Difference between revisions of "Machine Learning for Crop Weed Classification"

From AIRWiki
Jump to: navigation, search
Line 36: Line 36:
  
 
=== Methods ===
 
=== Methods ===
 +
Crop and weed classification can be accomplished by analyzing an image with the use of Machine Learning. Supervised Machine Learning makes use of data (for example: an image) and an annotation file (an image of the same size, with colours demarcating the area that belongs to a certain class). Therefore, the basis of this project is the availability of data.
  
 
+
===== Data =====
 +
Two publicly available datasets are used: Crop/Weed Field Image Dataset (CWFID) and Sugar Beets 2016 (SB2016).
  
 
=== Results ===
 
=== Results ===

Revision as of 16:14, 29 January 2018

Machine Learning for Crop Weed Image Classification
Short Description: Automatic detection of crops and weeds by using image data
Coordinator:
Tutor: MatteoMatteucci (matteo.matteucci@polimi.it)
Collaborator:
Students: LodewijkVoorhoeve (lodewijk.voorhoeve@wur.nl)
Research Area: Machine Learning
Research Topic: Image Classification
Start: 2017/09/4
End: 2018/01/31
Status: Active
Level: Ms
Type: Thesis

Project short description

The aim of this project is to transfer the work of Stefano Cereda on crop/weed detection to TensorFlow and to train the model with new data.

Dates

Start date: 2017/09/04

End date: 2018/01/30

Project head(s)

M.Matteucci

Students currently working on the project

Lodewijk Voorhoeve

Laboratory work and risk analysis

This project is related to software developing so there are no dangerous activities

Methods

Crop and weed classification can be accomplished by analyzing an image with the use of Machine Learning. Supervised Machine Learning makes use of data (for example: an image) and an annotation file (an image of the same size, with colours demarcating the area that belongs to a certain class). Therefore, the basis of this project is the availability of data.

Data

Two publicly available datasets are used: Crop/Weed Field Image Dataset (CWFID) and Sugar Beets 2016 (SB2016).

Results