

Robotics - Localization & Bayesian Filtering

Simone Ceriani

ceriani@elet.polimi.it

Dipartimento di Elettronica e Informazione Politecnico di Milano

10 May 2012

Outline

- Introduction
- 2 Taxonomy
- Probability Recall
- Bayes Rule
- Bayesian Filtering
- 6 Markov Localization

Outline

The problem

Introduction

•0000

- Determining *pose* of robot
- Relative to a given map of the environment
- a.k.a. position estimation

Notes

- It's an instance of the general localization
 - i.e., localize objects in the workspace of a manipulator

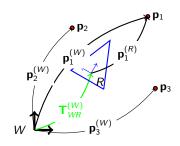
Localization - The problem

Localization Input

- Known map in a reference system
- Perception of the environment
- Motion of the robot

LOCALIZATION GOAL

- Determine robot position w.r.t. the map i.e. the relative transformation $\mathbf{T}_{WR}^{(W)}$
- Problem of coordinate transformation
 T^(W)_{WR} allow to express objects position (maps) in a local frame (w.r.t. the robot)



- $\mathbf{p}_{i}^{(W)}$: the map
- $\mathbf{p}_1^{(R)}$: robot perception
- $\mathbf{T}_{WR}^{(W)}$: localization

Localization - Issues

DIRECT POSE SENSING

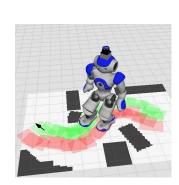
- Usually impossible
- Noise corruption

Pose estimation

- Inferred from data
 Usually a single sensor measure is insufficient
- Robot need to integrate information over time
 e.g. map with two identical corridors

Map

- Various representations are possible according to the problem
- Key concept: localization needs a precise map

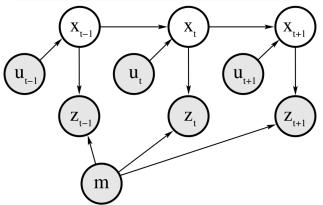


 Introduction
 Taxonomy
 Probability Recall
 Bayes Rule
 Bayesian Filtering
 Markov Localization

 000 ● 0
 00000
 000000000
 0000000000
 0000000000
 0000000000

Localization - Graphical model

Graphical model of mobile robot localization



■ X.: robot pose

• z.: measurements

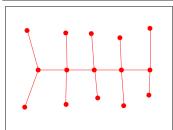
• m: the map

- u: inputs (e.g. speed of wheels, ...)
- Values of shaded nodes are known

Localization - Maps

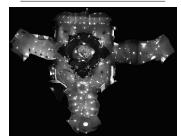
HAND-MADE METRIC MAP

GRAPH-LIKE TOPOLOGICAL MAP



Occupancy grid map

IMAGE MOSAIC OF CEILING



Outline

Taxonomy Local vs Global 1

LOCAL VS GLOBAL LOCALIZATION

- Depends on information available initially and at run-time
- Three types of localization problems, with increasing degree of difficulty

1. Pose Tracking

- Assume initial position is known
- Localization achieved by accommodating the noise in robot motion
- Pose uncertainty often approximated by a unimodal distribution
- It is a local problem, uncertainty is confined near robot true pose

2. Global Localization

- Initial pose unknown
- The robot knows that it does not know where it is
- Approaches cannot assume bound on (initial) pose error
- It is not a local problem, estimation could be very far from true pose
- More complicated than pose tracking

Taxonomy - Local vs Global - 2

3. Kidnapped robot problem

- Variant of the global localization problem
- The robot can get kidnapped and teleported to some other location
- The robot might believe it knows where it is while it does not
- Even more difficult
- Robot are not really kidnapped in practice
- Practical importance: recover from failures in localization

Taxonomy - Local vs Global - 2

3. Kidnapped robot problem

- Variant of the global localization problem
- The robot can get kidnapped and teleported to some other location
- The robot might believe it knows where it is while it does not
- Even more difficult
- Robot are not really kidnapped in practice
- Practical importance: recover from failures in localization

In these lessons

- Markov Localization: general framework
- Pose Tracking: Extended Kalman Filtering
- Global Localization: Particle Filtering / Monte Carlo approaches

Taxonomy - Static vs Dynamic Environment

STATIC ENVIRONMENT

- Only the robot pose change during operation
- Environment (the map) is static

Dynamic Environment

- Environment changes over time
- Environment changes affects sensor measurements
- Environment changes: temporary or permanent
- e.g.: doors, furniture, walking people, daylight
- Localization more difficult than in a static environment

Taxonomy - Passive vs Active Approaches

Passive approach

- Localization module observes the robot operating
- Robot motion is not aimed in facilitating localization

ACTIVE APPROACH

- Localization module controls the robot so as to
 - minimize the localization error
 - avoid hazardous movement of a poorly localized robot
- e.g., coastal navigation, symmetric corridors
- Trade-off: localization performance vs ability to performs operations

Taxonomy - Single vs Multirobot

SINGLE ROBOT LOCALIZATION

- Most commonly studied
- All data is collected on the robot, no communication issue

Multirobot approach

- Arises in team of robot
- Could be treated as *n*-single robot localization problem
- If robots are able to detect each other, there is opportunity to do better

Outline

Uncertainty in Robotics & Probabilistic Robotics

Robotics systems

- Situated in the physical world
- Perceive information through sensors
- manipulate through physical forces
- Have to be able to accommodate uncertainties that exists in the physical world

FACTORS THAT CONTRIBUTE TO ROBOT'S UNCERTAINTY

- Real environments are inherently unpredictable
- Sensors are limited in range, resolution, subject to noise
- Actuation involves motors; uncertainty arises from control noise, wear and tear.
- Mathematical models are approximation of real phenomenal

LEVEL OF UNCERTAINTY

- Depends on the application domain
 in well known environments, like assembly lines, could be bounded
 in the open world plays a key role
- Managing uncertainty is a key step towards robust real-world robot systems

Discrete Random Variables

Discrete Random Variables

- X: a random variables e.g., consider a die rolling experiment, X is the variable representing the outcome
- Pr(X = x) represent the probability that X has value xe.g., X assume one of $\{1, 2, 3, 4, 5, 6\}$
- x: a specific values that X might assume (on a discrete set) e.g., $Pr(X = 1) = Pr(X = 2) = \cdots Pr(X = 6) = \frac{1}{6}$

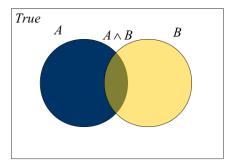
Properties - 1

- $\sum_{X \in \mathcal{X}} \Pr(X = x) = 1$: discrete probability sum to 1
- Pr(X = x) > 0: probability is non negative e.g., Pr(X = 0) = Pr(X = 7) = 0, impossible event
- Pr(X = x) < 1: probability is bounded to 1 e.g., $Pr(X = \{1 \text{ or } 2 \text{ or } 3 \text{ or } 4 \text{ or } 5 \text{ or } 6\})$, sure event
- Common abbreviation: Pr(x) instead of Pr(X = x)

Discrete Random Variables - Properties

Properties - 2

- Consider two event A and B
 e.g., A is "die outcome is 2 or 3", B is "die outcome is even"
- $\Pr(A \lor B) = \Pr(A) + \Pr(B) \Pr(A \land B)$ e.g., $A \lor B$ is "die outcome is 2 or 3 or 4 or 6", $\Pr(A \lor B) = \frac{2}{3} = \frac{1}{3} + \frac{1}{2} - \frac{1}{6}$
- If $A \wedge B = \emptyset$ \rightarrow $Pr(A \vee B) = Pr(A) + Pr(B)$
- $Pr(\overline{A}) = 1 Pr(A)$
- $\Pr(A \vee \overline{A}) = \Pr(A) + \Pr(\overline{A}) \Pr(A \wedge \overline{A}) = 1$



Remarks

 Relative-frequency (i.e., outcome of experiments) are alternative (not rigorous) ways of introduce the concept of probability.

CONTINUOUS RANDOM VARIABLES

- Allow to address continuous space
- Possess a Probability Density Function (p.d.f.) $f_X(x), x \in \mathbb{R}$
- Pr(X = x) = 0, even though it is not impossible
- The integral is the Cumulative Density Function (c.d.f.) $F_X(x) = \Pr(x \le x) = \int_{-\infty}^x f_X(x) dx$
- $\lim_{x\to\infty} F_X(x) = \Pr(X \le \infty) = 1$
- $Pr(x \in (a, b)) = \int_a^b f_X(x) dx = F_X(b) F_X(a)$

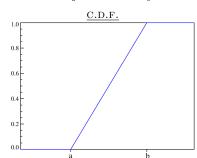
Uniformly Distributed Continuous Random Variable

Uniformly Distributed Continuous

RANDOM VARIABLE

- Uniformly Distributed in [a, b]
- p.d.f.: $f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{elsewhere} \end{cases}$
- c.d.f.: $F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{cases}$





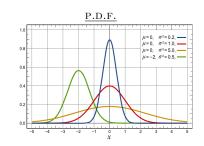
Normal Distributed Random Variable

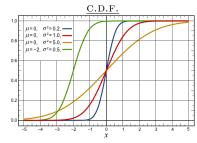
NORMAL DISTRIBUTED RANDOM VARIABLE

- a.k.a. Gaussian Random Variable
- $\mathcal{N}(\mu, \sigma^2)$
 - ullet mean: μ
 - variance: σ^2
- p.d.f.:

$$f(x) = (2\pi\sigma^2)^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right\}$$

- c.d.f.: \nexists explicit formula, tabulated for $\mathcal{G}(\eta)$, c.d.f. of $\mathcal{N}(0,1)$
- $F(x) = \mathcal{G}(\frac{x-\mu}{\sigma})$ $\frac{x-\mu}{\sigma}$: number of σ away from the mean





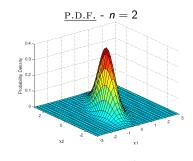
Multivariate Distributions

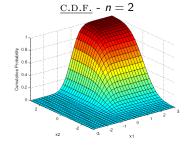
Multivariate

- x is a vector
- $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with
 - μ : $n \times 1$, mean vector
 - Σ : $n \times n$, covariance matrix
- $f(\mathbf{x}) = (2\pi \det(\Sigma))^{-\frac{1}{2}} \exp\{-\frac{1}{2}(\mathbf{x} \mu)^T \Sigma^{-1}(\mathbf{x} \mu)\}$

$$\bullet \ \mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} \ \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} & \cdots & \boldsymbol{\Sigma}_{1n} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} & \cdots & \boldsymbol{\Sigma}_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{n1} & \boldsymbol{\Sigma}_{n2} & \cdots & \boldsymbol{\Sigma}_{nn} \end{bmatrix}$$

- diagonal elements are the variances of the single components
- off diagonals elements are the covariances between elements
- Σ is symmetric and positive definite, (non singular)
- if ∃ linear relation among components, Σ is positive semi-definite, (singular)





DISCRETE CASE

- Expected value: $E[X] = \sum_{x} xp(x) = \overline{x}$
- *n*-th moment: $E[X^n] = \sum_x x^n p(x)$
- Variance: $VAR(x) = E[(x \overline{x})^2]$ = $\sum_x (x - \overline{x})^2 p(x) = \sigma^2$ = $E[X^2] - E[X]^2$

a.k.a. second central moment

Continuous case

- Expected value: $E[X] = \int_x x f(x) dx$
- *n*-th moment: $E[X^n] = \int_X x^n p(x)$
- Variance: $VAR(x) = E[(x \overline{x})^2]$ $= \int_x (x - \overline{x})^2 p(x) = \sigma^2$ $= E[X^2] - E[X]^2$ a ka. second central moment
 - a.k.a. second central moment

PROPERTIES

- consider Y = aX + b, X random variable, a, b scalar quantities
- E[Y] = aE[X] + b
- $VAR(Y) = a^2 VAR(Y)$

Joint Probability, Independence, Conditioning

Joint Probability

- Consider two random variables X and Y or a random vector $\mathbf{Z} = \begin{bmatrix} X, Y \end{bmatrix}^T$
- $Pr(X = x \land Y = y) = Pr(x, y) = Pr(z)$ with $\mathbf{z} = \begin{bmatrix} x, y \end{bmatrix}^T$

Independence

- X and Y are independent if and only if
- \bullet Pr(x, v) = Pr(x) Pr(v)or with p.d.f. $f_{xy}(x, y) = f_x(x)f_y(y)$

Conditioning

- Pr(x|y) is the probability of x given y
- \bullet Pr(x, y) = Pr(x|y) Pr(y)
- Pr(x|y) = Pr(x) if x and y are independent if X and Y are independent, Y tell us nothing about the value of X, there is no advantage of knowing the value of Y if we are interested in X

CONDITIONAL INDEPENDENCE

- X and Y are conditional independent on Z if Pr(x, y|z) = Pr(x|z) Pr(y|z)
- This is equivalent to $\Pr(x,y|z) = \frac{\Pr(x,y,z)}{p(z)} = \Pr(x|y,z) \Pr(y|z) = \frac{\Pr(x|y,z) \Pr(y,z)}{\Pr(z)}$
- Thus, X and Y are conditional independent on Z if Pr(x|z) = Pr(x|y,z) i.e., knowledge on y does not add any information to x if z is known

Total probability, marginals

Total probability:

$$\int_{x_1=-\infty}^{\infty}\cdots\int_{x_n=-\infty}^{\infty}f_{x_1...x_n}(x_1,\ldots,x_n)dx_1\ldots dx_n=1$$

Marginal distribution:

$$\int_{-\infty}^{\infty} f_{x,y}(x,y) dx = f_y(y)$$

$$\int_{-\infty}^{\infty} f_{x,y}(x,y) dy = f_x(x)$$

Marginal distribution with conditioning:

$$\int_{-\infty}^{\infty} f_{y|x}(y|x) f_x(x) dx = f_y(y)$$

$$\int_{-\infty}^{\infty} f_{x|y}(x|y) f_y(y) dy = f_x(x)$$

Outline

Bayes Formula

From conditioning

- Pr(x,y) = Pr(x|y) Pr(y)
- Pr(x,y) = Pr(y|x) Pr(x)

Bayes formula

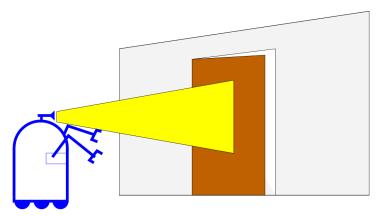
$$Pr(x|y) = \frac{Pr(y|x)Pr(x)}{Pr(y)} = \frac{Pr(y|x)Pr(x)}{\int_{-\infty}^{\infty} f_{y|x}(y|x')f_x(x')dx'}$$

- Pr(x) is the *prior*, the belief about x
- y is the data, e.g., a sensor measure
- Pr(y|x) is the *likelihood*, i.e., how much is probable to have measure y in state x
- Pr(x|y) is the posterior, i.e., the belief x state given the measurement y
- Bayes formula allow to infer a quantity x from data y through inverse probability
 i.e., through the probability of data y assuming that the state is x

Bayes Example - 1

PROBLEM

A robot "observe" a door



Bayes Example - 2

Problem

- A robot "observe" a door
- The door could be open or close
- The sensor measure a distance as far or near
- The probability that the door is open is 0.4
- The probability that the sensor measure far when the door is open is 0.8
- The probability that the sensor measure far when the door is close is 0.1
- What is the probability that the door is *open* if the sensor measurement is *near*?
- What is the probability that the door is *open* if the sensor measurement is *far*?
- What is the probability that the door is *close* if the sensor measurement is *near*?
- What is the probability that the door is *close* if the sensor measurement is *far*?

Bayes Example - 3

Variable definition

- X: door state, {open, close}
- Y: sensor measure, {open, close}

P.D.F

•
$$Pr(Y=far|X=close)=0.1$$

•
$$Pr(Y=near|X=close)=0.9$$

SOLUTION

•
$$Pr(X = open|Y = near) = \frac{Pr(Y = near|X = open) Pr(X = open)}{Pr(Y = near|X = open) Pr(X = open) Pr(X = open) Pr(X = open)}$$

$$= \frac{0.2 \cdot 0.4}{0.2 \cdot 0.4 + 0.9 \cdot 0.6} = 0.13$$

•
$$Pr(X = open | Y = far) = \frac{Pr(far|open) Pr(open)}{Pr(far|open) Pr(open) + Pr(far|close) Pr(close)} = \frac{0.8 \cdot 0.4}{0.8 \cdot 0.4 + 0.1 \cdot 0.6} = 0.84$$

•
$$Pr(X = close | Y = near) = \frac{Pr(near|close) Pr(close)}{Pr(near)} = \frac{0.9 \cdot 0.6}{0.62} = 0.87$$

•
$$\Pr(X = \text{close}|Y = \text{far}) = \frac{\Pr(\text{far}|\text{close}) \Pr(\text{close})}{\Pr(\text{far})} = \frac{0.1 \cdot 0.6}{0.9 + 0.2} = 0.16$$

New measurements

- Suppose that we get the first measurement: near
- Thus, $Pr(X = open | Y_1 = far) = 0.84$, and $Pr(X = close | Y_1 = far) = 0.16$
- A second measure Y_2 arrives: it is far
- $Pr(X = open | Y_1 = far, Y_2 = far)$?
- More generally, how to estimate $Pr(X = open | Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n)$?

EXTEND THE BAYES RULE

$$Pr(X|Y_1, Y_2) = \frac{Pr(Y_2|X, Y_1) Pr(X|Y_1)}{Pr(Y_2|Y_1)} = \frac{Pr(Y_2|X, Y_1) Pr(X|Y_1)}{\int_{-\infty}^{\infty} f_{Y_2|Y_1, x'}(Y_2|Y_1, x') f_{X|Y_1}(x'|Y_1) dx'}$$

•
$$\Pr(X|Y_1, Y_2, ..., Y_n) = \frac{\Pr(Y_n|X, Y_1, ..., Y_{n-1})\Pr(X|Y_1, Y_2, ..., Y_{n-1})}{\Pr(Y_n|Y_1, ..., Y_{n-1})} = ...$$

MARKOV ASSUMPTION

- Markov assumption: Y_2 independent of Y_1 if we know X
- Then $Pr(Y_2|X, Y_1) = Pr(Y_2|X)$ (see Conditional Independence formulas)
- Bayes rule

$$Pr(X|Y_1, Y_2) = \frac{\Pr(Y_2|X, Y_1) \Pr(X|Y_1)}{\Pr(Y_2|Y_1)} = \frac{\Pr(Y_2|X) \Pr(X|Y_1)}{\Pr(Y_2|Y_1)}$$

$$Pr(X|Y_1, Y_2, \dots, Y_n) = \frac{\Pr(Y_n|X, Y_1, \dots, Y_{n-1}) \Pr(X|Y_1, \dots, Y_{n-1})}{\Pr(Y_n|Y_1, \dots, Y_{n-1})} = \frac{\Pr(Y_n|X) \Pr(X|Y_1, \dots, Y_{n-1})}{\Pr(Y_n|Y_1, \dots, Y_{n-1})}$$

with

$$Pr(Y_2|Y_1) = \int_{-\infty}^{\infty} f_{Y_2|Y_1,x'}(Y_2|Y_1,x') f_{X|Y_1}(x'|Y_1) dx'$$
$$= \int_{-\infty}^{\infty} f_{Y_2|x'}(Y_2|x') f_{X|Y_1}(x'|Y_1) dx'$$

similar with n measurement

note: use \sum in discrete case

THE EXAMPLE

ullet Pr($X=\mathsf{open}|Y_1=\mathsf{far})=0.84$, and Pr($X=\mathsf{close}|Y_1=\mathsf{far})=0.16$, $Y_2=\mathit{far}$

$$\begin{array}{lcl} \Pr(Y_2|Y_1) & = & \Pr(Y_2|Y_1, \mathsf{open}) \Pr(\mathsf{open}|Y_1) + \Pr(Y_2|Y_1, \mathsf{close}) \Pr(\mathsf{close}|Y_1) \\ & = & \Pr(Y_2|\mathsf{open}) \Pr(\mathsf{open}|Y_1) + \Pr(Y_2|\mathsf{close}) \Pr(\mathsf{close}|Y_1) \\ & = & \Pr(\mathsf{far}|\mathsf{open}) \Pr(\mathsf{open}|\mathsf{far}) + \Pr(\mathsf{far}|\mathsf{close}) \Pr(\mathsf{close}|\mathsf{far}) \\ \Pr(\mathsf{far}|\mathsf{far}) & = & 0.8 \cdot 0.84 + 0.1 \cdot 0.16 = 0.688 \end{array}$$

•
$$\Pr(X = \text{open}|Y_1 = \text{far}, Y_2 = \text{far}) = \frac{\Pr(\text{far}|\text{open})\Pr(\text{open}|\text{far})}{\Pr(\text{far}|\text{far})} = \frac{0.8 \cdot 0.84}{0.688} = 0.977$$

Outline

The environment

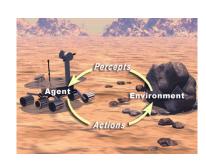
- a.k.a. World
- generally it's a dynamic system:
 - Robot can act on it
 - Changes due to time passing by

A ROBOT

- Can act on environment
 i.e., change the environment state
- Can sense environment through sensor
- Has an internal belief on state

STATE

- Collection of all aspects of the robot and the environment
- Generally, changes over time, some part could be static
- We will refer it with X_t



Control Actions

- Change the state of the world (robot and/or environment)
- $u_{t_1:t_n} = u_{t_1}, u_{t_2}, \dots u_{t_n}$

Measurements

- Information about the environment (distances, images, ...)
- $z_{t_1:t_n} = z_{t_1}, z_{t_2}, \dots z_{t_n}$

Complete State and Markov Chain

- \bullet x_t will be called *complete* if it is the best predictor of the future
- All past states, measurements and inputs carry no additional information to predict the future more accurately
- ullet No variables prior to x_t may influence the stochastic evolution of future state
- This a Markov Chain

Evolution of state - 1

Evolution of State

- x_t is stochastically generated by x_{t-1}
- x_t p.d.f is conditioned on past states, inputs and measurement
- $p(x_t|x_{0:t-1},z_{1:t-1},u_{1:t})$
- Under Markov Chain hypothesis (or Complete State), thanks to conditional independence $p(x_t|x_{0:t-1},z_{1:t-1},u_{1:t})=p(x_t|x_{t-1},u_t)$

•
$$p(x_t|x_{t-1}, u_t)$$
 is the state transition probability

State evolution is stochastic, not deterministic (i.e., is a p.d.f.)

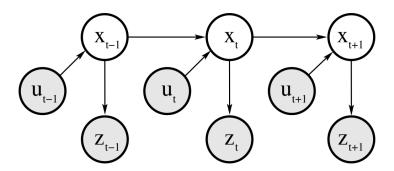
Measurement process

- $p(z_t|x_{0:t},z_{0:t-1},u_{1:t})=p(z_t|x_t)$ under Complete State
- the state x_t is sufficient to predict the (potentially noisy) measurement z_t
- $p(z_t|x_t)$ is the measurement probability
- Specify the probabilistic low of according to which measurement are generated

Evolution of state - 2

EVOLUTION OF STATE AND MEASUREMENTS

- Describe the dynamical stochastic system of the robot and its environment
- a.k.a. as Hidden Markov Model (HMM) or Dynamic Bayes Network (DBN)



Belief Distributions

Belief

- Reflects the robot's internal knowledge about the state
- Usually, the state cannot be measure directly
- The state need to be inferred from data

Posterior Belief distribution

- Conditional probability
- Is a posterior probability
- Conditioned on available data
- $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

PRIOR BELIEF DISTRIBUTION

- Conditional probability
- Is a prior probability
- Conditioned on available data before incorporating z_t measure
- \bullet $\overline{bel}(x_t) = p(x_t|z_{1:t-1}, u_{1:t})$
- Often referred as a predition

Bayes Filter Algorithm

The Algorithm

- Calculate the belief $bel(x_t)$
- Recursive: use $bel(x_{t-1})$ as input
- Use most recent measure (z_t) and input (y_t)

return $bel(x_t)$

Algorithm

```
Algorithm Bayes_filter(bel(x_{t-1}), u_t, z_t):
```

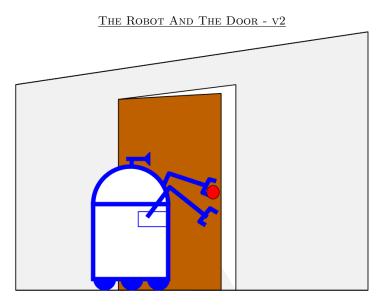
for all x_t do $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx$ $bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$ endfor

Step 1

- Calculate the prior belief $\overline{bel}(x_t)$
- Integral of the product of
 - The prior on x_t
 - The probability of the state evolution
- It is a prediction

Step 2

- Calculate the posterior belief $bel(x_t)$
- Product of
 - Prior distribution
 - Measurement probability
 η: normalization factor
 η: ∑_{∀x} bel(x_t) = 1
- It is a measurement update



The door

- Can be open or close
- initial state is unknown

The robot

- Can act (stochastically) on the door:
 - push: try to open the door
 - nop: no operation
- Sense (noisly) the door presence
 - near: read by sensor when door is close
 - far: read by sensor when door is open

The door

- Can be *open* or *close*
- initial state is unknown

The robot

- Can act (stochastically) on the door:
 - push: try to open the door
 - nop: no operation
- Sense (noisly) the door presence
 - near: read by sensor when door is close
 - far: read by sensor when door is open

Initial Belief

- $bel(x_0 = open) = 0.5$
- $bel(x_0 = close) = 0.5$

Measurement Probability

- $bel(z_t = far | x_t = open) = 0.6$
- $bel(z_t = near | x_t = open) = 0.4$
- $bel(z_t = far | x_t = close) = 0.2$
- $bel(z_t = near | x_t = close) = 0.8$

STATE TRANSITION PROBABILITY

•

$$bel(x_t = open | u_t = push, x_{t-1} = open) = 1$$

•

$$bel(x_t = close | u_t = push, x_{t-1} = open) = 0$$

•

$$bel(x_t = open | u_t = push, x_{t-1} = close) = 0.8$$

•

$$bel(x_t = close | u_t = push, x_{t-1} = close) = 0.2$$

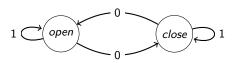
open 0 close 0.2

•
$$bel(x_t = open | u_t = nop, x_{t-1} = open) = 1$$

•
$$bel(x_t = close | u_t = nop, x_{t-1} = open) = 0$$

•
$$bel(x_t = open | u_t = nop, x_{t-1} = close) = 0$$

•
$$bel(x_t = close | u_t = nop, x_{t-1} = close) = 1$$



Time t=1, act

- $u_1 = \text{nop}$, no operation performed
- $\overline{bel}(x_1) = \sum_{x_0} p(x_1|u_1,x_0)bel(x_0)$, prediction

$$\overline{bel}(x_1) = p(x_1|u_1 = \mathsf{nop}, x_0 = \mathsf{open})bel(x_0 = \mathsf{open}) + \\ + p(x_1|u_1 = \mathsf{nop}, x_0 = \mathsf{close})bel(x_0 = \mathsf{close}) \\ \overline{bel}(x_1 = \mathsf{open}) = p(x_1 = \mathsf{open}|u_1 = \mathsf{nop}, x_0 = \mathsf{open})bel(x_0 = \mathsf{open}) + \\ + p(x_1 = \mathsf{open}|u_1 = \mathsf{nop}, x_0 = \mathsf{close})bel(x_0 = \mathsf{close}) = \\ = 1 \cdot 0.5 + 0 \cdot 0.5 = 0.5$$

$$bel(x_1 = close)$$
 = $p(x_1 = close|u_1 = nop, x_0 = open)bel(x_0 = open) +$
+ $p(x_1 = close|u_1 = nop, x_0 = close)bel(x_0 = close) =$
= $0 \cdot 0.5 + 1 \cdot 0.5 = 0.5$

Time t = 1, sense

- ullet $z_1 = {\sf far}$, sense open door
- $bel(x_1) = \eta p(z_1 = far|x_1)bel(x_1)$, measurement update

bel(x₁ = open) =
$$\eta p(z_1 = \text{far}|x_1 = \text{open})bel(x_1 = \text{open})$$

= $\eta 0.6 \cdot 0.5 = \eta 0.3$

$$bel(x_1 = close) = \eta p(z_1 = far|x_1 = close)\overline{bel}(x_1 = close)$$
$$= \eta 0.2 \cdot 0.5 = \eta 0.1$$

- $bel(x_1 = open) + bel(x_1 = close) = 1$
- $\eta 0.3 + \eta 0.1 = 1$
- $\eta = (0.3 + 0.1)^{-1} = 2.5$

- $bel(x_1 = open) = 0.75$
- $bel(x_1 = close) = 0.25$

Time t=2, act

- $u_2 = \text{push}$, perform *push* action
- $\overline{bel}(x_2) = \sum_{x_1} p(x_2|u_2, x_1)bel(x_1)$, prediction

$$bel(x_2) = p(x_2|u_2 = \text{push}, x_1 = \text{open})bel(x_1 = \text{open}) + \\ + p(x_2|u_2 = \text{push}, x_1 = \text{close})bel(x_1 = \text{close})$$

$$\overline{bel}(x_2 = \text{open}) = p(x_2 = \text{open}|u_2 = \text{push}, x_1 = \text{open})bel(x_1 = \text{open}) + \\ + p(x_2 = \text{open}|u_2 = \text{push}, x_1 = \text{close})bel(x_1 = \text{close}) = \\ = 1 \cdot 0.75 + 0.8 \cdot 0.25 = 0.95$$

$$bel(x_2 = close)$$
 = $p(x_2 = close|u_2 = push, x_1 = open)bel(x_1 = open) +$
+ $p(x_2 = close|u_1 = push, x_1 = close)bel(x_1 = close) =$
= $0 \cdot 0.75 + 0.2 \cdot 0.25 = 0.05$

Time t = 2, sense

- $z_2 = far$, sense open door
- $bel(x_2) = \eta p(z_2 = far|x_2)bel(x_2)$, measurement update

bel(x₂ = open) =
$$\eta p(z_2 = \text{far}|x_2 = \text{open})$$
bel(x₂ = open)
= $\eta 0.6 \cdot 0.95 = \eta 0.57$

$$bel(x_2 = close) = \eta p(z_2 = far|x_2 = close)\overline{bel}(x_2 = close)$$
$$= \eta 0.2 \cdot 0.05 = \eta 0.01$$

- $bel(x_2 = open) + bel(x_2 = close) = 1$
- $\eta 0.57 + \eta 0.01 = 1$
- $\eta = (0.57 + 0.01)^{-1} = 1.724$

- $bel(x_1 = open) = 0.983$
- $bel(x_1 = close) = 0.017$

Outline

Markov Localization Algorithm

- The state x_t is the robot pose
- Require also a map m as input
- Map m plays a key role in the measurement model $p(z_t|x_t,m)$ measure the relative pose w.r.t. the map
- Can be integrated in the *motion model* (the prediction step)
 - $p(x_t|u_t,x_{t-1},m)$ avoid prediction of impossible movement, like through a wall

Algorithm Markov_localization($bel(x_{t-1}), u_t, z_t, m$):

for all
$$x_t$$
 do
$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}, m) \ bel(x_{t-1}) \ dx$$

$$bel(x_t) = \eta \ p(z_t \mid x_t, m) \ \overline{bel}(x_t)$$
 endfor
$$\operatorname{return} bel(x_t)$$

Markov Localization - Initial belief

Pose Tracking - case 1

- The initial pose is known: \overline{x}_0
- The initial belief is $bel(x_0) = \begin{cases} 1 & \text{if } x_0 = \overline{x}_0 \\ 0 & \text{otherwise} \end{cases}$

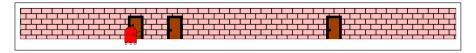
Pose Tracking - case 2

- The initial pose is known with some uncertainty e.g. Gaussian $\overline{x}_0 = (N)(\overline{x_0}, \Sigma_0)$
- The initial belief is $bel(x_0) = (2\pi \det(\Sigma))^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$

GLOBAL LOCALIZATION

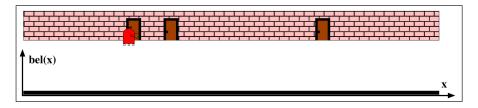
- The initial pose is unknown, uniform distribution over all the map
- The initial belief is $bel(x_0) = \frac{1}{|X|}$, where |X| is the volume of the space

Environment setup



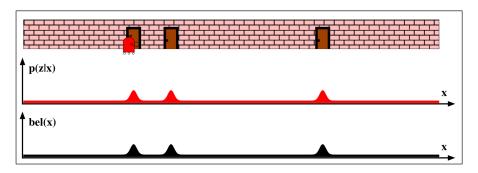
- A one-dimensional hallway
- Three indistinguishable doors remember that we know the map
- The robot sense (noisly) a door presence
- The robot known its direction and the relative motion performed in a time step
- The state x_t is the x robot position

Initial Belief



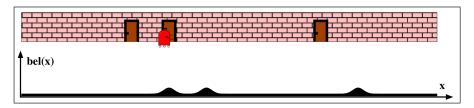
• Initial position is unknown, $bel(x_0)$ is uniformly distributed

Sense



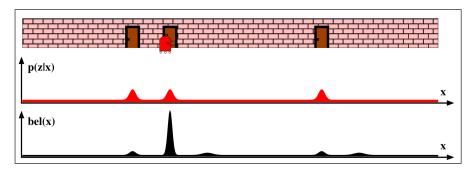
- The robot sense a door presence
- $bel(x_1)$ is higher on door locations

MOTION MODEL - PREDICTION STEP



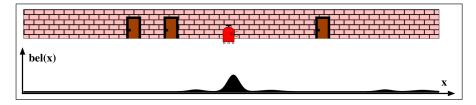
- Robot knows its movement (u, the control variable)
- $\overline{bel}(x_2)$ is shifted as result of motion
- $\overline{bel}(x_2)$ is flattened as result of uncertainty on motion

Sense



- The robot sense a door presence
- $bel(x_2)$ is focused on the correct pose

MOTION MODEL - PREDICTION STEP



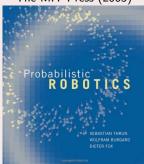
- $\overline{bel}(x_3)$ is focused on the correct pose
- $\overline{bel}(x_3)$ is flattened

References

"Probabilistic Robotics"

(Intelligent Robotics and Autonomous Agents series)

The MIT Press (2005)



Chapters 2, 3, 7.