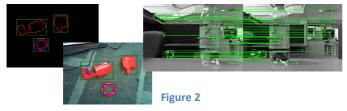


RVS v. 1.0 – Robotic Vision System module

Quickstart guide

1. Introduction

This document provides quickstart information and main features about RVS Module v. 1.0.


The RVS Module v. 1.0 is a low-cost vision system for acquisition and realtime processing of pictures.

The module main devices are: a ST-VS6724 Camera (2 Mpx), a ST-STR912FA Microcontroller (ARM966 @ 96MHz) and 16MB of external RAM (PSRAM BURST).

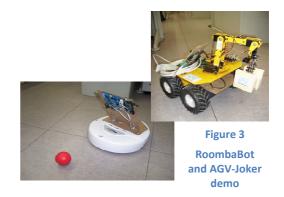

The embedded microcontroller allows the syncronization of multiple modules for multi-camera vision (or simply stereo vision) and the execution of various vision algorithms such as multiple blob search, vision SLAM and robot navigation.

Figure 1

Multiple Blob Search and Stereo Vision

Two different configurations are available, as shown below:

Socket Version: 34 x 34 mm, with a 64 pins connector (16 per edge), suitable for application prototyping.

(Figure 4.a)

System-on-Module (SoM) Version: 30 x 30 mm, with 64 contact pins, directly solderable as a surface-mount device (SMD), suitable for application production.

2. Main components overview

ST-STR912FAZ44 Microcontroller:

The ST-STR912FAZ44 embedded controller is ideal for a wide variety of applications such as point-of-sale terminals, industrial automation, security and surveillance, vending machines, communication gateways, serial protocol conversion, and medical equipment.

The microcontroller main components are: a 32 bit ARM966E-S RISC processor core running at 96MHz, a large 32bit SRAM (96KB) and a high-speed 544KB Flash memory.

The ARM966E-S core can perform single-cycle DSP instructions, good for speech recognition, audio and embedded vision algorithms.

Features

- 16/32-bit 96 MHz ARM9E based MCU
 - ARM966E-S RISC core: Harvard architecture, 5-stage pipeline, Tightly-Coupled Memories (SRAM and Flash)
 - STR91xFA implementation of core adds high-speed burst Flash memory interface, instruction prefetch queue, branch cache
 - Up to 96 MIPS directly from Flash memory
 - Single-cycle DSP instructions supported
 - Binary compatible with ARM7 code
- Dual burst Flash memories, 32-bits wide
 - 512 KB Main Flash and 32 KB Secondary Flash
 - Sequential Burst operation up to 96 MHz
 - 100 K min erase cycles, 20 yr min retention
- SRAM, 32-bits wide at 96 K bytes
- 9 programmable DMA channels
- Clock, reset, and supply management
 - Internal oscillator operating with external 4-25 MHz crystal
 - Internal PLL up to 96 MHz
 - Real-time clock provides calendar functions, tamper, and wake-up functions
 - Reset Supervisor monitors supply voltage, watchdog, wake-up unit, external reset
 - Brown-out monitor
 - Run, Idle, and Sleep Mode as low as 50 uA
- Vectored interrupt controller (VIC)
 - 32 IRQ vectors, 30 interrupt pins

- Branch cache minimizes interrupt latency
- 8-channel, 10-bit A/D converter (ADC)
 - 0 to 3.6 V range, 0.7 usec conversion
- 10 Communication interfaces
 - 10/100 Ethernet MAC with DMA and MII
 - USB Full-speed (12 Mbps) slave device
 - CAN interface (2.0B Active)
 - 3 16550-style UARTs with IrDA protocol
 - 2 Fast I2C™, 400 kHz
 - 2 channels for SPI™, SSI™, or Microwire™
- External Memory Interface (EMI)
 - 8- or 16-bit data, up to 24-bit addressing
 - Additional burst synchronous modes
- I/O pins (muxed with interfaces)
- 16-bit standard timers (TIM)
 - 4 timers each with 2 input capture, 2 output compare, PWM and pulse count modes
- 3-Phase induction motor controller (IMC)
- JTAG interface with boundary scan
- Embedded trace module (ARM ETM9)

ST-VS6724 Camera Module:

Figure 6

Figure 7

The VS6724 is a UXGA resolution CMOS imaging device designed for low power systems, particularly mobile phone and PDA applications. Manufactured using ST 0.18 μ m CMOS Imaging process, it integrates a high-sensitivity pixel array, digital image processor and camera control functions.

The device contains an embedded video processor and delivers fully color processed images at up to 30 fps UXGA JPEG, or up to 30 fps SVGA YCbCr 4:2:2. The video data is output over an 8-bit parallel bus in JPEG (4:2:2 or 4:2:0), RGB, YCbCr or Bayer formats and the device is controlled via an I²C interface.

The VS6724 support 1.8 V or 2.8 V interface and requires a 2.4 to 3.0 V analog power supply. The integrated PLL allows for low frequency system clock, and flexibility for successful EMC integration. The VS6724 camera module uses ST's second generation "SmOP2" packaging technology: the sensor, lens and passives are assembled, tested and focused in a fully automated process, allowing high volume and low cost production.

The VS6724 also includes a wide range of image enhancement functions, designed to ensure high image quality, these include: automatic exposure

control, automatic white balance, lens shading compensation, defect correction algorithms, interpolation (Bayer to RGB conversion), color space conversion, sharpening, gamma correction, flicker cancellation, NoRA noise reduction algorithm, intelligent image scaling, special effects.

Features

- 1600H x 1200V active pixels
- Class leading 30 fps UXGA progressive scan
- μm pixel size, 1/3.8 inch optical format
- Quad-element plastic lens, F# 3.2, 52° horizontal field of view (HFOV)
- 8.0 x 8.0 x 5.55 mm ultra low profile fixed focus camera module with embedded passives
- RGB Bayer color filter array
- Integrated 10-bit ADC
- Integrated digital image processing functions
- Embedded hardware JPEG compression (4:2:0 or 4:2:2) delivering 30 fps streaming performance
- Embedded camera controller for automatic exposure control, automatic white balance control, black level compensation, 50/60 Hz flicker cancelling, flashgun support
- Fully programmable frame rate and output derating functions
- Low power 30 fps up to SVGA for video capture
- ITU-R BT.656-4 YUV (YCbCr) 4:2:2 with embedded syncs, YUV (YCbCr) 4:0:0, RGB 565, RGB 444, JPEG, Bayer 10-bit or Bayer 8-bit output formats
- 8-bit parallel video interface, horizontal and vertical syncs, 80 MHz (max) clock
- Two-wire serial control interface (I²C)
- On-chip PLL, 6.5 to 27 MHz clock input
- Analog power supply, from 2.4 V to 3.0 V
- Separate I/O power supply, 1.8 V or 2.8 V levels
- Integrated power management with power switch, automatic power-on reset and powersafe pins
- Low power consumption, ultra low standby current
- 24-pin 8.0 mm x 8.0 mm x 5.55 mm shielded socket

16 MB external burst PSRAM 100MHz (mod. MT45W8MW16BGX):

This PSRAM is a high-speed, CMOS pseudo-static random access memory developed by Micron $^{\circ}$ CellularRAM $^{\circ}$ for low-power, portable applications. On ST-RVS Module v . 0.1 it allow handling of high quantity of data concerning images processing and storage.

The MT45W8MW16BGX device has a 128Mb DRAM core, organized as 8 Meg x 16 bits. These devices include an industry standard burst mode Flash interface that highly increases read/write bandwidth.

To operate seamlessly on a burst Flash bus, the PSRAM incorporate a transparent self refresh mechanism. The hidden refresh requires no additional support from the system memory controller and has no significant impact on device read/write performance. The bus configuration register (BCR) defines how the device interacts with the system memory bus and is nearly identical to its counterpart on burst mode Flash devices. The refresh configuration register (RCR) is used to control how refresh is performed on the DRAM array. Standby current consumption during self refresh is minimized.

The CellularRAM bus interface supports both asynchronous and burst mode transfers.

Page mode accesses are also included as a bandwidth-enhancing extension to the asynchronous read protocol.

Features:

- Single device supports asynchronous, page, and burst operations
- VCC, VCCQ voltages
 - 1.70-1.95V VCC
 - 1.7-3.6V1 VCCQ
- Random access time: 70ns
- Burst mode READ and WRITE access
 - 4, 8, 16, or 32 words, or continuous burst
 - Burst wrap or sequential
 - MAX clock rate: 133 MHz (tCLK = 7.5ns)
 - Burst initial latency: 35ns (5 clocks) at 133 MHz
 - tACLK: 5.5ns at 133 MHz
- Page mode READ access
 - Sixteen-word page size
 - Interpage READ access: 70ns
 - Intrapage READ access: 20ns
- Low power consumption
 - Asynchronous READ: <25mA
 - Intrapage READ: <15mA
 - Initial access, burst READ: (37.5ns [5 clocks] at 133 MHz) <45mA
 - Continuous burst READ: <40mA
 - Standby: <50μA (TYP at 25°C)
 - Deep power-down: <3μA (TYP)
- Low-power features
 - On-chip temperature-compensated refresh (TCR)
 - Partial-array refresh (PAR)
 - Deep power-down (DPD) mode
- Configuration
 - 8 Meg x 16 MT45W8MW16B
 - VCC core voltage: 1.70-1.95V
 - VCCQ I/O voltage: 1.7-3.6V1
- Timing
 - 70ns access -70
 - 85ns access -85
- Frequency
 - 66 MHz 6
 - 80 MHz 8

- 104 MHz 1
- 133 MHz 13
- Standby power at 85°C
 - Standard: 200μA (MAX) None
 - Low power: 160μA (MAX) L
- Operating temperature range
 - Wireless (-30°C to +85°C) WT

3. RVS Module v.1.0 pin connections:

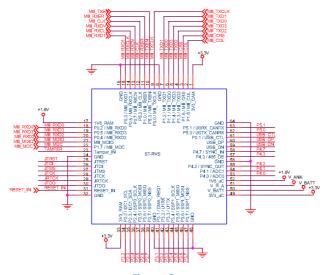


Figure 8

P/N	Pin Name	Function	Description
1	3V3_CAM	Camera power supply (3.3V)	Camera typical power supply is 2.8V. Conversion from 3.3V to 2.8V is accomplished by a LDO voltage regulator embedded on the module.
2	MII_COL		
3	MII_CRS		The Media Independent Interface (MII) is a standard interface
4	MII_TXD2	MII (Media Independent Interface)	used to connect a Fast Ethernet (for data transfer at 10 Mb/s and 100 Mb/s) MAC-block to a PHY. Being media independent means that any of several different types of PHY devices can be used
5	MII_TXD3	wiii (Wedia independent interface)	
6	MII_TXD0		without redesigning or replacing the MAC hardware.
7	MII_TXD1		
8	GROUND	Ground	
9	MII_TXCLK		
10	MII_TXEN		
11	MII_RXER		
12	MII_CLK	MII (Media Independent Interface)	
13	MII_RXDV		
14	MII_RXCLK		
15	MII_RXD1		
16	GROUND	Ground	
17	1V8_RAM	RAM power supply (1.8V)	Core voltage for MT45W8MW16BGX PSRAM
18	MII_RXD0		
19	MII_RXD3		
20	MII_RXD2	MII (Media Independent Interface)	
21	MII_MDIO		
22	MII_MDC		
23	TAMPER	Tamper detect input pin	Tamper input pin is used to detect and record the time of a tamper event on the end product such as malicious opening of an enclosure, unwanted opening of a panel, etc. Once a tamper event occurs, the RTC time (millisecond resolution) and the date are recorded in the RTC unit. Simultaneously, the SRAM standby voltage source will be cut off to invalidate all SRAM contents.

24	GROUND	Ground		
25	JTRST			
26	JTDI	-		
27	JTMS	-	An IEEE-1149.1 JTAG interface on the STR91xFA provides In-	
28	JTCK	JTAG peripheral	System-Programming (ISP) of all memory, boundary scan testing	
29	JRTCK	-	of pins, and the capability to debug the CPU.	
30	JTDO	-		
31	RESET_IN	Reset	General reset of device	
32	GROUND	Ground	General reset of device	
33	3V3_RAM	RAM power supply (3.3V)	I/O voltage for MT45W8MW16BGX PSRAM	
	_	KAIVI power supply (5.5V)		
34	PO_I2C1_SCL	l ² C device	An I2C Bus Interface serves as an interface between the microcontroller and the serial I2C bus. It provides both	
35	PO_I2C1_SDA	I C device	multimaster and slave functions, and controls all I2C bus-specific sequencing, protocol, arbitration and timing.	
36	PO_SSPO_SCLK		The SCD is a master or clave interfere for synchronous social	
37	PO_SSP0_MOSI	SCD (Syncronous Covial Desigh and Nation	The SSP is a master or slave interface for synchronous serial communication with peripheral devices that have either Motorola	
38	PO_SSPO_MISO	SSP (Syncronous Serial Peripheral) n°0	SPI, National Microwire or Texas Instruments SSI synchronous	
39	PO_SSPO_NSS	1	serial interfaces.	
40	GROUND	Ground		
41	PO_DMA_REQ1	DMA Trigger	Allow DMA trigging with external clock.	
42	PO_U1RX_CANTX		Possibility to choose UART or CAN peripheral connection. The UART interface provides serial communication between the STR91xF and other	
43	PO_U1TX_CANRX	UART or CAN peripheral	microcontrollers, microprocessors or external peripherals. It supports full-duplex asynchronous communication. The CAN peripheral consists of the CAN Core, Message RAM, Message Handler, Control Registers and Module Interface. The bit rate can be programmed to values up to 1MBit/s.	
44	PO_SSP1_SCLK		The SSP is a master or slave interface for synchronous serial communication with peripheral devices that have either Motorola	
45	PO_SSP1_MISO	SSP (Syncronous Serial Peripheral) n°1		
46	PO_SSP1_MOSI	331 (Syncronous Serial Feripheral) II 1	SPI, National Microwire or Texas Instruments SSI synchronou serial interfaces.	
47	PO_SSP1_NSS	1	Serial interfaces.	
48	GROUND	Ground		
49	3V3_uC	Microcontroller power supply (3.3V)	Operating voltage for STR912 I/O ring	
50	V_BATT			
51	V_R_A			
52	1V8_uC	Microcontroller power supply (1.8V)	Operating voltage for STR912 core and internal RAM	
53	PO_ADC0		The Analog-to-Digital Converter (ADC) comprises an input	
54	PO_ADC1	ADC (Analog-to-Digital Converter)	multiplexed channel selector feeding a successive approximation converter. The conversion resolution is 10 bits.	
55	PO_SYNC_OUT	Syncronization Output pin	In multiple camera synchronization applications this pin is used to clock all the cameras.	
56	GROUND	Ground		
57	PO_ADC3	ADC (Analog-to-Digital Converter)		
58	PO_SYNC_IN	Syncronization Input pin	In multiple camera synchronization applications this pin is used to read the external clock.	
59	USB_DN			
60	USB_DP	USB peripheral (USB2 full-speed)	The USB slave interface consists of both the USB Serial Interface Engine (SIE) and the USB Transceiver (Physical interface).	
61	PO_USB_CTL	1	Engine (Siz) and the OSD Hanstelver (Haystel Interface).	
62	PO_U0TX_CANRX			
	PO_U0RX_CANTX	UART or CAN peripheral		
63	I O_OONX_CANTX			

4. RVS Main Board:

The RVS Main Board is an application board specifically designed to evaluate the RVS Module.

The main features of this board are:

- JTAG
- High Luminosity LED
- Ethernet 10/100 port
- USB2 full-speed
- CAN2.0B
- 2 x RS232
- Fast IR port
- MicroSD card socket
- I²C
- SPI
- GPIOs
- Lego NXT interface port (RS485/I²C)
- Multiple-camera synchronization port

Figure 9

The RVS Module v. 1.0 - Socket Version is installed in the center of board (as shown in the above picture). Board dimensions: $120 \times 90 \text{ mm}$.

5. RSV Module v. 1.0 schematic:

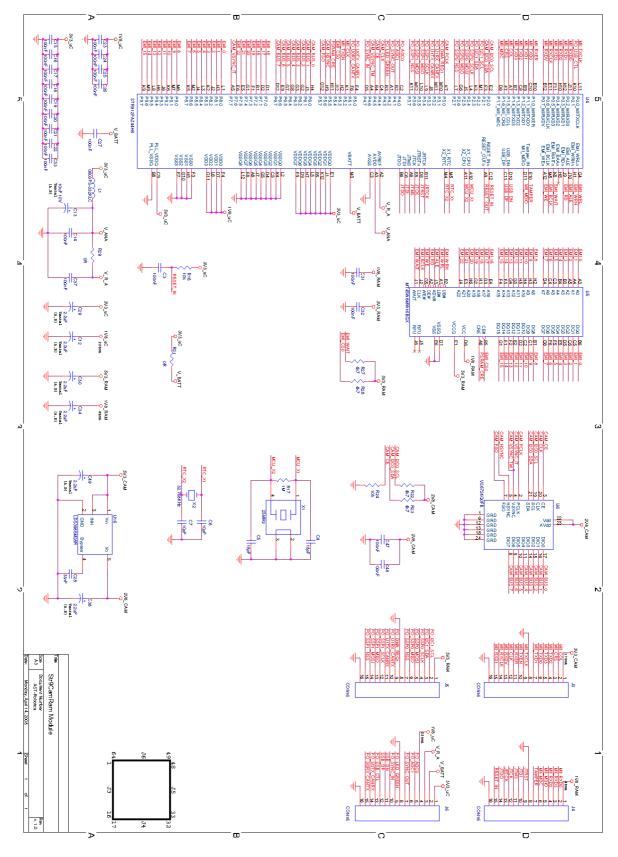


Figure 10

6. Bill of materials

Chips

Part	Package	Detail description	Order code (reference)
U4	LFBGA144	STR912FAZ44H6	STM
U5	VFBGA54	PSRAM 70ns 104MHz 128Mbit	MT45W8MW16BCGB- 701WT Micron
U6 part 1/3	SmOP2	VS6724Q0FB	STM
U6 part 2/3		SMK Socket per VS6724	CLE9124-1501FSZ SMK
U6 part 3/3		SMK Lid per VS6724	CLE9124-1401F SMK
U16	SOT23-5	LDS3985M28R	STM

Capacitors

Part	Package	Detail description	Order code (reference)
C6, C7	0402	Chip capacitor 10pF 50V COG	GRM1555C1H180JZ01D Murata
C4, C5	0402	Chip capacitor 18pF 50V COG	GRM1555C1H180JZ01D Murata
C28	0402	Chip capacitor 33nF 10V X7R	GRM155R71A333KA01 Murata
C3, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C31, C32, C33, C37, C47, C48	0402	Chip capacitor 100nF 10V X5R	GRM1555R61A104KA01D Murata AVX
C12, C29, C30, C34, C38, C49	0402	Tantalum capacitor 2.2uF / 6.3V	TACK225M006RTA AVX
C13	0603	Tantalum capacitor 10uF / 6.3V	TACL106M006RTA AVX

Resistors

Part	Package	Detail description	Order code (reference)
R21, R29, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55	0402	0 ohm	
R22, R23, R27, R28	0402	4.7K 5%	
R16, R24	0402	10K 1%	
R17	0402	1M 1%	

Inductor

Part	Package	Detail description	Order code (reference)
11	0603	Chip inductor 3.3uH	0603PS-332KLC
	0003	Chip madetor 3.3dri	Colicraft

Xtal

Part	Package	Detail description	Order code (reference)
X1	2.5 x 2.0mm	Xtal 25MHz ±10ppm tolerance, ±25ppm stability, cload 10pF	NDK
X2	3.2 x 1.5mm	Crystal 32.768KHz	CC7V-T1A-0.5 Micro Crystal

Connectors

Part	Package	Detail description	Order code (reference)
J3, J4, J5, J6	20.3 x	16 pin strip connector female pitch	W53481116SA
	2.5mm	1.27 mm	Winslow AdaptICs

7. Revision history

Document revision history

Date	Revision	Changes
24-Nov-2008	1.0	Initial release
27-Nov-2008	2.1	Schematic update, adding of chap. 6

8. Appendix

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

