Difference between revisions of "Disassembling a Roomba 560"

From AIRWiki
Jump to: navigation, search
m
Line 13: Line 13:
 
Image:Roomba_2.JPG | Bottom view. This is more interesting, as you can see (almost) all the moving parts, i.e., the two actuated wheels (bigger), the idler wheel (on top), the two rotating brushes, and the side brush used to catch dirt from corners. The "almost" is due to the fact that the Roomba also sports a small fan in the dust compartment (the only real vacuuming action occurs there) and a motor that lifts the whole brush module when the robot is on a carpet.
 
Image:Roomba_2.JPG | Bottom view. This is more interesting, as you can see (almost) all the moving parts, i.e., the two actuated wheels (bigger), the idler wheel (on top), the two rotating brushes, and the side brush used to catch dirt from corners. The "almost" is due to the fact that the Roomba also sports a small fan in the dust compartment (the only real vacuuming action occurs there) and a motor that lifts the whole brush module when the robot is on a carpet.
 
Image:Roomba_3.JPG | The removable elements of the Roomba: two rotating brushes and the dust compartment. The latter includes a small fan, which receives power from the two clamp-like contacts visible on the underside of the robot, and a red element (shown in its open position by the picture) supporting a dust filter.
 
Image:Roomba_3.JPG | The removable elements of the Roomba: two rotating brushes and the dust compartment. The latter includes a small fan, which receives power from the two clamp-like contacts visible on the underside of the robot, and a red element (shown in its open position by the picture) supporting a dust filter.
Image:Roomba_5.JPG | Two other elements that are easily removed are the idler wheel assembly (wheel and socket, both removed by simply pulling) and the side brush (held in place by a screw). By the way: the two square metal plates at the side of the idler wheel mounting place are the contacts used to power the robot when it is on its recharge base.
+
Image:Roomba_5.JPG | Two other elements that are easily removed are the idler wheel assembly (wheel and socket, both removed by simply pulling) and the side brush (held in place by a screw). The two square metal plates at the side of the idler wheel mounting place are the contacts used to power the robot when it is on its recharge base.
 
Image:Roomba_4.JPG | Another view of the front wheel assembly, the side brush and the underside of the robot. At the bottom of the wheel socket you can see an emitter and a receiver, used to detect if the black/white wheel is actually rotating or is stuck.
 
Image:Roomba_4.JPG | Another view of the front wheel assembly, the side brush and the underside of the robot. At the bottom of the wheel socket you can see an emitter and a receiver, used to detect if the black/white wheel is actually rotating or is stuck.
 
</gallery>
 
</gallery>
Line 52: Line 52:
 
Image:Roomba_18.JPG | Front view. Some of the elements shown are: the omnidirectional sensor, the metal plate, the front of the shock absorbers, (above these) the twin square openings of the forward-looking emitter/receiver couple (we will see that, unlike the other couples, this one is directly mounted on the main PCB), the left and right arms of the bumper switches (two black horizontal arms, about 25mm long, respectively at the immediate right and at the immediate left of the light grey rectangular strips; strips which, by the way, are made of foam and are probably used as lateral shock absorbers).
 
Image:Roomba_18.JPG | Front view. Some of the elements shown are: the omnidirectional sensor, the metal plate, the front of the shock absorbers, (above these) the twin square openings of the forward-looking emitter/receiver couple (we will see that, unlike the other couples, this one is directly mounted on the main PCB), the left and right arms of the bumper switches (two black horizontal arms, about 25mm long, respectively at the immediate right and at the immediate left of the light grey rectangular strips; strips which, by the way, are made of foam and are probably used as lateral shock absorbers).
 
Image:Roomba_19.JPG | Another front view, where the downward-firing infrared emitter/receivers are especially evident: they are the four clear plastic elements, each of which has a roughly trapezoidal downward-looking side, subdivided in two by a central ridge. Two of them are at the very front of the robot, and two are in a more lateral position. Presumably, their active surface is not horizontal but instead tilted away from the robot to "see" some centimeters away and, thus, perceive if the robot is heading towards an area where the floor is missing before Roomba actually reaches it.
 
Image:Roomba_19.JPG | Another front view, where the downward-firing infrared emitter/receivers are especially evident: they are the four clear plastic elements, each of which has a roughly trapezoidal downward-looking side, subdivided in two by a central ridge. Two of them are at the very front of the robot, and two are in a more lateral position. Presumably, their active surface is not horizontal but instead tilted away from the robot to "see" some centimeters away and, thus, perceive if the robot is heading towards an area where the floor is missing before Roomba actually reaches it.
 +
</gallery>
  
 
+
== Removing the top shell ==
 +
The upper part of the robot is a sort of drawer where the control circuit board (and a small auxiliary board as well) is enclosed. It is separated by the (dusty) bottom part of the robot's hull, except where cutouts are required to allow for the connections between the board and the electromechanical components. A metal shield is located on the bottom of the "drawer", presumably to shield the data-processing parts of the circuit from interference from the motors below.
 +
<gallery widths=480px heights=320px perrow=3>
 +
Image:Roomba_20.JPG |
 
</gallery>
 
</gallery>

Revision as of 16:41, 10 March 2010

The Roomba by Irobot is a vacuuming robot; but it is also one of the (still) few examples of mass-market robotic products. Its low cost, the easy availability of spare parts and the wide diffusion make the Roomba an interesting starting point for "hacking".

This page is dedicated to the disassembly of a Roomba 560. Its purpose is to provide AIRLab users (or anyone else) wanting to hack a Roomba with a guide to the process, so that they can plan their work easily. Other Roomba 500-series models should be similar to the one featured in this page.

Please note that the robot we have taken apart was well-used, so you will see a fair bit of dust and dirt on the parts... all for the sake of realism. (Just joking: simply, that was a broken robot we could spare in case the process proved to be fatal :-) )

If you click on any of the images below, you will be taken to its own AIRWiki page, where you will be able to download the file. However, the files are NOT high-resolution (480x320 pixels: on this page they are shown at full resolution). You can download the high-resolution originals of the images (and some additional image not shown by this AIRWiki page) from here. Note that the originals are 3888x2592 pixels, and each of them weighs in at 3-5MB.

Before the dissection

Here you can see the Roomba 560 before any disassembling occurred.

Removing the bottom cover

To get to the electromechanical elements of the robot, you have to remove the bottom cover (as we will see later, electronics is accessed from the top instead).

The brush housing

This element is more complex than it is immediately apparent.

The active wheels

Roomba is propelled by two actuated wheels, in a classical differential drive configuration. By modulating the rotating speeds of each the wheels independently from the other, different trajectories are obtained.

The front sensors

Most of the sensors of the Roomba are located on the front of the robot. Such sensors are:

  • bumpers to detect collisions;
  • two sets of infrared emitters/receivers: front-looking to detect the presence of obstacles, and downward-looking to detect the presence of the floor (so the robot is able to avoid falling down the stairs);
  • an omnidirectional infrared sensor to detect the presence of active Roomba accessories such as "virtual walls" and recharge stations.

Removing the top shell

The upper part of the robot is a sort of drawer where the control circuit board (and a small auxiliary board as well) is enclosed. It is separated by the (dusty) bottom part of the robot's hull, except where cutouts are required to allow for the connections between the board and the electromechanical components. A metal shield is located on the bottom of the "drawer", presumably to shield the data-processing parts of the circuit from interference from the motors below.