Extension of the quadruped robot WARUGADAR

From AIRWiki
Revision as of 09:51, 22 February 2009 by MarcoDeambrogi (Talk | contribs)

Jump to: navigation, search

Part 1: project profile

Project name

Extension of the quadruped robot WARUGADAR.

Project short description

  • Warugadar is still far from being a complete functional autonomous robot; the robot would benefit from the introduction of any other kind of sensor device that could allow it to be more aware of the surrounding environment. We want integrate on WARUGADAR one camera to provide it of visual sensibility.
  • The Warugadar interface was developed in Matlab, we would translate in Pyro to benefit open source software.

Dates

  • Start date: May 2008
  • End date: March 2009 (max)

People involved

Project head

Students

Laboratory work and risk analysis

Laboratory work for this project will be mainly performed at AIRLab/Lambrate. It will include significant amounts of mechanical work as well as of electrical and electronic activity. Potentially risky activities are the following:

  • Use of mechanical tools. Standard safety measures described in Safety norms will be followed.

Part 2: project description

To implement the vision system, I use CMUcam3 (where CMU stands for Carnegie Mellon University of Pittsburgh, Pennsylvania). CMUcam3 is not only a simple camera, but we can define it like an ARM7TDMI based fully programmable embedded computer vision sensor. The main processor is the Philips LPC2106 connected to an Omnivision CMOS camera sensor module with a maximun resolution of 352x288 pixels. Custom C code can be developed for the CMUcam3 using a port of the GNU toolchain along with a set of open source libraries and example programs. Executables can be flashed onto the board using the serial port with no external downloading hardware required. CMU.jpg

To implement the navigation system, I don't use the MATLAB interface developed by Cirillo Simone, but I use the interface developed in Pyro by my colleague Giovanni Alfieri. What is Pyro? Pyro stands for Python Robotics. The goal of the project is to provide a programming environment for easily exploring advanced topics in artificial intelligence and robotics without having to worry about the low-level details of the underlying hardware. Pyro is written in Python. Python is an interpreted language, which means that you can experiment interactively with your robot programs. In addition to being an environment, Pyro is also a collection of object classes in Python. Because Pyro abstracts all of the underlying hardware details, it can be used for experimenting with several different types of mobile robots and robot simulators. Pyro has the ability to define different styles of controllers, which are called the robot's brain. One unique characteristic of Pyro is the ability to write controllers using robot abstractions that enable the same controller to operate robots with vastly different morphologies.