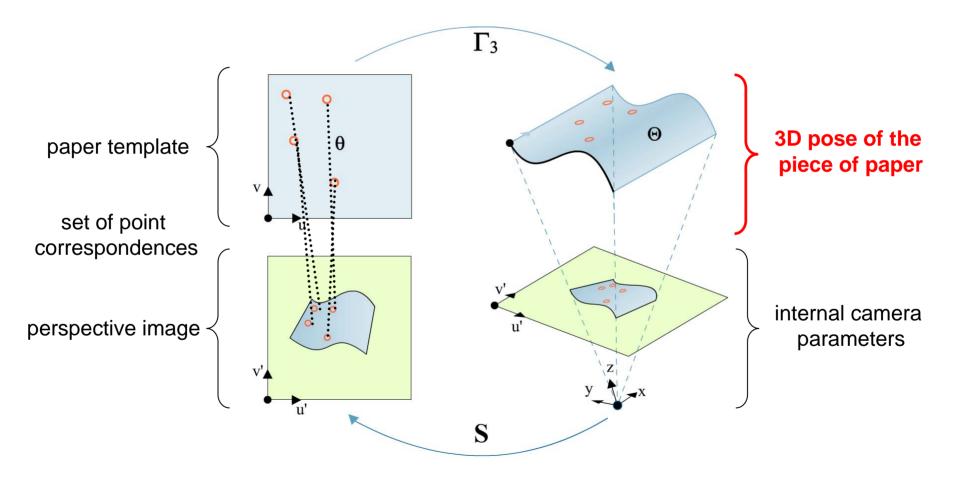


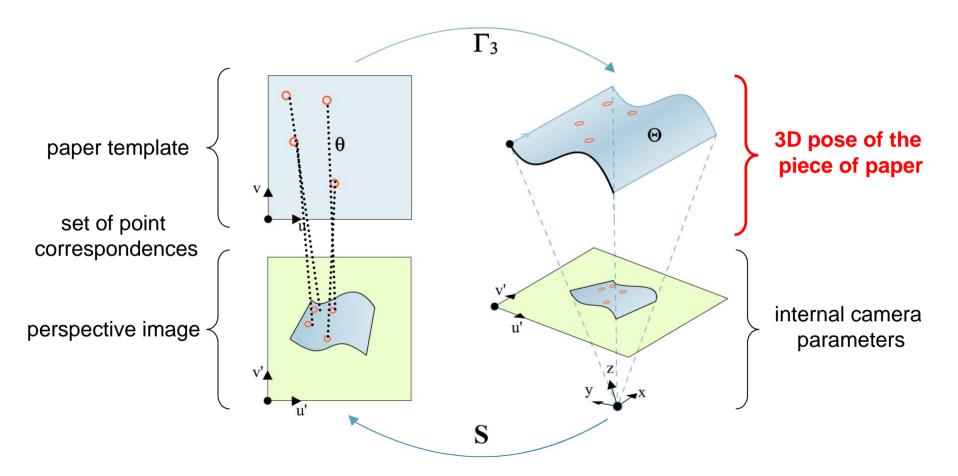
Template-based Paper Reconstruction from a Single Image is Well Posed when the Rulings are Parallel

Pierluigi Taddei, Politecnico di Milano, Milano, Italy pierluigi.taddei@polimi.it

Adrien Bartoli, LASMEA (CNRS / UBP), Clermont-Ferrand, France Adrien.Bartoli@gmail.com We aim to reconstruct the pose of a piece of paper which is subject to a subset of possible isometries



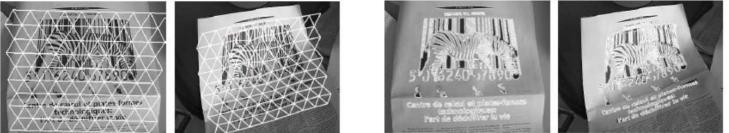
We show that for particular isometries this is a well posed problem



Related works

- Template-based monocular deformable surface registration may be performed using general models
 - Generic deformable surfaces using triangular mesh grids

(Julien Pilet, Vincent Lepetit, Pascal Fua)



- Monocular deformable surface reconstruction is possible if some priors are known
 - 3D Morphable Models for face reconstruction

(Volker Blanz and Thomas Vetter)

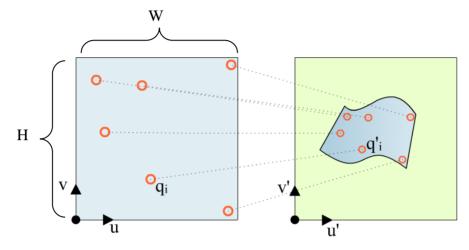
→ Great works to describe real deformations or learnt models

- We address the case of developable surface to model material such as paper
 - Useful for augmentation
- Paper reconstruction may be performed using shapefrom-contour
 - mainly for document digitization
 - \rightarrow requires the full knowledge of the contours
 - Not useful in the case of occlusion

a well-posed problem

Assumpions

In order to perform a full 3D reconstruction we assume:

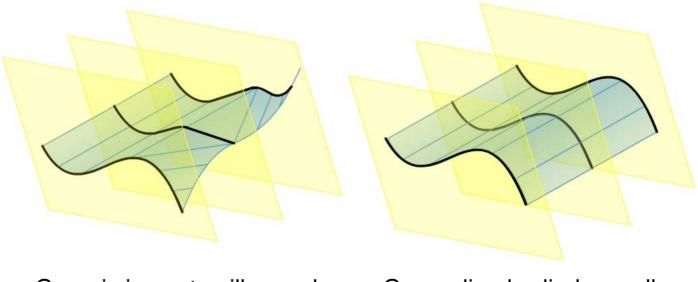


- Internal camera parameters known S
- Metric size of the template (W, H)
- Physical model, developabel surfaces
 - Deformations are isometries, thus distances are mantained

 $\{q_i\} \rightarrow \{q'_i\}$

– Vanishing gaussian curvatur

- The general case of isometric deformations is ill-posed
- We consider a subset of the possible isometries
 - The rulings of the developable surface are constrained to be parallel, i.e. the surface is a generalized cylinder
 - Intuitively this is what happens when book pages are deformed by keeping the binding and the opposite edge parallel.



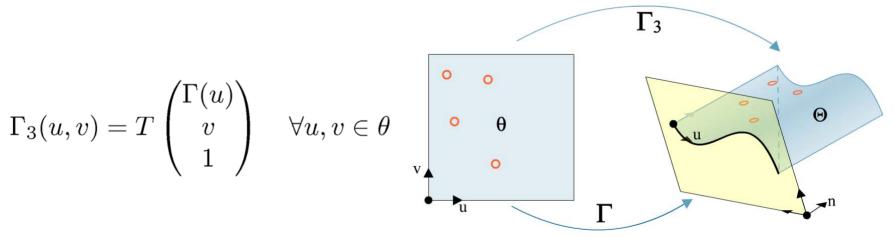
Generic isometry, ill posed

Generalized cylinder, well posed

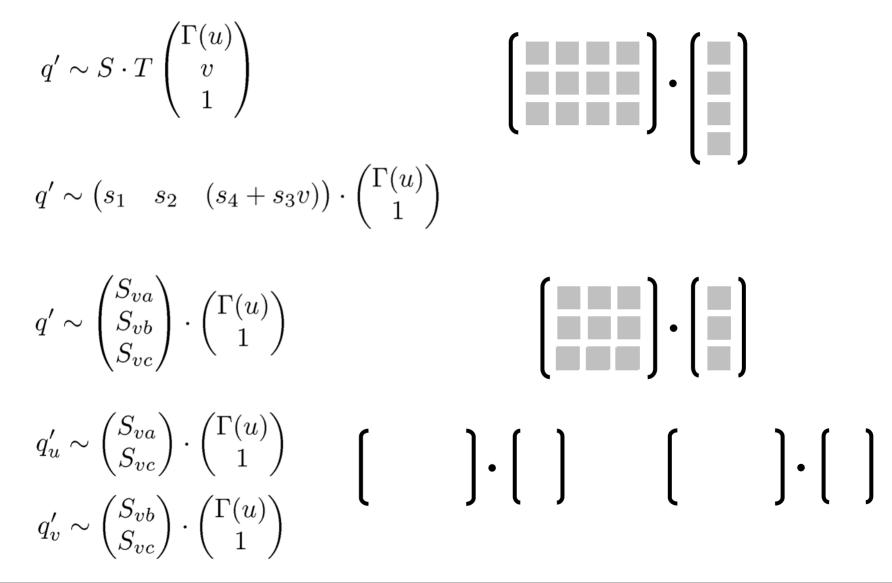
reduction to a 2D problem

Шİ

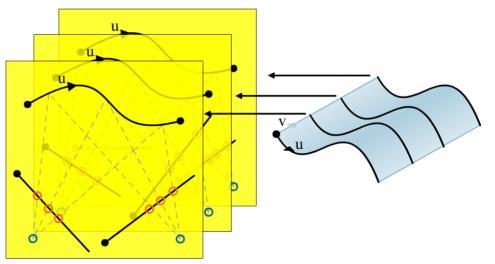
- In the case of a generalized cylinder the surface is parameterized as follows:
 - A generatrix plane π which is perpendicular to all rulings and contains the lower border of the surface
 - A transformation T which maps the XY plane to π, the origin to the bottom left corner, the X axis to the corner segment
 - A $\mathbb{R} \to \mathbb{R}^2$ mapping Γ which maps u coordinates to a 2D curve on π



• By considering the projection equation we can derive that:



- The problem is equivalent to the reconstruction of 2D points given a pair of 1D cameras for each surface slice
- u varies the point position over the 2D curve
- v varies the two cameras internal parameters



solving the problem

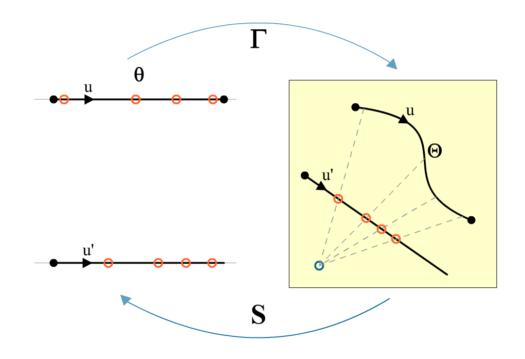
ШÌ

- Isometries preserves gaussian curvature: the gaussian curvature is, thus, vanishing everywhere
 - since the parameterization is given by a developable surface this constraint is enforced by construction
- Isometries preserves the metric:
 - By construction distances are preserved along the rulings
 - Since we are assuming a generalized cylinder, if the metric is preserved on π section then it is preserved everywhere

$\rightarrow \Gamma$ must be a 1D isometry

Formulating the problem (2)

• Metric constraints: $\|\Gamma_u\|^2 = 1 \quad \forall u \in \Theta$



- Moreover, we aim to minimize:
 - the reprojection error of the point correspondences
 - a smoothing term

- The problem is expressed as a functional optimization: $\arg\min_{\Gamma} \left(E_d[\Gamma] + E_m[\Gamma_u] + E_s[\Gamma_{uu}] \right) = \arg\min_{\Gamma} \left(\int e(u, \Gamma, \Gamma_u, \Gamma_{uu}) \right)$
- This problem depends on the free variable u, function Γ and its first and second derivatives
- The problem possess natural boundary condition (i.e. the boundary are not fixed)
- The functional E is given by the weighted sum of:
 - $E_d[\Gamma]$: data term, which describe the reprojection error

$$- E_{s}[\Gamma_{uu}] = \int_{\theta} \|\Gamma_{uu}(u)\|^{2} : \text{smoothing term}$$
$$- E_{m}[\Gamma_{u}] = \int_{\theta} \left(\|\Gamma_{u}(u)\|^{2} - 1\right)^{2} : \text{metric term}$$

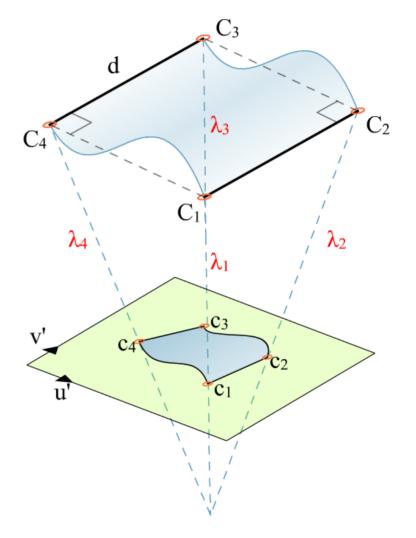
$$\Gamma = \arg\min_{\Gamma} \left(\int e(u, \Gamma, \Gamma_u, \Gamma_{uu}) \right)$$

- This functional optimization is solved by applying the Euler-Lagrange equations
 - this gives a system of PDEs depending up to the fourth derivatives of Γ and a set of PDEs related to the natural boundary condition
- The PDE system is solved using numerical methods:
 - The domain is sampled at N nodes
 - Derivatives are replaced by finite differences approximation

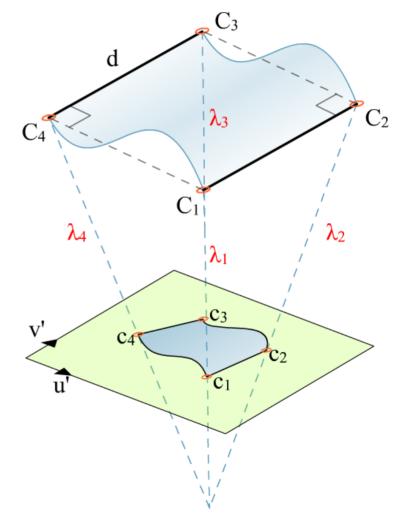
recover the generatrix plane

- To exploit the exposed parametrization the generatrix plane transormation is needed
- This can be done by exploiting
 - the template dimensions
 - at least two pair of points on the same ruling, for instance the corners of the largest visible rectangle
- Using the template dimension the points distances are easily calculated
- We know the camera internal parameter
- The problem can be solved using an optimization procedure

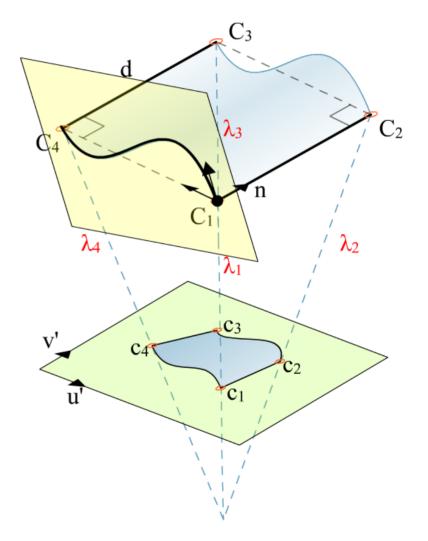
- Done exploiting the template dimensions and at least two pairs of points on the same ruling
- Using the template dimension the inter point distances are easily calculated
- The problem can be solved using an optimization procedure



- Given the four points $c_{1,} c_{2}$ and $c_{3,} c_{4}$, the two segments length d and the camera internal parameters
- The unknowns are the four perspective depths λ_1 λ_2 λ_3 and $\lambda4$
- These may be recovered by enfocing the constriants:
 - C_1C_2 is parallel to C_3C_4 ,
 - C_1C_2 is orthogonal to C_1C_4 ,
 - C_1C_2 has length d,
 - $C_3 C_4$ has length d



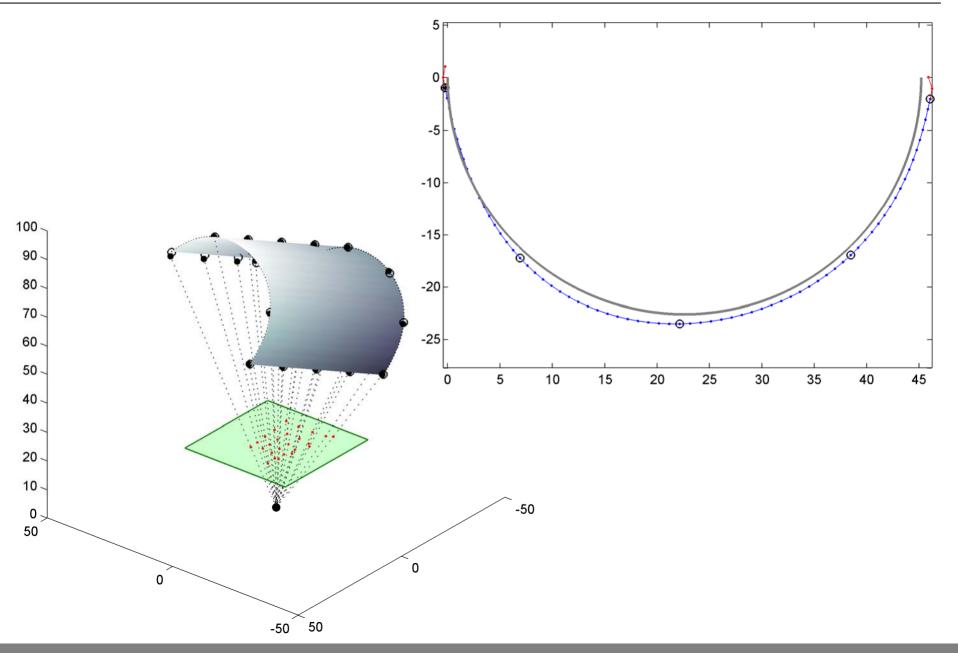
- The generatrix plane π is orthogonal to the plane containing the detected rectangle
- In particular we consider a transformation T which brings
 - The plane XY to π
 - The axis X parallel to C_1C_4 ,
 - The axis Z parallel to C_1C_2



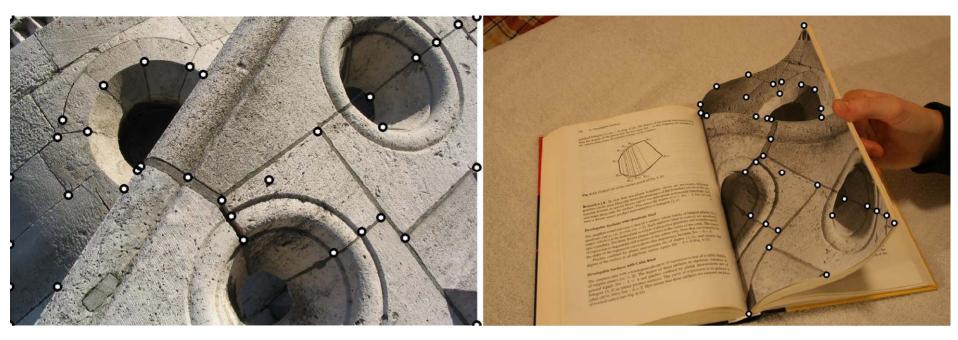
experimental results

ШÌ

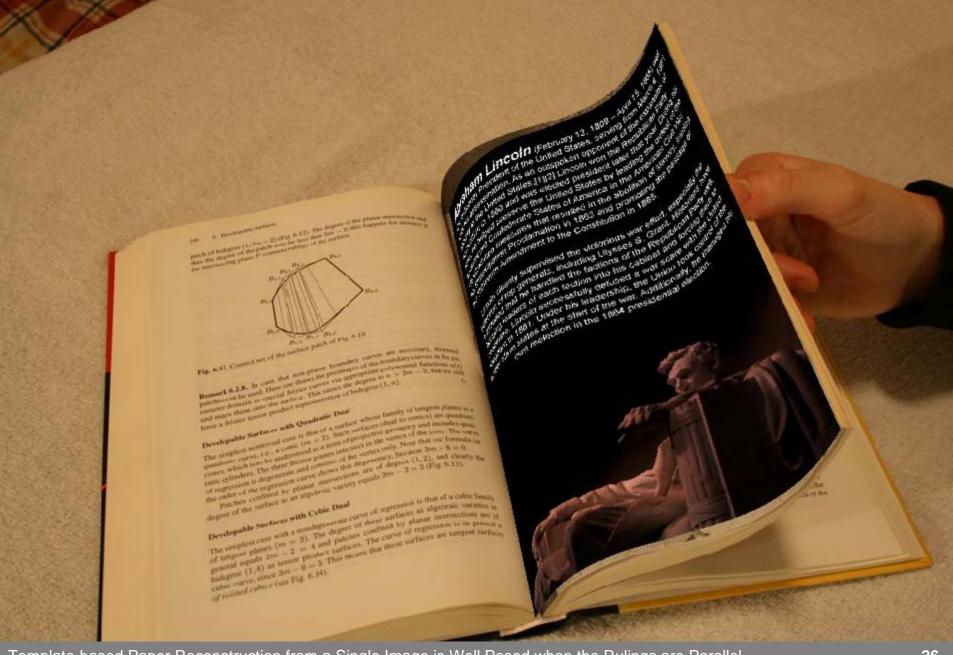
Experimental results



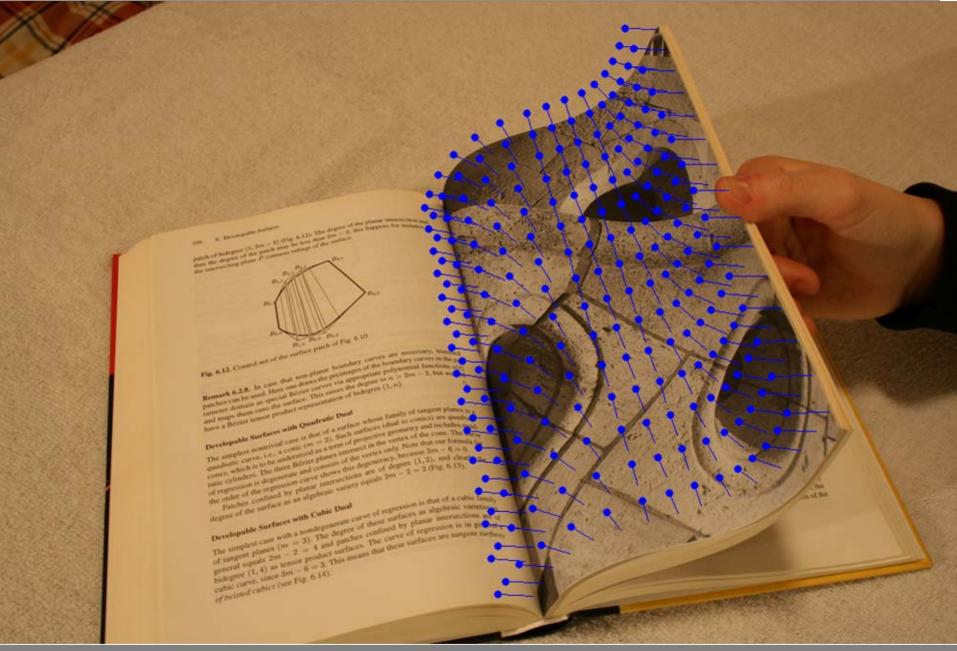
Experimental results



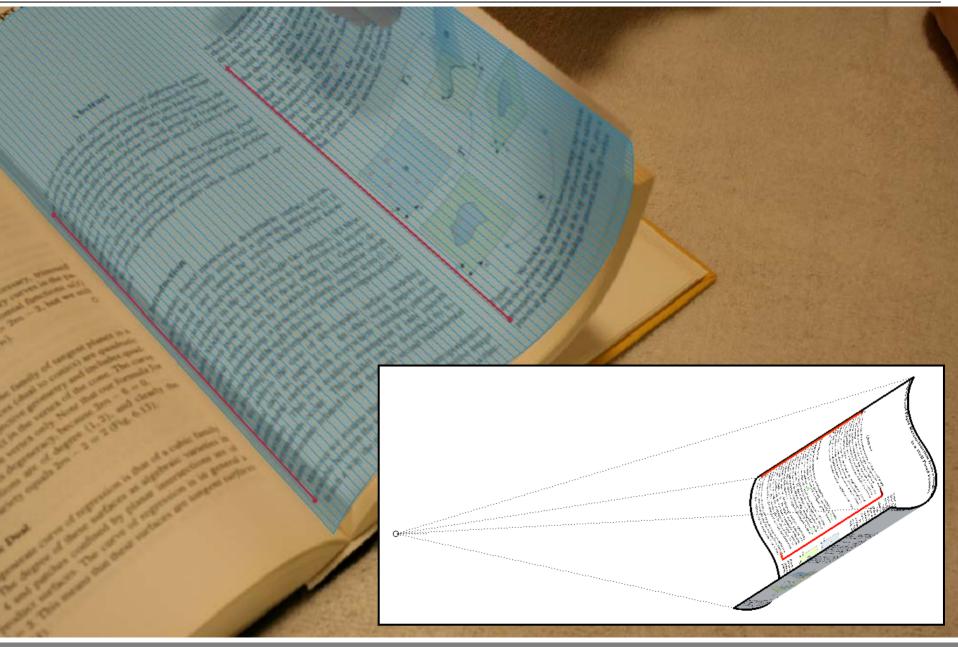
Experimental results (texture replacement)



Experimental results (augmentation)



Experimental results (handling occlusion)



- Template based reconstruction of a generalized cylinder is well posed
- The reconstruction is probably well posed also in the generalized cone case
 - Even if more general, this case is more difficult to reproduce, and the generalized cone parameters are more difficult to recover