
extending the functionality of a commercial electric wheelchair (Rabbit by
Ottoblock) with sensors and robotics software. For this reason, the standard
wheelchair is equipped by:

e Two on-board computers, PCBricks®, powered by wheelchair batteries
e An odometry system based on encoders applied to the rear wheels
e Two laser scanners Hokuyo URG 04LX

e A T7-inch touch screen monitor, Xenarc 700TSV, 800x480 resolution
(16:10 AR)

Shttp:/ /airwiki.elet.polimi.it /mediawiki/index.php/PCBricks
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Figure 6.4: The LURCH autonomous wheelchair

e A colour camera Firel400 (resolution 640x480)

Both the laser sensors are used to test the scanSLAM algorithm. In the
case of the wheelchair configuration and in contrast with Robocom, the two
(Hokuyo) lasers are mounted on the left and the right of the seat, instead
of being located in front and rear position, as can be seen in Figure 6.4.
The two lasers can sense a common part of the environment thanks to their
wide detection area. Therefore it is possible to perform the scan matching
algorithm between the two lasers to estimate the relative rototranslation.
The picture that represents the common area is shown in Figures 6.7. The
different reference frames involved are the same of the ScanSLAM model
named Multiple Laser with Exstrinsic Calibration, described in Chapter 5.

The calibration between the two laser sensors and the odometric centre
of the robot, i.e., the matrices RngZ‘}fe ft and RT }:312(1)% ght> has been computed
by hand using an ad hoc method.

6.2.1 The Hokuyo Laser

The laser range finder Hokuyo URG-04LX is a short-range laser scan de-
signed for indoor application which measurement are based on the calcula-
tion of the phase difference of an infrared laser.

This instrument, in comparison with SICK, has a wider coverage area,
240°, with an angular resolution of 0.36°(obtaining 683 measurement per
scan). The maximum range is 4m which, thanks to the wide detection area,
permits to obtain effective results in robotics applications such as collision
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Figure 6.5: The Hokuyo URG-04LX

Hokuyo URG-04LX

Coverage Area: 240°
Max Distance: 4m
Angular Resolution: 0.36°
Accuracy: 20mm

Scanning Speed: 10Hz

Figure 6.6: Technical specification for Hokuyo URG-04LX

detection and obstacle avoidance. The accuracy of the Hokuyo sensor is
lower than the SICK laser one: 10-20mm against 5-10mm.

The relative low scanning speed, 10Hz, makes the scans more prone to
distortion if the robot is travelling at high speed (see Section 5.4.5). These
features are synthesized and shown in Figure 6.6.
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Figure 6.7: The figure shows the combined scans made by transforming the scans
acquired by the two Hokuyo, using the manually calibrated rototralsations, in robot
reference frame. In particular, the blue scans refers to the left sensors, while the red
one refers to the right laser. As it can be seen from the Figure b, the calibration
parameters are not optimally estimated. Moreover, when the wheelchair performs fast
rotation the scans resulted distorted (see Chapter 5)



Chapter 7

Software Implementation
and Evaluation

Sijaki banida (Starting is half the task)

A Korean proverb.

This chapter offers in-depth look at the projectual choices on the basis of
the software library which has been developed. The functionalities provided
by the library and the software architecture are explained together with
considerations about optimization and execution time. Finally, the testing
activities and the analysis of the results are described in relation to scan
matching algorithms, ICP covariance estimators, scanSLAM and self cali-
bration.

7.1 The Software Library

The software library is implemented in C++ using dedicated libraries (Eigen
[29], ANN [1] and FLANN [31]) in order to obtain good performances in the
iteration procedures and reliable results. Many functions are also imple-
mented in Matlab to test the algorithms, make prototypes and propose and
test alternatives.

In spite of the efficient algorithms for matrix manipulation, the long exe-
cution time of the simulations which have been implemented in Matlab and
the opportunity to use the software for LURCH project made necessary the
development of a fast C++ library. This section is dedicated to the de-
scription of the software architecture and considerations about the resulting

implementation.
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Software Library
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Figure 7.1: The use case diagram for the software library

7.1.1 Functionalities Provided

The aim of the final implementation is to create a software library for the
management of the acquisition obtained from laser scans and their successive
manipulation. The scan matching algorithms are implemented to use the
laser for navigation tasks such as mapping and localization. In order to
complete the set of functionalities, algorithms to compute the ICP covariance
for every scan matcher have been developed.

A novel, generic and templatized, Extended Kalman Filter framework
is added to implement and test scanSLAM algorithm. Finally, multiple
laser model and self calibration model are implemented as final applications
to evaluate the proposed modification and challenge the software library
capabilities. The main functionalities provided to the user are shown in the
use case diagram in Figure 7.1.

7.1.2 The Software Architecture

The software architecture is graphically described in the UML package dia-
gram in Figure 7.2. As it can be seen in the package diagram, the software
library is logically divided into six macrostructures:

Scan which implements the scans both in polar and Cartesian representa-
tion, the scan matcher and the algorithm for estimating the covariances
associated to the error in the minimization procedure

Correspondences which solve the problem of finding k nearest neighbours
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Filesystem
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Mapping

SLAM

Figure 7.2: The package diagram for the software library

given two array representing 2D data clouds. Internally, it uses a
general O(n?) algorithm, ANN, and FLANN, introduced later in this

section

Mapping which includes the test for incremental mapping that uses the
scan matchers. It also implements simple maps made of set of scans
or 2D points

Filtering comprises general filtering techniques such as templatized median
filter, mobile average and Extended Kalman Filter

SLAM which implements the scanSLAM algorithm, including both sensor
centred and robot centred approaches

Filesystem contains the simple software classes for the handling of log files

More in details, the classes are made generalizable preferring the C++
template mechanism to virtual functions in order achieve the maximum
efficiency. For example, the class that implements the scan matcher is tem-
platized in the type of scan you handle: polar or Cartesian. In this way (see
Figure 7.3), the class does not need to internally convert the scans at each
iteration since the programmer is committed to provide the right implemen-
tation of the scan. The conversion from polar to Cartesian scan, which is
needed by all the scan matcher implemented so far, (Classic ICP, Metric ICP,
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ScanMatcher< ScanType >

# refScan

# currentScan
# tempScan
#Cov

+ ScanMatcher()

+ ~ScanMatcher()

+ doScanMatchi)

+ doScanMatchi)

+ doScanMatchi)

+ doScanMatchi)

+ newCurrentScan()

+ setRefCurrentScans()

+ drawGnuplot()

+ getCorrespWithinThreshold()

< CartesianScan >

ScanMatchers CartesianScan >

#refScan
#currentScan
#tempScan
#Cov

+ ScanMatcher()

+ ~ScanMateher()

+ doScanMatch()

+ doScanMatch()

+ doScanMatch()

+ doScanMatch()

+ newCurrentScan()

+ setRefCurrentScans ()

+ drawGnuplot()

+ getCorres pWithinThreshold()

ClassiclCP
- errorValue
- ANIMATION
- ANIMATIONY ERBOSE [y -
- measureErrX
- measureErrY - ANIMATION
- MAXITERATIONS - ANIMATIONVERBOSE
-EPS - measureEmX )
- MINERR - measureErrY
- DISTTHREASHOLD - erorvalue - errorvalue
- sIGMA2 - MAXDIST - ANIMATION
Pl - MINERR - ANIMATIONV ERBOSE
L - MAXITERATIONS
+ doScanMetchl - MAXITERATIONS - MINERR
+ doScanMatch() - SIGMA2 _siGMA2
+ doScanMatch()
+ doScanMatchy) + doScanMatch() + PLICP()
+ ClassicICP() + doScanMatch() + doScanMatch()
- computeCov() + doScanMatch() + doScanMateh()
- computeCovCensiPolar() + doScanMatch() + doScanMatch()
- computeCovNumerical() + MetriclCP() + doScanMateh()
- searchC . ) + computeCovCensiPolar()
- searchCorrespondingPointsFLANN() - getMbDistSqr() - quad()
- searchCorrespondingPointsONZ() - getQmin()
- trasl AndRotby SVD() - computeCov()
- centerTheScan() - computeCovCensiPolar()
- errorMinimization() - quadi)
- RTAmay()
- closestPaintOnSegment()
- projectPointOnSegment()
- quad)

Figure 7.3: The class diagram related to the scan matcher

PLICP), can be simply performed before scan matcher is invoked using ded-
icated functions for scan manipulation. Nonetheless, the scan matcher gen-
erality allows future implementation of different scan matching algorithms
such as Polar Scan Matching or probabilistic based scan matchers.

Many other classes such as the one that deals with the search for corre-
sponding pairs are templatized on the datatype to be able to deal with float,
double or other built-in datatypes. Moreover, external libraries are used to
improve the performance, the reusability and the portability of the software
and the single algorithms.

In particular, the following libraries are used:

Eigen is a C++ template library for linear algebra [29] which manipulates
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vectors and matrices of static or dynamic size. The API is simple and

elegant in comparison to BLAS and LAPACK libraries without the

risk of losing performance!

ANN is a C++ library for Approximate Nearest Neighbor Searching in
d-dimensional space using kd-trees and box-decomposition trees [1].
Given a query point p, the k nearest neighbours are extracted from
the dataset M. The generality of the algorithm allows the use of any
Minkowsky distance (e.g., Euclidean, Manhattan, max distance)

FLANN Fast Library for Approximate Nearest Neighbors is a C++ library
similar to ANN. This library is able to find the best searching algorithm
among linear, k-tree, k-means and a combination of them thanks to
the computation of a particular figure of merit [56]

GPC Generalized 2D Point Corrispondence solution, [32], is a C software
library developed by A. Censi to efficiently find the solution of the
point-to-line distance metric

In the testing phase it is found out that the three algorithms for com-
puting the k nearest neighbours, for this specific application, are almost
equivalent to the O(n?) approach. In particular, a value of k = 2 is used
to retrieve the segment endpoints for the computation of the normals to
the segment. This is probably due to the low number of points considered,
680 as maximum. Nevertheless, the optimized algorithms can be reused in
future development to deal with scans of variable lenght.

7.1.3 Metaprogramming with Templates and Generalization

The aforementioned C++ template feature is exploited to create reusable
components without losing performance thanks to the fact that most of
the decisions are made at compile-time. In fact, even if virtual functions
introduce less run-time overhead than dynamic_cast or typeid, they can
cause a lot of performance penalty when they do not contain much code and
they are called frequently (see [76]).

Particular attention is paid to the creation of a generic Extended Kalman
Filter class for SLAM which takes inspiration from the EKF implementa-
tion made by two distinct project: the Mobile Robot Programming Toolkit
(MRPT) [55] and TooN Algorithm Library (TaG) [68].

The Extended Kalman Filter class is defined as:

see benchmarks: http://eigen.tuxfamily.org/index.php?title=Benchmark
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Algorithm 7.1.1 Example of use of the Extended Kalman Filter class

ExtendedKalmanFilter<Statel, MotionModell, Paramtersl> ekf;
ekf.state.x = xStart;

ekf.state.P = covStart;

// Prediction

ekf.prediction (u);

// Update

MeasurementModell ml;

MeasurementModell m2;

ekf.updateAndAddLandmarks(ml);
ekf.updateAndAddLandmarks (m2);

template <class State, class MotionModel, class Parameters>
class ExtendedKalmanFilter {...}

and the main member functions are: prediction(...), update(...)
and addNewLandmarks(...). The signature of the class permits to abstract
from the particular model in use and test different couples of States and
MotionModels, which are designed to be compatible one another. The tem-
plate class Parameter is only used to set constant values and improve Eigen
library execution-time thanks to the use of static size matrices which can so
be known at compile-time.

In order to achieve the maximum generalization the member function
update(...) is templatized:

template <class MeasurementModel> void update (...)

This technique is particularly useful to create EKF SLAM filters where
different sensors are employed to get measurements. An example of use of
the class is shown in Algorithm 7.1.1. In this algorithm, the EKF object is
instantiated and initialized with the starting values of state and covariance
(which are implemented using Eigen library). After that, an Eigen vector
u is used as input to the prediction step of the EKF. The dimension of u
is checked at compile-time by using the information stored in Parameters
class. Two measurement models are instantiated and the update step is per-
formed. The measurement z is retrieved by a method of MeasurementModel
class.
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Data  ScanMatcher/Iterations scanSLAM/Iterations
Hokuyo 54.583s/2542 42.899s/231
SICK 32.443s/5020 8m51.3505/1355

Table 7.1: The table shows the average time required to perform incremental mapping
based on scan matching and scanSLAM. The time comprises the acquisition of data
from log file, the saving of information for plotting in files and the estimation of the ICP
covariance. For the scanSLAM algorithm 10 laser acquisition are skipped to improve
the speed.

7.1.4 Computational Complexity and Time Performance

The scanSLAM algorithm shares the same characteristic of the EKF model
from which it is specialized. The Extended Kalman Filter is computationally
bounded in the number of landmarks, N, and its computational complexity
is generally classified as O(N?3).

In fact, as it is shown by Blanco in [10], the complexity depends on the
inversion of the covariance matrix P which is an N by N matrix. In the
same scientific paper is reported that, if the covariance matrix associated
to the uncertainty in the measurements Rj is diagonal, and in most scan
matching iterations the ICP covariance can be approximated to a diagonal
matrix, the computational complexity can be reduced to O(N?)

It should be noted that, at each update step of the EKF, at least one in-
stance of the scan matching algorithm is run. Its computational complexity
is difficult to estimate since it depends on the number of iterations, the min-
imization method used and the computational time due to the estimation
of the ICP covariances. Since the ICP algorithm typically converges after
few iterations, from 1 to 20, and since the algorithm involves only 3 by 3
matrix inversions, its computational complexity becomes almost negligible
when the EKF state covariance P grows.

The Table 7.1 shows the average time requested to perform scan match-
ing and scanSLAM. In comparison to the scanning speed of the two laser
sensors, it can be concluded that for the Hokuyo laser it is possible to per-
form real time incremental mapping because the time to compute a single
scan, 0.02s is lower than the scanning speed 0.1s. The same consideration
can not be applied to scanSLAM since, even considering 10 scans for each
iteration, the time requested for a single iteration is nearly 0.2s. Also for
SICK laser the incremental mapping can be performed in real time because
0.0065s is lower than %s.
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7.2 Experimental Results

In this section the main experimental results are shown and discussed. The
exposition of the content follows a complexity ordering, from the simplest
and self-contained component to the most complex one. Therefore, the sec-
tion begins with scan matching algorithms and the experimental evaluation
of the validity of the algorithms for computing the ICP covariance. These
tests are followed by the implementation results obtained using a scanSLAM
approach. Also in this case, first the motion model is described and only
in the end the calibration extension is critically discussed. In the imple-
mentation, in contrast with the majority of the scientific papers, the scan
matchers are tested both with high reliable SICK lasers and with low-cost
Hokuyo lasers. The scanSLAM algorithm is for the first time in literature
tested for Hokuyo laser range finder obtaining good result even with the
most general model defined in Chapter 5.

7.2.1 Scan Matching Algorithm

Three scan matchers are implemented in the library: Classic ICP, Metric
Based ICP and Point-to-Line ICP. The implementation follows the guide-
lines proposed in Chapter 3. The algorithms are tested with few modifica-
tions with Hokuyo and SICK laser range finders.

In particular, it was necessary to modify the maximum distance related
to the Distance Threshold, Chapter 3, since the laser range varies from
few metres, 4m for Hokuyo lasers, to many, 80m for SICK ones. For this
reason, it is omitted the test on the Distance Threshold for scans acquired
by SICK, while, for Metric Based ICP, the threshold is set to 0.5 [m] with
L = 3. The Percentile Threshold is set to 80% both for Classic and
Point-to-Line ICP. While, the Rejection of Boundaries is always applied.
The scan preprocessing procedure is performed for the scans acquired from
Hokuyo lasers using a 1D median filter on range measures with filter window
equals to 5.

Six testing case are selected to show the accuracy of the scan matching
algorithms and evaluate the estimated covariance. In all the cases, a couple
of non consecutive scans is selected. The initial guess obtained by odometry
is set to zero in order to prevent the correct alignment given by good estimate
and test the scan matchers capabilities in the worst situations.

The cases Rawseeds 1 and Rawseeds 2, see Figure 7.4, are constituted
by two scan couples taken from the Rawseeds dataset (see Chapter 6).
Rawseeds 1 refers to the couple of scans numbers 8000 and 8125. Therefore,
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the second scan is acquired after 7%21% = 1.7s. Rawseeds 2 refers to the
couple 5300, 5305.

The test case named Hokuyo, see Figure 7.5, is obtained using the au-
tonomous wheelchair (see Chapter 6) in the AIRLab laboratory in Milan.
The scans couple is formed by two non consecutive scans 200, 205. Therefore
in this case, the time interval is ﬁ = 0.5s.

The test cases named CorridorX, CorridorY, and Circular, see Figures
7.9, 7.10 and 7.11, are obtained from a simulated dataset with the aim of
recreating a corridor along the principal axis x,y and a circular environment.
The data are noise free but comply the Hokuyo requirements: 4m maximum
range and angular resolution of 0.36°.

The results are shown in Figures 7.6, 7.7, 7.8, 7.9, 7.10 and 7.11. From
a visual inspection it can be seen that, in general, all scan matchers which
are implemented in the software library show good performance. Classic
ICP in two cases (Figures 7.6 and 7.8) converges to a wrong minimum. This
is probably due to the poor selective outlier rejection criteria employed.
Metric ICP performs well in every dataset but the Rawseeds 1, in which
Point-to-Line ICP performs visually better. The case of test taken from the
simulation environment, the two corridors and the circular environment,
show visually the same results for each scan matcher and the images are not
shown.

Finally, it can be concluded that both Metric Based ICP and Point-
to-Line ICP returns good results in estimating the unknown rototransla-
tion. The numerical results are enlisted in the Tables 7.2 and 7.3. The
reader should note that the two methods have theoretically different pros
and contras. The Metric Based ICP is implemented using a point-to-point
minimization metric, even if, in the scientific paper written by Minguez et
al. [53], the point-to-line metric is briefly introduced. This implementation
choice makes the Point-to-Line ICP more accurate if the segment could be
estimated with precision. However, a wrong estimation of the normal to
segment (e.g., caused by a noisy laser scan) could corrupt the estimation
process. Moreover, the Metric Based ICP, even if is theoretically slower
than Point-to-Line ICP, should be more robust towards uncertainty in the
rotational components thanks to the particular distance metric employed.

In terms of convergence speed, all the algorithm are considered fast
enough even if ClassicICP is certainly the slowest.



72 Chapter 7. Software Implementation and Evaluation

3 1
J " " " d Reference Scan +
Refarence Sean : : : : : Ference 5
Turrent. Scan : : : : : urrent. Szan
. LT T N SO .
LA
: L
5 K w0} :
" :
M + i
s X '
15k 3 ; P T S N SO
oottt £ ¥ ; ) )
I
1 o Bl - .
i
I :
i % =
i +
05 i s .
i
5
.
0 +: . 2F LR T
L *
'
4
&
=05 2 T S S
L+t
"
M——————eC LSS CE R ST y
1 -2
0 0.5 1 1.5 2 2.5 3 3.5 0 2 4 3 ] 1 12 M 16 18

(a) Rawseeds 1 (b) Rawseeds 2

Figure 7.4: Rawseeds test cases for scan matching

Reference Scan  +
Current Scan

A
AN
S I O NN SO U S S
:
ab o - g
T T DU RUEEE W
-2 L
-4 -3 -2 -1 ) 1 2 3 4

Figure 7.5: Hokuyo



7.2. Experimental Results

73

z
Reference Scan +
Current Scan
2.6 F i
£
5
23 T ST S ++ p
: : +:

! ! +
15k N _‘&x e fasi
bttt 003 e 7T ™

¥
1r o o
1
%
o
06 F :r 4
A
E
o
+
O e
+
i
o
T P P S .
+ ++
s RS P T T
Josbtnabtbishbs S
-1
0 0.5 1 1.5 2 2,5 H R
(a) Classic ICP
3
Reference Scan  +
Current Scan
T P N .
*
.
+
2 L e
+
#
UL e T R i - o
[ttt st 103 A "
F
1F Fak o
1
%
0.5 :
o S P PN S
0.5
. . . . J+7
: RS AFATRUNT TV SV . VR S TS
Jotumerimpriprit 1652
1 H H i H i i
0 0.5 1 1.5 2 2.5 3 3.0
(b) Metric Based ICP
R
Reference Scan  +
Current Scan
Al . .
T
ob
: ; CAN
Y o . P 5 as
Jreeihes Ea w
R
0,6 e
ok
R
SRR 5 57 X X
] 0.5 1 1,5 2 2.5 2 3.5

(c¢) Point-to-Line ICP

Figure 7.6: Rawseeds 1: Results



74 Chapter 7. Software

Implementation and Evaluation

14 T T T T T T T T
: : : Reference Scan
Current Scan

+

- S T P P TR

10 12 14 16

(a) Classic ICP

18

14 T T T T T T T T
. . . - Reference Scan
Current Scan

-2

] 2 4 B a 10 12 14 16

(b) Metric Based ICP

18

14 T T T T T T T T
X : R X : Reference Scan
Current Scan

+

_2.

] 2 4 E g 10 iz 14 16

(c) Point-to-Line ICP

Figure 7.7: Rawseeds 2: Results

18



7.2. Experimental Results

75

15|

.
Mg

05| : Y |

. Reference Scan +
Current Scan

(a) Classic ICP

Lsf -

0.6 F

Reference Scan  +
Current Scan

e

4 3 2 4

2 3 4 5

(b) Metric Based ICP

. Reference Scan  +
Current Scan

¥
4
%
%
i

-4 3 -2 A

2 H 4 5

(c) Point-to-Line ICP

Figure 7.8: Hokuyo: Results



76

Chapter 7. Software Implementation and Evaluation

3
Reference Scan  + 3 Reference Scan  +
Current Scan Current. Scan
2.5 25 F — —
2| - o P
LB e 15t
1} T S S
0.5 F T A
O S PO SO PO R UUUPU FUPUN FEUPIR PP ol
SO ————— sk 0,5 SUESR—
. -1
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
(a) Without Scan Matching (b) Point-to-Line ICP
Figure 7.9: Corridoiox: Results
[} 4
Reference Scan  + Reference Sgan  +
Current Scan . Current. Sgan
41 : 2k
L i
ES | |
2}
2|
1}
al
ol
4t
Sk y
i
=l . | 2r
#
H
st sl
-4 -4
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.9 1 1.5

(a) Without Scan Matching

(b) Point-to-Line ICP

Figure 7.10: Corridoioy: Results



7.2. Experimental Results

(4

Reference Scan +
Current Scan

-1

Reference Scan  +
Current Scan =

3 -2 -1 0 1 2 3

(b) Point-to-Line ICP

Figure 7.11: Circular Environment: Results



78 Chapter 7. Software Implementation and Evaluation

Iterative Closest Point Covariance

In order to implement the scanSLAM algorithm which is based on the Ex-
tended Kalman Filter, it is necessary to correctly estimate the uncertainty
of the measurement model R; which results equal to the uncertainty as-
sociated to the error in the minimization procedure. Many techniques are
implemented for each scan matcher in order to evaluate the best one. All the
analytical methods cited in Chapter 3 are tested. For all the scan matchers
the correct Jacobian and Hessians are derived using Matlab and its functions
for symbolic computation. The formulae obtained, typically very lengthy,
are then written in C++4 code without further optimizations. For the Classic
ICP scan matcher, two further algorithms are tried, Bengtsson’s covariance
estimation computed using a Numeric Hessian estimation (named in the ta-
bles NumBeng) and the first approach to ICP covariance create by Lu and
Milios. The computation of the Hessian matrix is explained in Appendix B.

Lu and Milios’ covariance is computed linearising the classic Euclidean
error function for small value of # and using the results as the M matrix of
the Hessian Algorithm 3.3.1.

cos(0) —sin(0)\ [x; x z;\ (0
(o 20) 6 0)-(-6) o

x — 1 0 —y v v
Jdou) \o1 &) |Y] 7 M|y (7.2)
1 (A (A 0 9

Bosse’s Covariance method was implemented to empirically confirm an
observation that it is later explained. It is chosen to keep the formulae in
the equations equal for all the scan matchers. The implementation reflects
the scientific paper [14] where:

—Ny

H Ny sin(@) cos(0)\ [x; (7:3)
ny ) \ —cos(#) sin(6 Yi

where H; is the i** row of the matrix H, (z;,;) is a point of the current scan
and n is the normal to the segment obtained by the two nearest neighbours.

The results are shown in Tables 7.2 and 7.3. Using the data it is possible
to conduct an empirical analysis about the performance of the algorithms
for the estimation of the error covariance.
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Criteria for Performing the Analysis of ICP Covariances The com-
parison between resulting values computed by the algorithm of ICP covari-
ance is theoretically possible only for simulated data since the true value is
known. The criterion used in the following analysis is based on a heuris-
tic. By visual inspection, the best scan matcher estimate is found and its
value is hypothesised to be the correct one. In this way, as figure of merit
beside the visual inspection itself, it is considered the distance in standard
deviation, o, of each estimate retrieved by the scan matcher with respect to
the reference one. Furthermore, it is also hypothesised that the covariance
matrix is diagonal, and so o, 0y, 0y are independent, which is a tolerable
approximation in practice.

Tmethod2

We can conclude that an estimate R is in accordance with the

reference estimate RT™et041 if the following equality holds:

Rmethed? — pmethodl 4 ko with i € {x,y,0} and k € {0..3}  (7.4)

Analysis of ICP Covariances In well-constrained test cases, like Rawseeds
1 and 2 and Hokuyo, it is possible to check the correctness of the estimate
selecting the estimate of the transformation RT given by Point-to-Line met-
ric as reference. In fact, it is always visually correct. In particular, from the
previous analysis it is shown that the Metric ICP and Classic ICP perform
worse than Point-to-Line ICP in Rawseeds 1 and in Hokuyo test case.

For the test case named Rawseeds 1, it can be observed that the covari-
ance evaluated for Metric ICP for Bengtsson and Censi’s formulation is well
estimated since it is possible to write:

RTPHCP — RrMetriclCP 4 ko, with i € {x,y,0} and k € {0..3}  (7.5)

An exception is done for the x component, since the numbers are very close.
For the same test case Classic ICP performs well with Bengtsson’s both
analytic and numeric and Lu Milios’. In particular, Lu Milios’ estimate is
comparable to analytic Bengtsson’s one and numeric Bengtsson’s returns
the best estimate. Censi’s estimate seems to underestimate the covariance.
It should be noted that the value o2 in Censi’s Algorithm 3.3.3 is set to
(20mm)? that is the estimate accuracy for the worst laser in use (Hokuyo
laser range finder).

The same considerations can be applied for the test case named Hokuyo
where Bengtsson’s estimate is the best one.

For the under-constrained cases, which are the most important to detect
for assuring the correctness of the Kalman Filter, the results are not good
as one could expected. In particular, for Corridor X, only two methods
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seem correct: Bosse’s method for Classic ICP returns good results even if
overestimate the covariance in the § component, while the Censi’s method
applied to Point-to-Line ICP obtains the most correct ones. It should be
observed that the results of Bengtsson’s method are partially in conflict with
the scientific paper written by Censi [17] where also that method obtains
good performance. Moreover, the reader should consider that theoretically
the manifold related to the x axis is not observable and, for this reason, the
results in that component should not be taken for granted (in fact, it should
be infinite). In any case, the detectability of this event is amenable if the
scan matcher is employed in a filtering framework such as EKF SLAM.

Corridor Y, presents the same characteristic of Corridors X and the re-
sults and considerations are the same. In the Circular Environment, Bosse’s
method gives good results for Classic ICP and Metric ICP, while Point-to-
Line ICP Censi’s method results the best one. It is interesting to underline
the NaN values in Bengtsson’s estimate that in this case can be a symp-
tom of an under-constraint situation. Nevertheless, the NaN value is also
present in Hokuyo test case without any evident meaning.

A possible reason for the failure of all or most of the algorithm for the
estimation of the covariance is that the derivatives, Jacobians and Hessians,
cancels some coefficient or create constants, masking the differences between
the constraint and under-constraint situations. An example is shown in Lu

Milios’ formula where the dependences on (3:; yg)T cancel out. For this
reason, Bosse’s covariance is tested using the point-to-line distance metric
which, thanks to the dot product between the normal n and the Euclidean
distance metric (see Chapter 3 in section Point-to-Line ICP), excludes the
elimination of important coefficients. In fact, it is shown that even for the
under-constrained cases Bosse’s method performs better than Bengtsson’s
and Censi’s method for Classic and Metric Based ICP. However, the over-
estimation in oy shows that it is not possible to interchange this method
with the more formally correct ones which are derived properly from their
respective error functions.



Dataset ScanMatcher RT Censi Bengtsson Bosse NumBeng LuM?ilios
0.6926 0.00378 0.0101 0.319 0.02672 0.01014
Rawseeds1 ClassicICP 0.03377 0.007594 0.01364 0.1872 0.01749 0.01706
—0.0478 0.1634 0.3773 19.94 0.5851 0.3769
0.7034 0.007713 0.01283 0.1838
Rawseedsl MetricICP 0.01653 0.01476 0.01651 0.1259 — —
—0.01967 0.7049 0.9563 8.745
0.7772 0.006013 0.02108 0.02581
Rawseedsl PLICP 0.01722 0.007222 0.0227 0.01613 — -
0.001388 0.2477 0.6973 1.574
0.01062 0.002981 0.00735 0.1241 0.009693 0.007349
Rawseeds2 ClassicICP —0.005052 0.003313 0.008453 0.07611 0.009307 0.008461
0.01799 0.01758 0.08259 8.056 0.08027 0.08259
0.01171 0.006821 0.01124 0.1168
Rawseeds2 MetricICP —0.00504 0.01076 0.01536 0.07923 — —
0.01728 0.4838 0.9274 5.415
0.01288 0.004301 0.07847 0.2198
Rawseeds2 PLICP 0.0002494 0.002547 0.08132 0.1347 — —
0.01761 0.01106 0.4607 14.26
0.3033 0.003344 0.008109 0.2307 0.01056 0.008226
Hokuyo ClassicICP 0.07281 0.003296 0.00809 0.4754 0.01271 0.00863
0.1345 0.06482 0.2799 18.07 0.3499 0.2835
0.2983 0.008215 0.006567 0.0571
Hokuyo MetricICP 0.05177 0.006494 0.005569 0.0242 — —
0.07762 0.3379 0.3902 2.288
0.2937 0.09496 0.1777 0.1854
Hokuyo PLICP 0.04069 0.1059 0.1711 0.2107 — —
0.06132 0.1733 NaN 7.948

Table 7.2: Table: Rawseeds 1, 2 and Hokuyo. In the table the transformation estimate is written in column RT in the format ([m], [m], [rad])
while for the covariance matrix, only (ox,oy,00) is reported, in (m],[m],[deg]). The angle conversion is chosen for simplify the visual
inspection.
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Dataset ScanMatcher Censi Bengtsson Bosse NumBeng LuMilios
—0.06354 0.001166 0.00107 0.318 0.004918 0.001117
CorridorX ClassicICP 0.1997 0.001127 0.0009439 0.03014 0.0009578 0.0009385
—8.337E-5 0.01695 0.02578 3.501 0.03394 0.02579
—0.06411 0.001982 0.0008263 0.03261
CorridorX MetriclCP 0.1995 0.002396 0.0008082 0.01776 — —
2.232E-5 0.0643 0.05007 2.003
—0. 02312 0.1257 0.006064 0.008827
CorridorX PLICP 0.005018 0.0007322 0.0008375 - -
8. 933E 6 0.1005 0.01491 0.09722
0.0002433 0.0009915 0.0004522 0.01863 0.0004574 0.0004586
CorridorY ClassicICP 0.09924 0.0008136 0.0004489 0.2252 0.007411 0.0004502
0.0003765 0.008086 0.01323 2.174 0.01727 0.01327
0.0001572 0.002035 0.0004845 0.01422
CorridorY MetricICP 0.07213 0.001973 0.0005251 0.02727 - -
0.0003106 0.05255 0.03101 1.635
1.521e — 06 0.003373 0.006461 0.004674
CorridorY PLICP 0.9666 0.5466 0.02418 0.02639 — —
—2.616e — 06 0.7483 0.1605 0.4748
—0.003696 0.001007 0.0009427 0.08031 0.001317 0.0009246
Circular ClassicICP —0.2031 0.0008751 0.0009278 0.0826 0.001287 0.0009291
0.01862 0.008582 0.01835 3.477 0.07927 0.0184
—0.003457 0.00182 0.000438 0.0275
Circular MetricICP —0.2029 0.001873 0.0004419 0.02696 — —
0.01859 0.05066 0.02716 1.179
—0.0111 0.0333 NaN 0.001432
Circular PLICP —0.2005 0.001827 0. 0004301 0.001445 — —
—0.001187 7.937 Na 0.06141

Table 7.3: Table: Corridor x,y and Circular (environment). In the table the transformation estimate is written in column RT in the format
([m], [m], [rad]) while for the covariance matrix, only (ox,oy,00) is reported, in ([m], [m], [deg]). The angle conversion is chosen for simplify
the visual inspection.
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7.2.2 ScanSLAM

In this section, the results of the implementation of the scanSLAM algo-
rithms using both SICK and Hokuyo lasers are shown. The modification
of the algorithm for calibration purpose is also discussed to investigate the
reasons of failure.

Motion Model

The motion model is the last component of the EKF that should be properly
characterized in order to implement the scanSLAM algorithm. For simplic-
ity, the errors are estimated using only the parameters a1 and as of the
model explained in Chapter 4 while, the other parameters are set to zero.
This choice implies that no error is added to the translation components due
to rotations and, conversely, that the uncertainty due to translation does not
affect the rotation components.

In Figures 7.12 and 7.13, the reader can observe how the values of those
parameters affect the covariance related to the uncertainty of the motion
model. In this plots, the motion starts from the robot pose (0,0,0)? and
ends at the robot pose (0.3,0.1,10). The graphics are empirically classified
into two categores: the ones having low error in the motion model and the
others which shares high errors in the motion model.

Recalling the motion model equation in Chapter 4 the meaning of the
parameters can be explained in this way:

e ] = % means that if the robot rotates itself by 180° then o, = x
e a3 = x means that if the robot translated itself by 1 metre then
Otrans = T

This parameters are used in the implementation of the scanSLAM filter.

2The units of measurement are ([m], [m], [deg])
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Model Simulation

The scanSLAM model is simulated under Matlab in order to get insight on
possible sources of errors and outcomes. Since the objective is to check the
behaviour of the EKF and not the scan matcher correctness, the landmarks
are simply defined by the state variables that represents the pose of the
robot at the moment the landmark is saved.

A new landmark is acquired when the Euclidean distance of the pose
of the robot to all the landmark is above 0.5 metres. The measurement
zk is obtained from the true measurement z,..,; computed using the correct
robot pose with the addition of a white noise whose covariance is used as
measurement uncertainty Ry.

In order to minimize the sources of errors, the matrix M is set to zero
and Ry is:

(0.005)2 0 0
Ry = 0 (0.005)2 0 (7.6)
0 (0.01%5)?

The results, in Figures 7.14, show that the canonic scanSLAM approach
performs well. In the figure, the robot describes a circle which is perfectly
drawn since the map estimation is consistent. The simulation has been al-
ready explained in Chapter 5 under the section named Loop Closure. The
main interest in performing this simulation is to test the possibility to cali-
brate the extrinsic parameters which comprise the rototranslation between
the laser and the odometric centre of the robot. The results are shown in
Table 7.4 and in Figure 7.15. From the table it can be seen that the cali-
bration covariance does not converge to zero but seems to remain stable to
a particular value. This is probably due to the fixed value of the covariance
Ry. It should be noted that particular movements, such as only translational
ones, do not properly excite the translational parameters (z,y).

Though the result is limited to the fixed covariances, it could be seen
that the estimate of the covariance given in the table are in accordance to
the true ones. Therefore, it can be concluded that the calibration procedure,
using this method, is pursuable.
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Parameter Measured It=1 It=end o1 Oend
x 0.8 1.0453 0.8289 0.2 0.0344
) 0.25 0.1593 0.2826 0.2 0.0395
0 —1.2217 —-1.1849 —1.1818 0.0524 0.0478

Table 7.4: In the table are shown the (extrinsic) rototranslation parameters (tg,t,,ty),
their measured value, initial value, the value at first and last iterations and the standard
deviation
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Rawseeds Dataset

A portion of a session of a Rawseeds dataset acquired in Bicocca Univer-
sity (see also Chapter 6) is used to test the scanSLAM capability and the
calibration extension. The map of the environment using odometric data
only is shown in Figure 7.16, while Figure 7.17 represents an incremental
mapping approach.

The incremental mapping is performed using only the results obtained
by the scan matcher. The incremental pose of the robot, computed using
the odometric robot pose Zjn. = ©xk_1 @ Tk, is used to compute (using
the known rototranslation between robot and laser) the guess RTyyess. The
formula is pretty the same as the one explained in Chapter 5 for Robot
Centred with One Laser and Extrinsic Calibration. The current scan is
then saved in a map and used as reference scan in the next iteration. The
scan matcher selected for this and the following dataset is Point-to-Line ICP
because of the overall good covariance estimation.

In this case, the incremental mapping approach gives worse results than
the odometry itself. This result is acceptable since if the scan matcher fails
all the successive scans will be wrongly placed. Figure 7.17 shows that
the algorithm fails the most in the estimation of the rotational components
when entering corridors, probably because of the uniform weighting of the
data. Nevertheless, if the Extended Kalman Filter is properly tuned, the
filter mechanism is capable to solve this issue. Figures 7.18, 7.19, 7.20, 7.21,
7.22 show the results of scanSLAM approach without extrinsic calibration.
The resulting map is consistent and is visually better than the one obtained
by odometry only, see Figures 7.20 and 7.16. The specific parameters of
scanSLAM algorithm are set as follows.

Motion Model The model in Figure 7.13 uses a1 = %, az =0.1

Scan Matcher Point-to-Line scan matcher with Censi’s ICP covariance

Extrinsic Parameters The calibration laser-robot is taken for granted
(0.08,0,0), ([m], [m], [rad])

New Landmark A landmark is placed if the robot is more distant than
0.5m or rotates more than 35deg from the nearest landmark. Other-
wise the EKF update is performed

Measurement Selection Maximum Likelihood data association is imple-
mented as explained in Chapter 5. Only the best measurement is used
in the filter update step. The Multiple Data Association approach
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Figure 7.16: Rawseeds: Map resulting from odometric data

is not used since considering more than one landmarks increases the
probability of wrong estimations of the scan matcher (this is partic-
ularly true for the next dataset, LURCH). In fact, the scan matcher
typically underestimates the ICP covariance when converging to the
wrong minimum

Iterations The EKF step is performed every 10 laser acquisition. The
others are simply skipped.

The calibration procedure does not give successful results. In Figure
7.23 can be observed the final map obtained by using the value in Table
7.5. From the Figure 7.24 it can be noticed that, even if the values of
the calibration parameters are affected by sudden variations, their value
remains almost stable after some iterations. The covariance associated to
each parameter decreases very fast, giving evidence to the hypothesis stated
before in Model Simulation,which can be explained in the following way:
since Ry, has variable values (in contrast to the previous, fixed one), it is
now possible for the filter to decrement the covariances associated to the
extrinsic parameters (see Figure 7.25).

Although the covariances associated to the extrinsic parameters show an
optimal behaviour during time, the filter converges to the wrong estimates



92 Chapter 7. Software Implementation and Evaluation

60 T T T T T T T T

Map

50 - B
40 |

30 |

20

Y [m]

10 F ’ 4

20 + ' -

_30 1 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100 110

X[m]

Figure 7.17: Rawseeds: Incremental Mapping

causing inconsistency in the map. The reasons for this result should be
searched in the non observability or excitability of the parameters, the big
initial covariance with respect to the accuracy of the parameters and the
poor motion model in use. In fact, the probabilistic motion models does not
take into account the robot speed that should remain consistent during the
robot motion with the prevention of phenomena such as sudden changes in

robot pose.
Parameter Measured It=1 It=end max min o1 Oend
T ~ 0.08 0.08 0.069 0.6045  0.0428 0.1 0.0029
Y ~ 0 0 —0.0126  0.0113 —0.0991 0.1 0.003

~0 0 0.0039  0.1865 —0.0106 5755 8.6087¢ —04

Table 7.5: In the table are shown the rototranslation parameters (xz,y,0), their mea-
sured, initial value, the value at first and last iterations, their maximum and minimum
value and the standard deviation
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Figure 7.19: Rawseeds: without calibration. The robot pose at Frame a is wrong
estimated, since it is still an open loop it is difficult for the robot to recover the correct
pose.
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(b) Iteration number 1323

Figure 7.20: Rawseeds: without calibration. The robot is approaching to a loop closure
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(a) Iteration number 1400
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(b) Iteration number 2100

Figure 7.21: Rawseeds: without calibration. The robot closes the loop, the resulting
map is consistent
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Figure 7.22: Rawseeds: without calibration. Some details, it can be observed that
the covariances related to the initial landmarks, in Frame a, are now very small in
comparison to the latest ones, in Frame b
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(c) Iteration number 2100

Figure 7.23: Rawseeds: with calibration
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Figure 7.25: Rawseeds: calibration parameters
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LURCH Dataset

The LURCH dataset is challenging because of the use of Hokuyo laser range
finders which has lower scanning speed and lower accuracy in comparison
to SICK lasers. Moreover, the lateral placement of the scan is not optimal
since it is not on the principal axis of wheelchair movements. The maximum
speed of the wheelchair can cause also the problems described in Chapter 5
under the section High Speed Rotations.

Figure 7.26 shows the map of the AIRLab laboratory as can be estimated
using only the odometric data given by the encoders on the wheels. In this
case, the incremental mapping approach gives good results as can be seen
in 7.27.

The scanSLAM algorithm without calibration gives outstanding results
given the aforementioned limitation. From Figures 7.28, 7.29 and 7.30 it can
be observed that the resulting map is good and can be used for the typical
path planning operations. In particular, the figures show in blue the current
scan as it should be placed if the algorithm trusts the prediction while the
red one shows the correction made after the EKF update.

In order to obtain this results, the motion model parameters have been
%, as = 0.5. In this way, all the possible source of errors are
considered to depend on the motion model. The other parameters remain

set to a1 =

the same as for the Rawseeds dataset except for the calibration parameters
(0.792,0.243,0.0718), ([m], [m], [rad]).

The wrong estimate of the robot motion model could be also a cause of
the unsuccessful calibration procedure in the scanSLAM, see Figures 7.31
and 7.32. The same considerations made for Rawseeds dataset are valid
also in this case. In contrast to the results proposed in the previous section,
it can be observed that the covariances associated to the parameters (see
Figures 7.33 7.34) do not converge to zero.
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Figure 7.28: LURCH: without calibration
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(c) Iteration number 140

Figure 7.29: LURCH: without calibration
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(c) Tteration number 190

Figure 7.30: LURCH: without calibration
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(b) Iteration number 140

Figure 7.31: LURCH: with calibration
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(b) Iteration number 167

Figure 7.32: LURCH: with calibration
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Figure 7.33: LURCH: calibration parameters
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Chapter 8

Conclusions and Future
Directions

“Discovery is seeing what everyone sees yet thinking what no one has thought”

Szent-Gyorgyi Albert

This dissertation deals with the particular field of mobile robotics named
probabilistic robotics. Within probabilistic robotics, it is dealt with the
problem of Simultaneous Localization and Mapping, SLAM, that aims to
simultaneously estimate the pose of the robot and the map of the environ-
ment given noisy sensor data.

The present work is focused on the extension and implementation of
a specific SLAM model named scanSLAM, which is conceptualized in two
scientific papers [59, 25]. The model, which is based on Extended Kalman
Filter, exploits raw laser sensor data and scan matching algorithms to obtain
the measurements needed for the EKF SLAM. In order to give the correct
importance to the measurement in the probabilistic filter, it is necessary to
compute the covariance associated to the uncertainty in the minimization
procedure. Therefore, in the present work, an extensive review of the meth-
ods to estimate the ICP (Iterative Closest Point scan matcher) covariance is
conducted together with an analysis of the performances of each algorithms.

The scanSLAM algorithm for the robot centred approach, here defined,
is tested both in simulated environment and with real datasets obtaining
good results. These results show the pros and cons and the real capabilities
of the algorithm. In particular, the algorithm is strongly dependent on the
characterization of the covariance associated to motion model and to the
measurement. In the case of the LURCH project, an overestimate of the
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motion model parameters is needed to achieve the results shown in Chapter
7.

To the author’s knowledge, this can be considered the first work in the
literature which regards to extensively test the scanSLAM and which shows
the results obtained with a real dataset using the recent advancements in
the estimation of the ICP covariance (Censi [17]). In fact, Bosse [14], uses
an optimized version of the algorithm and it is not clear how large the local
maps are and if they are made entirely using this algorithm.

The software library is also developed with the aim to use this algorithm
as the main SLAM software for LURCH project. For this reason, a model
extension is developed to deal with the problem of the extrinsic calibra-
tion, (e.g., the rototranslation parameters between the laser and the robot
reference frames) and multiple lasers.

Even if the procedure of self calibration fails with the standard method
proposed, the author is confident that applying a different motion model,
which takes into account the speed of the robot, and coupling the SLAM
algorithm with the localization methods in use now, based on AR tags using
ARToolkitPlus! (see also [22]), it will be possible to obtain good results also
in this direction.

Many improvements to the scanSLAM algorithm can be the subject for
further research. In particular, the correct implementation of the multiple
lasers models and its extensions to deal with the case of high rotation is
still needed. The multiple scan algorithm proposed in Chapter 5 was imple-
mented in Maltlab but, after that, the final work had been more focused on
the analysis of ICP covariance and the correct implementation of scanSLAM
and the self calibration method. Different motion models should be tested
in order to choose the best one. With more detailed motion model the cali-
bration of the odometry (i.e., the baseline and the wheel radii) could be also
feasible. Moreover, it is possible to improve the scan matchers capability by
implementing the point-to-line metric for Metric Based ICP and evaluating
and choosing heuristic algorithms to validate the scan matching results (i.e.,
testing if the scan matcher converges to the wrong minimum).

To improve the scanSLAM performance, an algorithm based on the
Fisher matrix of the scan matcher can be implemented following the sug-
gestions in Censi [18] to detect the under-constraint situations: corridors
and circular environments. Finally a method to progressively diminish the
number of landmarks by some sort of scan fusion procedure can be pursued
too.

"http:/ /studierstube.icg.tu-graz.ac.at/handheld_ar/artoolkitplus.php



Bibliography

1]

2]

Approximate Nearest Neighbor Library ANN.
http://www.cs.umd.edu/~mount/ANN/.

G. Antonelli, S. Chiaverini, and G. Fusco. A calibration method
for odometry of mobile robots based on the least-squares technique:

Theory and experimental validation. IEEFE Transactions on Robotics,
21(5):994-1004, 2005.

T. Bailey. Mobile robot localisation and mapping in extensive outdoor
environments. PhD thesis, Australian Center for Field Robotics, Uni-
versity of Sydney, 2002.

T. Bailey and H. Durrant-Whyte. Simultaneous localization and
mapping (SLAM): part II. IEEE Robotics & Automation Magazine,
13(3):108-117, 2006.

O. Bengtsson and AJ Baerveldt. Localization in changing
environments-estimation of a covariancematrix for the IDC algorithm.
In 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2001. Proceedings, volume 4, 2001.

O. Bengtsson and A.J. Baerveldt. Robot localization based on scan-
matching estimating the covariance matrix for the IDC algorithm.
Robotics and Autonomous Systems, 44(1):29-40, 2003.

P.J. Besl and H.D. McKay. A method for registration of 3-D
shapes. IEEE Transactions on pattern analysis and machine intelli-
gence, 14(2):239-256, 1992.

P. Biber, S. Fleck, and W. Strasser. A probabilistic framework for ro-
bust and accurate matching of point clouds. Lecture notes in computer
science, pages 480-487, 2004.

113



114 BIBLIOGRAPHY

[9] P. Biber and W. Straer. nScan-matching: simultaneous matching of
multiple scans and application to slam. In IEEE International Confer-
ence on Robotics and Automation. Citeseer, 2006.

[10] J.L. Blanco. Derivation and implementation of a full 6D EKF-based
solution to bearing-range SLAM. Technical report, Technical report,
2008.

[11] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An atlas framework for scalable mapping. In IEEE International Con-
ference on Robotics and Automation, volume 2, pages 1899-1906. Cite-
seer, 2003.

[12] M. Bosse, P. Newman, J. Leonard, and S. Teller. Simultaneous lo-
calization and map building in large-scale cyclic environments using
the Atlas framework. The International Journal of Robotics Research,
23(12):1113, 2004.

[13] M. Bosse and J. Roberts. Histogram matching and global initialization
for laser-only SLAM in large unstructured environments. In 2007 IEEE
International Conference on Robotics and Automation, pages 4820—
4826, 2007.

[14] M. Bosse and R. Zlot. Map matching and data association for large-
scale two-dimensional laser scan-based slam. The International Journal

of Robotics Research, 27(6):667, 2008.

[15] A. Burguera, Y. Gonzédlez, and G. Oliver. On the use of likelihood
fields to perform sonar scan matching localization. Autonomous Robots,
26(4):203-222, 2009.

[16] A. Censi. Scan matching in a probabilistic framework. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA),
pages 2291-2296, 2006.

[17] A. Censi. An accurate closed-form estimate of ICP’s covariance. In
Proc. of IEEE International Conference on Robotics and Automation
(ICRA), 2007.

[18] A. Censi. On achievable accuracy for range-finder localization. In Pro-
ceedings of the IEEFE International Conference on Robotics and Au-
tomation (ICRA), pages 4170-4175, 2007.



BIBLIOGRAPHY 115

[19]

[20]

[21]

[22]

[23]

[24]

[28]

[29]

A. Censi. An ICP variant using a point-to-line metric. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA), Pasadena, CA, May 2008.

A. Censi. On achievable accuracy for pose tracking. In Proceedings of
the IEEE International Conference on Robotics € Automation (ICRA),
2009.

A. Censi, L. Marchionni, and G. Oriolo. Simultaneous maximum-
likelihood calibration of robot and sensor parameters. In Proceed-
ings of the IEEE International Conference on Robotics and Automation
(ICRA ), Pasadena, CA, May 2008.

S. Ceriani. ”sviluppo di una carrozzina autonoma d’ausilio ai disabili
motori”. Master’s thesis, Politecnico di Milano, 2007.

S. Ceriani, G. Fontana, A. Giusti, D. Marzorati, M. Matteucci,
D. Migliore, D. Rizzi, D. G. Sorrenti, and P. Taddei. Rawseeds ground

truth collection systems for indoor self-localization and mapping. Au-
tonomous Robots, 27(4):353-371, 2009.

D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The trimmed it-
erative closest point algorithm. In International Conference on Pattern
Recognition, volume 16, pages 545-548. Citeseer, 2002.

A. Diosi and L. Kleeman. Laser scan matching in polar coordinates with
application to SLAM. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3317-3322, 2005.

A. Diosi and L. Kleeman. Fast laser scan matching using polar coor-
dinates. The International Journal of Robotics Research, 26(10):1125,
2007.

H. Durrant-Whyte and T. Bailey. Simultaneous localization and map-
ping: part I. IEEE Robotics & Automation Magazine, 13(2):99-110,
2006.

DW Eggert, A. Lorusso, and RB Fisher. Estimating 3-D rigid body
transformations: a comparison of four major algorithms. Machine Vi-
sion and Applications, 9(5):272-290, 1997.

Eigen.
http://eigen.tuxfamily.org.



116

BIBLIOGRAPHY

[30]

[36]

[37]

[40]

AL Eliazar and R. Parr. Learning probabilistic motion models for mo-
bile robots. In Proceedings of the twenty-first international conference
on Machine learning. ACM New York, NY, USA, 2004.

Fast Library for Approximate Nearest Neighbors FLANN.
http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN.

Generalized 2D Point Correspondence solution GPC.
http://www.cds.caltech.edu/~andrea/research/sw/gpc.html.

G. Grisetti, D.L. Rizzini, C. Stachniss, E. Olson, and W. Burgard. On-
line constraint network optimization for efficient maximum likelihood
map learning. In Proceedings of the IEEE International Conference on
Robotics and Automation, volume 1, 2008.

G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint net-
work optimization for efficient map learning. IEEE Transaction on
Intelligent Transportation Systems, 2008.

J.S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proceedings of the IEEFE international symposium on
computational intelligence in robotics and automation (CIRA). Cite-
seer, 2000.

Héhnel. Mapping with Mobile Robots. PhD thesis, Albert Ludwigs
University, Freiburg, 2004.

D. Héahnel, D. Schulz, and W. Burgard. Map building with mobile
robots in populated environments. In Proc. of the IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages
496-501. Citeseer, 2002.

M.B. Hurley. An information theoretic justification for covariance in-
tersection and its generalization. In Proc. of the 5th International Con-
ference on Information Fusion, 2002.

R. Iser and F.M. Wahl. Building local metrical and global topological
maps using efficient scan matching approaches. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2008. IROS 2008,
pages 1023-1030, 2008.

S.J. Julier and J.K. Uhlmann. Using covariance intersection for SLAM.
Robotics and Autonomous Systems, 55(1):3-20, 2007.



BIBLIOGRAPHY 117

[41]

[42]

[43]

R.E. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of basic Engineering, 82(1):35-45, 1960.

K. Konolige and K. Chou. Markov localization using correlation. In
International Joint Conference on Artificial Intelligence, volume 16,
pages 1154-1159. Citeseer, 1999.

K. Lenac, E. Mumolo, and M. Nolich. Fast genetic scan matching using
corresponding point measurements in mobile robotics. Lecture Notes in
Computer Science, 4448:375, 2007.

F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4(4):333-349, 1997.

F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Systems,
18(3):249-275, 1997.

C. Martin, E. Schaffernicht, A. Scheidig, and HM Gross. Multi-modal
sensor fusion using a probabilistic aggregation scheme for people detec-
tion and tracking. Robotics and Autonomous Systems, 54(9):721-728,
2006.

A. Martinelli. Local Decomposition and Observability Properties for
Automatic Calibration in Mobile Robotics. 2009.

A. Martinelli. Using the Distribution Theory to Simultaneously Cali-
brate the Sensors of a Mobile Robot. 2009.

A. Martinelli and R. Siegwart. Estimating the odometry error of a
mobile robot during navigation. In other words, 1:3.

A. Martinelli and R. Siegwart. Observability properties and optimal
trajectories for on-line odometry self-calibration. In Proceedings of the
IEEE Conference on Decision and Control, San Diego, CA, pages 3065—
3070. Citeseer, 2006.

A. Martinelli, N. Tomatis, A. Tapus, and R. Siegwart. Simultaneous
localization and odometry calibration for mobile robot. In other words,
1:3.

J. Minguez, F. Lamiraux, and L. Montesano. Metric-based scan match-
ing algorithms for mobile robot displacement estimation. In IEEE In-
ternational Conference on Robotics and Automation (ICRA), volume 4,
page 3557. Citeseer, 2005.



118 BIBLIOGRAPHY

[53] J. Minguez, L. Montesano, and F. Lamiraux. Metric-based iterative
closest point scan matching for sensor displacement estimation. IEEE
Transactions on Robotics, 22(5):1047-1054, 2006.

[54] L. Montesano, J. Minguez, and L. Montano. Probabilistic scan match-
ing for motion estimation in unstructured environments. In IEEFE inter-
national conference on intelligent robots and systems (IROS). Citeseer,

2005.

[55] the Mobile Robot Programming Toolkit MRPT.
http://babel.isa.uma.es/mrpt/index.php/Main_Page.

[56] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. Preprint, 2008.

[57] D. Nicholson, S. Julier, and J. Uhlmann. DDF: an evaluation of covari-
ance intersection. In Proc. 4th International Conference on Information
Fusion, volume 1, 2001.

[58] W. Niehsen. Information fusion based on fast covariance intersection
filtering. In Information Fusion, 2002. Proceedings of the Fifth Inter-
national Conference on, volume 2, 2002.

[59] J. Nieto, T. Bailey, and E. Nebot. Scan-slam: Combining ekf-slam
and scan correlation. In International Conference on Field and Service
Robotics (FSR). Springer, 2005.

[60] J. Nieto, T. Bailey, and E. Nebot. Recursive scan-matching SLAM.
Robotics and Autonomous Systems, 55(1):39-49, 2007.

[61] E.B. Olson. Real-time correlative scan matching.  Ann Arbor,
1001:48109.

[62] L.L. Ong, M. Ridley, B. Upcroft, S. Kumar, T. Bailey, S. Sukkarieh,
and H. Durrant-Whyte. A comparison of probabilistic representations
for decentralised data fusion. Proceedings of Intelligent Sensors, Sensor
Networks and Information Processing, 2005.

[63] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm.
In Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Mod-
eling, pages 145-152. Citeseer, 2001.

[64] JZ Sasiadek and A. Monjazeb. A Comparison between EKF-SLAM and
Fast-SLAM.



BIBLIOGRAPHY 119

[65]

[66]
[67]

[70]

[71]

[72]

[73]

JZ Sasiadek and A. Monjazeb. EKF as a Classical Solution to SLAM
Problem.

A. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. RSS, 2009.

R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
relationships in robotics. Autonomous robot vehicles, 1:167-193, 1990.

TooN Algorithm Library TaG.
http://mi.eng.cam.ac.uk/~er258/cvd/tag.html.

S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mo-
bile robot mapping with applications to multi-robot and 3D mapping.
In IEEE international conference on robotics and automation (ICRA),
volume 1, pages 321-328. Citeseer, 2000.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). 2005.

F. Tungadi and L. Kleeman. Multiple laser polar scan matching with
application to SLAM. In Proceedings of the Australasian Conference
on Robotics and Automation, Brisbane, Australia. Citeseer, 2007.

JK Uhlmann, S. Julier, and HF Durrant-Whyte. A culminating advance
in the theory and practice of data fusion, filtering and decentralized
estimation, 1997.

J.K. Uhlmann, S.J. Julier, and M. Csorba. Nondivergent simultaneous
map building and localization using covariance intersection. Navigation
and control technologies for unmanned systems II, pages 2—-11, 1997.

B. Upcroft, L.L. Ong, S. Kumar, M. Ridley, T. Bailey, S. Sukkarieh, and
H. Durrant-Whyte. Rich probabilistic representations for bearing only
decentralised data fusion. In Proceeding of The Fighth International
Conference on Information Fusion, pages 1999-2000.

G. Welch and G. Bishop. An introduction to the Kalman filter. Uni-
versity of North Carolina at Chapel Hill, Chapel Hill, NC, 2006.

D. Yang. C++ and object-oriented numeric computing for scientists
and engineers. Springer Verlag, 2001.

H. Yoshitaka, K. Hirohiko, O. Akihisa, and Y. Shin’ichi. Mobile Robot
Localization and Mapping by Scan Matching using Laser Reflection
Intensity of the SOKUIKI Sensor. In IECON, volume 6, pages 302—
318, 2006.



120 BIBLIOGRAPHY

[78] C. Ze-Su, H. Bing-Rong, and L. Hong. An Improved Polar Scan Match-
ing Using Genetic Algorithm. Information Technology Journal, 6(1):89—
95, 2007.

[79] Q. Zhang and R. Pless. Extrinsic calibration of a camera and laser
range finder (improves camera calibration). In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Citeseer.

[80] Q. Zhang and R. Pless. Constraints for heterogeneous sensor auto-
calibration. In IEEE Workshop on Realtime 3D Sensors and Their
Use, pages 38—43. Citeseer, 2004.

[81] Z. Zhang. Iterative point matching for registration of free-form curves
and surfaces. International Journal of Computer Vision, 13(2):152,
1994.



Appendix A

Notation: 2D Rototraslations

This appendix is dedicated to the concise enlisting of the mathematical
notations that are used in this final dissertation.

A 2D rototranslation is a geometric transformation that is composed
by a rotation followed by a translation. The transformation can be given
in matrix or vector form. The graphic notation used in this dissertation is
shown in Figure A.1. In the dissertation, the following notation is employed:

RTg is the transformation between the two reference frames A and B, which
applied to a point p expressed in reference frame B returns p in the
reference frame A.

In matrix form can be represented in homogeneous coordinates as:
cos(0) —sin(f) =«
A . Rt
RTgp = | sin(0) cos(0) y| = (O 1) (A.1)
0 0 1

Two rototranslation matrix can be composed using the standard matrix
product:

RT4 = RTARTS (A.2)

The application of the trasformation to a point p is also given by the
matrix product keeping in mind that p must be expressed in homogeneous
coordinate:

b= [.’IJ, Y, 1]T7 ba = RTﬁpB (A3)

Since the rotation is given by an orthonormal matrix the inverse of the
rototranslation, which is also the matrix inverse, inherits a simple structure:
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Figure A.1: RT} is the rototranslation that maps points in the reference frame B to
the same points in the reference frame A

cos(0) sin(0) —xxcos(f) —y = sin(0)

RT® = (RTH)™r = | —sin(0) cos(d) zxsin(f) —y*cos(d) | (A.4)
0 0 1
T _ pT
RTB = (% Rl ”) (A.5)

The rototranslation can be represented in vector form as:

X
RTH = |y (A.6)
0

The composition between the rototranslation can be defined using the
symbol & as binary operator.

RT4 = RTA @ RTS (A7)
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X9 * cos(01) — Yo * sin(0p) + xp
RTé4 & RTg =t1 P12 = | x4 *x sin(pn) + y2 * cos(011) + yn (A.8)
011 + G2

The symbol used for inverse transformation is &., used as a unitary
operator. The result is given by:

—x % cos(0) — y * sin(0)
RTY = oRTf = | zxsin(0) — y * cos(0) (A.9)
-0
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Appendix B

Hessian Matrix of the Error
Function

The Hessian matrix of the error function can be numerically estimated. The
value H is used in numerous algorithms that compute the covariance of the
scan matching minimization error (see Algorithm 3.3.1, 3.3.2).

The general form for the Hessian matrix for the error F(z = RT) is:

92E  9’E  9’E

H(E(2) = —— = | g0y ayF oy (B.1)
PE  O°E O’E
0xdf  Oyol 002
Where
O’E _ E(z+2Az) —2E(z) + E(z — 2Ax) (B.2)
ox2 4Ax? ’
Whereas, the mixed derivatives can be computed as
0’°E 0 E(z+ Az)— E(z — Ax)
~ —( ) (B.3)
oxdy Oy 2Ax

which results to be

E(z4+Az+Ay) —E(z—Az+ Ay) E(z+ Az — Ay) — E(z — Az — Ay)

4AzAy 4AzAy

(B.4)

To improve the estimation of the Hessian matrix the searching for cor-
responding pairs can be computed after each variation of the variable z.
This procedure prevents false corresponding pairs which they would not be

matched using the method for the search of the nearest neighbours (see also
[5, 6]).
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Appendix C

Kalman Filter Example of
Implementation: Estimation
of a Constant Vector

This appendix is dedicated to the implementation of a simple Kalman Filter
in order to test the correctness of the software implementation. The aim is
to estimate the value of a 2D vector subjected to noisy measurements.
Using the Extended Kalman Filter framework (See Algorithms 4.2.1 and
5.1.1), the model is expressed as follows.
The state is represented by x;:

where the real vector for this example is Z;cq = (1,2). The initial state

vector is initialized by adding a white noise to the real state values:
L0 = Lreal + 0 (CQ)

where § is a WN~ (0, Pyoise). The initial covariance matrix FPojo is equal to
Pnoise-

The control vector u; is set to zero while the covariance of the additional
motion noise in the state space is set to a non-zero matrix Q.

The measurement is expressed as a 2D vector representing directly (x,y)
components to which a white noise is added.

2t = Treal + € (C.3)

where € is a WN~ (0, R;) with R; = R constant. The results for the simu-
lation are shown in Figure C.1, C.2, C.3, C.4. The different parameters for
each dataset are summarized in the table.
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Dataset Ppoise Q R B0} Tend

L 22 2 10~6 0 1 0 1.7270 1.0153

3 22 0 10~6 0o 1 1.5583 2.0485

5 22 2 10~6 0 1072 0 1.7270 1.0014

3 22 0 10-6 0 1072 1.5583 2.0170

3 10~2 0 10~ 0 1 0 1.0364 1.0169

0 0.52 0 1076 0 1 1.7675 2.0481

4 1072 0 10~6 0 0.22 0 1.0364 1.0028

0 0.52 0 10-6 0 0.12 1.7675 2.0170

From the results, it can be concluded that even if the single measurement
is very noisy the integration of successive measurements permits to find a
good estimate of the real vector. It should be noted that in this case the
Kalman Filter is reduced to an on-line average estimator. The plots confirm
the correctness of the software implementation.
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Figure C.1: Dataset 1. In this dataset, the uncertainty both in prediction and in
measurement is high
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Figure C.2: Dataset 2. In this dataset, the uncertainty in prediction is high, while
uncertainty in in measurement is low
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Figure C.3: Dataset 3.
uncertainty in in measurement is high
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In this dataset, the uncertainty in prediction is low, while
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Figure C.4: Dataset 4. In this dataset,

measurement is low

the uncertainty both in prediction and in



Appendix D

Mahalanobis Distance

Mahalanobis distance is a particular distance metric introduced by P. C.
Mahalanobis in 1936. It is typically used to determine the similarity of
unknown sample set with respect to a known one.

The mathematical definition can be expressed as follows.

Given a multivariate vector
T
:U=<x1 To ... Ty ... xN> (D.1)

and a Gaussian with mean

T
u=<u1 H2 e i MN) (D.2)

and covariance C', the Mahalanobis distance is given by:

dist(z) = \/(x —w)T'C—Hx —p) (D.3)

This distance generally differs from the Euclidean one because it takes
into account the uncertainty in the estimate of p.

An example is given in Table D.1 for the points in Figure D.1 for the
point:

w=(0 o)T (D.4)

and covariance matrix C' equals to:

1 0 ’
oo () o5
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Figure D.1: Mahalanobis Distance. In black it is represented the point p with its
covariance C' whereas, in red points at different distances are represented

Point  Euclidean® Mahalanobis?
(1) 2 1
1
<2> 5 3.5
1
(1) ’ 3
2
( 0 ) 4 3
-2

Table D.1: In the table are shown the point coordinates, the Euclidean distance and
the Mahalanobis distance with respect to the point (0,0)




